高中歷史必修二教案
發(fā)表時間:2020-05-30高中數(shù)學(xué)必修二知識點(diǎn)總結(jié)。
高中數(shù)學(xué)必修二知識點(diǎn)總結(jié)
1、柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
(3)棱臺:
幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:底面是一個圓;母線交于圓錐的頂點(diǎn);側(cè)面展開圖是一個扇形.
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:上下底面是兩個圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面展開圖是一個弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):原來與x軸平行的線段仍然與x平行且長度不變;
原來與y軸平行的線段仍然與y平行,長度為原來的一半.
4、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α180°
(2)直線的斜率
定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.
過兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.
(3)直線方程
點(diǎn)斜式:直線斜率k,且過點(diǎn)
注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.
當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.
斜截式:,直線斜率為k,直線在y軸上的截距為b
兩點(diǎn)式:()直線兩點(diǎn),
截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.
一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
(4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(三)過定點(diǎn)的直線系
()斜率為k的直線系:,直線過定點(diǎn);
()過兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組的一組解.
方程組無解;方程組有無數(shù)解與重合
(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點(diǎn)
(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解.
高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑.
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時,方程表示圓,此時圓心為,半徑為
當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.
3、高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當(dāng)時兩圓外離,此時有公切線四條;
當(dāng)時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
5、空間點(diǎn)、直線、平面的位置關(guān)系
公理1:如果一條直線的兩點(diǎn)在一個平面內(nèi),那么這條直線是所有的點(diǎn)都在這個平面內(nèi).
應(yīng)用:判斷直線是否在平面內(nèi)
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a.
符號語言:
公理2的作用:
它是判定兩個平面相交的方法.
它說明兩個平面的交線與兩個平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn).
它可以判斷點(diǎn)在直線上,即證若干個點(diǎn)共線的重要依據(jù).
公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個平面.
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.
公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線互相平行
高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):空間直線與直線之間的位置關(guān)系
異面直線定義:不同在任何一個平面內(nèi)的兩條直線
異面直線性質(zhì):既不平行,又不相交.
異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線
異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.
求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補(bǔ).
(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無數(shù)個公共點(diǎn).
三種位置關(guān)系的符號表示:aαa∩α=Aaα
(9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);αβ
相交——有一條公共直線.α∩β=b
2、空間中的平行問題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.
線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,
那么這條直線和交線平行.線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個平面平行的判定定理
(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.
(線線平行→面面平行),
(3)垂直于同一條直線的兩個平面平行,
兩個平面平行的性質(zhì)定理
(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)
3、空間中的垂直問題
(1)線線、面面、線面垂直的定義
兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.
線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.www.lvshijia.net
平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.
(2)垂直關(guān)系的判定和性質(zhì)定理
線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.
面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.
4、空間角問題
(1)直線與直線所成的角
兩平行直線所成的角:規(guī)定為.
兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.
兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.
(2)直線和平面所成的角
平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.
平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.
在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.
(3)二面角和二面角的平面角
二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.
二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
直二面角:平面角是直角的二面角叫直二面角.
兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過這個點(diǎn)分別在兩個面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
必修二知識點(diǎn)總結(jié):解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.
(2)應(yīng)用
能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實(shí)際問題.
高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):數(shù)列
(1)數(shù)列的概念和簡單表示法
了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式).
了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
(2)等差數(shù)列、等比數(shù)列
理解等差數(shù)列、等比數(shù)列的概念.
掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.
了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):不等式
高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):不等關(guān)系
了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式
會從實(shí)際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題
會從實(shí)際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過程.
會用基本不等式解決簡單的最大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
擴(kuò)展閱讀
高中數(shù)學(xué)易錯知識點(diǎn)
高中數(shù)學(xué)易錯知識點(diǎn)
一.集合與函數(shù)
1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.
2.在應(yīng)用條件時,易A忽略是空集的情況
3.你會用補(bǔ)集的思想解決有關(guān)問題嗎?
4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別.
6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.
7.判斷函數(shù)奇偶性時,易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對稱.
8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域.
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法
11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?
14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。
17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時,你是否注意到:當(dāng)時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?
二.不等式
18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
19.絕對值不等式的解法及其幾何意義是什么?
20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?
21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤幔瘮?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即ab0,a
三.數(shù)列
24.解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對公比及兩種情況進(jìn)行討論了嗎?
25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。
26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無窮等比數(shù)列的所有項(xiàng)的和必定存在?
27.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。
四.三角函數(shù)
29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
31.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是
34.你還記得某些特殊角的三角函數(shù)值嗎?
35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?
36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:
(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點(diǎn)的平移公式:點(diǎn)按向量平移到點(diǎn),則.
37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等于2R.
五.平面向量
40.數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。
41.數(shù)量積與兩個實(shí)數(shù)乘積的區(qū)別:
在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出.
已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒有.
在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線的向量,而右邊是與共線的向量.
42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
六.解析幾何
43.在用點(diǎn)斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
46.定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時,你注意到了嗎?
47.對不重合的兩條直線
(建議在解題時,討論后利用斜率和截距)
48.直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時,直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。
49.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達(dá).(①設(shè)出變量,寫出目標(biāo)函數(shù)②寫出線性約束條件③畫出可行域④作出目標(biāo)函數(shù)對應(yīng)的系列平行線,找到并求出最優(yōu)解⑦應(yīng)用題一定要有答。)
50.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個特征三角形你掌握了嗎?
51.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?
52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項(xiàng)的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?
53.通徑是拋物線的所有焦點(diǎn)弦中最短的弦.(想一想在雙曲線中的結(jié)論?)
54.在用圓錐曲線與直線聯(lián)立求解時,消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時直線與其只有一個交點(diǎn),判別式的限制.(求交點(diǎn),弦長,中點(diǎn),斜率,對稱,存在性問題都在下進(jìn)行).
55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?
七.立體幾何
56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
57.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?
58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見
59.線面平行的判定定理和性質(zhì)定理在應(yīng)用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大.
60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法.
61.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。
62.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?
63.兩條異面直線所成的角的范圍:0°α≤90°p=
直線與平面所成的角的范圍:0o≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
64.你知道異面直線上兩點(diǎn)間的距離公式如何運(yùn)用嗎?
65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關(guān)幾何元素的“不變量”與“不變性”。
66.立幾問題的求解分為“作”,“證”,“算”三個環(huán)節(jié),你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節(jié)?
67.棱柱及其性質(zhì)、平行六面體與長方體及其性質(zhì).這些知識你掌握了嗎?(注意運(yùn)用向量的方法解題)
68.球及其性質(zhì);經(jīng)緯度定義易混.經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式.這些知識你掌握了嗎?
八.排列、組合和概率
69.解排列組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合.
解排列組合問題的規(guī)律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優(yōu)先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排后排法;至多至少問題間接法.
70.二項(xiàng)式系數(shù)與展開式某一項(xiàng)的系數(shù)易混,第r+1項(xiàng)的二項(xiàng)式系數(shù)為。二項(xiàng)式系數(shù)最大項(xiàng)與展開式中系數(shù)最大項(xiàng)易混.二項(xiàng)式系數(shù)最大項(xiàng)為中間一項(xiàng)或兩項(xiàng);展開式中系數(shù)最大項(xiàng)的求法要用解不等式組來確定r.
71.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發(fā)生的概率公式;③相互獨(dú)立事件同時發(fā)生的概率公式.)
72.二項(xiàng)式展開式的通項(xiàng)公式、n次獨(dú)立重復(fù)試驗(yàn)中事件A發(fā)生k次的概率易記混。
通項(xiàng)公式:它是第r+1項(xiàng)而不是第r項(xiàng);
事件A發(fā)生k次的概率:.其中k=0,1,2,3,…,n,且0
73.求分布列的解答題你能把步驟寫全嗎?
74.如何對總體分布進(jìn)行估計?(用樣本估計總體,是研究統(tǒng)計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義.)
75.你還記得一般正態(tài)總體如何化為標(biāo)準(zhǔn)正態(tài)總體嗎?(對任一正態(tài)總體來說,取值小于x的概率,其中表示標(biāo)準(zhǔn)正態(tài)總體取值小于的概率)
九.導(dǎo)數(shù)及其應(yīng)用
76.在點(diǎn)處可導(dǎo)的定義你還記得嗎?它的幾何意義和物理意義分別是什么?利用導(dǎo)數(shù)可解決哪些問題?具體步驟還記得嗎?
77.你會用“在其定義域內(nèi)可導(dǎo),且不恒為零,則在某區(qū)間上單調(diào)遞增(減)對恒成立?!苯鉀Q有關(guān)函數(shù)的單調(diào)性問題嗎?
78.你知道“函數(shù)在點(diǎn)處可導(dǎo)”是“函數(shù)在點(diǎn)處連續(xù)”的什么條件嗎
高中數(shù)學(xué)重難點(diǎn)知識點(diǎn)
一名優(yōu)秀的教師在教學(xué)時都會提前最好準(zhǔn)備,作為教師就要精心準(zhǔn)備好合適的教案。教案可以讓學(xué)生能夠在教學(xué)期間跟著互動起來,讓教師能夠快速的解決各種教學(xué)問題。那么如何寫好我們的教案呢?以下是小編為大家收集的“高中數(shù)學(xué)重難點(diǎn)知識點(diǎn)”歡迎您參考,希望對您有所助益!
高中數(shù)學(xué)重難點(diǎn)知識點(diǎn)
高中數(shù)學(xué)(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習(xí)兩本書。
必修一:1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角
這部分知識是高一學(xué)生的難點(diǎn),比如:一個角實(shí)際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22---27分
2、直線方程:高考時不單獨(dú)命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計:3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查
2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
文科:選修1—1、1—2
選修1--1:重點(diǎn):高考占30分
1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)
選修1--2:1、統(tǒng)計:2、推理證明:一般不考,若考會是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)
理科:選修2—1、2—2、2—3
選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)
選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)
選修2--3:1、計數(shù)原理:(排列組合、二項(xiàng)式定理)掌握這部分知識點(diǎn)需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機(jī)變量及其分布:不單獨(dú)命題3、統(tǒng)計:
高考的知識板塊
集合與簡單邏輯:5分或不考
函數(shù):高考60分:①、指數(shù)函數(shù)②對數(shù)函數(shù)③二次函數(shù)④三次函數(shù)⑤三角函數(shù)⑥抽象函數(shù)(無函數(shù)表達(dá)式,不易理解,難點(diǎn))
平面向量與解三角形
立體幾何:22分左右
不等式:(線性規(guī)則)5分必考
數(shù)列:17分(一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題
平面解析幾何:(30分左右)
計算原理:10分左右
概率統(tǒng)計:12分----17分
復(fù)數(shù):5分
推理證明
一般高考大題分布
1、17題:三角函數(shù)
2、18、19、20三題:立體幾何、概率、數(shù)列
3、21、22題:函數(shù)、圓錐曲線
成績不理想一般是以下幾種情況:
做題不細(xì)心,(會做,做不對)
基礎(chǔ)知識沒有掌握
解決問題不全面,知識的運(yùn)用沒有系統(tǒng)化(如:一道題綜合了多個知識點(diǎn))
心理素質(zhì)不好
總之學(xué)習(xí)數(shù)學(xué)一定要掌握科學(xué)的學(xué)習(xí)方法:1、筆記:記老師講的課本上沒有的知識點(diǎn),尤其是數(shù)列性質(zhì),課本上沒有,但做題經(jīng)常用到2、錯題收集、歸納總結(jié)
高一年級
必修一
第一章集合與函數(shù)概念
第二章基本初等函數(shù)(Ⅰ)
第三章函數(shù)的應(yīng)用
必修二
第一章空間幾何體
第二章點(diǎn)、直線、平面之間的位置關(guān)系
第三章直線與方程
必修三
第一章算法初步
第二章統(tǒng)計
第三章概率
必修四
第一章三角函數(shù)
第二章平面向量
第三章三角恒等變換
(二)教學(xué)要求
在教學(xué)中,由于集合、函數(shù)等內(nèi)容比較抽象,三角函數(shù)在高考中占據(jù)重要地位,平面向量又是高考中數(shù)學(xué)必考內(nèi)容,教師在備課組協(xié)作的基礎(chǔ)上應(yīng)注意對各章知識的重難點(diǎn)的講解和釋疑,減輕學(xué)生自學(xué)的壓力,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。
首先,在高中數(shù)學(xué)中,集合的初步知識以及與其它內(nèi)容的密切聯(lián)系。它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。在教學(xué)中,應(yīng)注重引導(dǎo)學(xué)生更好的理解數(shù)學(xué)中出現(xiàn)的集合語言,使學(xué)生更好的使用集合語言表述數(shù)學(xué)問題,并且可以使學(xué)生運(yùn)用集合的觀點(diǎn),研究、處理數(shù)學(xué)問題。因此集合的基本概念、函數(shù)等有關(guān)內(nèi)容是教師重點(diǎn)講解的內(nèi)容。
其次,函數(shù)作為中學(xué)數(shù)學(xué)中最重要的基本概念之一,教師應(yīng)注意運(yùn)用有關(guān)的概念和函數(shù)的性質(zhì),培養(yǎng)學(xué)生的思維能力;通過指數(shù)與對數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)之間的內(nèi)在聯(lián)系,對學(xué)生進(jìn)行辯證唯物主義觀點(diǎn)的教育;通過聯(lián)系實(shí)際的引入問題和解決帶有實(shí)際意義的某些問題,培養(yǎng)學(xué)生的實(shí)踐能力和創(chuàng)新意識。
第三,通過對三角函數(shù)的學(xué)習(xí),學(xué)生將進(jìn)一步了解符號與變元、集合與對應(yīng)、數(shù)形結(jié)合等基本的數(shù)學(xué)思想在研究三角函數(shù)時所起的重要作用,在式子與圖形的變化中,教師應(yīng)引導(dǎo)學(xué)生通過分析、探索、劃歸、類比、平行移動、伸長和縮短等常用的基本方法的學(xué)習(xí),使學(xué)生在學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)方面達(dá)到一個新的層次。
第四,學(xué)習(xí)平面向量,不但應(yīng)注意平面向量基本知識的講解,更要充分挖掘平面向量的工具作用,提高學(xué)生應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的能力和實(shí)際操作的能力,使學(xué)生學(xué)會提出問題,明確研究方向,使學(xué)生學(xué)會交流,體驗(yàn)數(shù)學(xué)活動的過程,培養(yǎng)創(chuàng)新精神和應(yīng)用能力。
第五、在學(xué)習(xí)空間幾何體、點(diǎn)、直線、平面之間的位置關(guān)系時,重點(diǎn)要幫助學(xué)生逐步形成空間想象能力,嚴(yán)格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問題。
第六、要在平面解析幾何初步教學(xué)中,幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。
第七、在學(xué)習(xí)算法初步、統(tǒng)計等內(nèi)容的時候,要注意順序漸進(jìn),不可追求一步到位,特別要注意其思想的重要性。
高二年級
必修五
第一章解三角形
第二章數(shù)列
第三章不等式
選修1-1
第一章常用邏輯用語
第二章圓錐曲線與方程
第三章導(dǎo)數(shù)及其應(yīng)用
選修1-2
第一章統(tǒng)計案例
第二章推理與證明
第三章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入
第四章框圖
選修2-1
第一章常用邏輯用語
第二章圓錐曲線與方程
第三章空間向量與立體幾何
選修2-2
第一章導(dǎo)數(shù)及其應(yīng)用
第二章推理與證明
第三章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入
選修2-3
第一章計數(shù)原理
第二章隨機(jī)變量及其分布
第三章統(tǒng)計案例
(二)教學(xué)要求
高二上
必修5
學(xué)生將在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,并認(rèn)識到運(yùn)用它們可以解決一些與測量和幾何計算有關(guān)的實(shí)際問題。
數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本數(shù)學(xué)模型。在本模塊中,學(xué)生將通過對日常生活中大量實(shí)際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實(shí)際問題。
不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學(xué)研究的重要內(nèi)容。建立不等觀念、處理不等關(guān)系與處理等量問題是同樣重要的。在本模塊中,學(xué)生將通過具體情境,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用二元一次不等式組表示平面區(qū)域,并嘗試解決一些簡單的二元線性規(guī)劃問題;認(rèn)識基本不等式及其簡單應(yīng)用;體會不等式、方程及函數(shù)之間的聯(lián)系。
選修1—1(文科)
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)習(xí)常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,更好地進(jìn)行交流。
在必修課程學(xué)習(xí)平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)習(xí)圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用,進(jìn)一步體會數(shù)形結(jié)合的思想。
在本模塊中,學(xué)生將通過大量實(shí)例,經(jīng)歷由平均變化率到瞬時變化率的過程,刻畫現(xiàn)實(shí)問題,理解導(dǎo)數(shù)的含義,體會導(dǎo)數(shù)的思想及其內(nèi)涵;應(yīng)用導(dǎo)數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實(shí)際中的應(yīng)用,感受導(dǎo)數(shù)在解決數(shù)學(xué)問題和實(shí)際問題中的作用,體會微積分的產(chǎn)生對人類文化發(fā)展的價值。
選修2-1(理科)
在本模塊中,學(xué)生將學(xué)習(xí)常用邏輯用語、圓錐曲線與方程、空間中的向量(簡稱空間向量)與立體幾何。
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)習(xí)常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,從而更好地進(jìn)行交流。
在必修階段學(xué)習(xí)平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)習(xí)圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握圓錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用。結(jié)合已學(xué)過的曲線及其方程的實(shí)例,了解曲線與方程的對應(yīng)關(guān)系,進(jìn)一步體會數(shù)形結(jié)合的思想。
在本模塊中,學(xué)生將在學(xué)習(xí)平面向量的基礎(chǔ)上,把平面向量及其運(yùn)算推廣到空間,運(yùn)用空間向量解決有關(guān)直線、平面位置關(guān)系的問題,體會向量方法在研究幾何圖形中的作用,進(jìn)一步發(fā)展空間想像能力和幾何直觀能力。
高二下(文科)
在必修課程學(xué)習(xí)統(tǒng)計的基礎(chǔ)上,通過對典型案例的討論,了解和使用一些常用的統(tǒng)計方法,進(jìn)一步體會運(yùn)用統(tǒng)計方法解決實(shí)際問題的基本思想,認(rèn)識統(tǒng)計方法在決策中的作用。
“推理與證明”是數(shù)學(xué)的基本思維過程,也是人們學(xué)習(xí)和生活中經(jīng)常使用的思維方式。推理一般包括合情推理和演繹推理。合情推理是根據(jù)已有的事實(shí)和正確的結(jié)論、實(shí)驗(yàn)和實(shí)踐的結(jié)果,以及個人的經(jīng)驗(yàn)和直覺等推測某些結(jié)果的推理過程。歸納、類比是合情推理常用的思維方法。在解決問題的過程中,合情推理具有猜測和發(fā)現(xiàn)結(jié)論、探索和提供思路的作用,有利于創(chuàng)新意識的培養(yǎng)。演繹推理是根據(jù)已有的事實(shí)和正確的結(jié)論,按照嚴(yán)格的邏輯法則得到新結(jié)論的推理過程,培養(yǎng)和提高學(xué)生的演繹推理或邏輯證明的能力是高中數(shù)學(xué)課程的重要目標(biāo)。合情推理和演繹推理之間聯(lián)系緊密、相輔相成。證明通常包括邏輯證明和實(shí)驗(yàn)、實(shí)踐證明,但是數(shù)學(xué)結(jié)論的正確性必須通過演繹推理或邏輯證明來保證,即在前提正確的基礎(chǔ)上,通過正確使用推理規(guī)則得出結(jié)論。在本模塊中,學(xué)生將通過對已學(xué)知識的回顧,進(jìn)一步體會合情推理、演繹推理以及二者之間的聯(lián)系與差異;體會數(shù)學(xué)證明的特點(diǎn),了解數(shù)學(xué)證明的基本方法,包括直接證明的方法(如分析法、綜合法)和間接證明的方法(如反證法),感受邏輯證明在數(shù)學(xué)以及日常生活中的作用,養(yǎng)成言之有理、論證有據(jù)的習(xí)慣。
數(shù)系擴(kuò)充的過程體現(xiàn)了數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造過程,同時體現(xiàn)了數(shù)學(xué)發(fā)生、發(fā)展的客觀需求,復(fù)數(shù)的引入是中學(xué)階段數(shù)系的又一次擴(kuò)充。在本模塊中,學(xué)生將在問題情境中了解數(shù)系擴(kuò)充的過程以及引入復(fù)數(shù)的必要性,學(xué)習(xí)復(fù)數(shù)的一些基本知識,體會人類理性思維在數(shù)系擴(kuò)充中的作用。
框圖是表示一個系統(tǒng)各部分和各環(huán)節(jié)之間關(guān)系的圖示,它的作用在于能夠清晰地表達(dá)比較復(fù)雜的系統(tǒng)各部分之間的關(guān)系??驁D已經(jīng)廣泛應(yīng)用于算法、計算機(jī)程序設(shè)計、工序流程的表述、設(shè)計方案的比較等方面,也是表示數(shù)學(xué)計算與證明過程中主要邏輯步驟的工具,并將成為日常生活和各門學(xué)科中進(jìn)行交流的一種常用表達(dá)方式。在本模塊中,學(xué)生將學(xué)習(xí)用“流程圖”、“結(jié)構(gòu)圖”等刻畫數(shù)學(xué)問題以及其他問題的解決過程;并在學(xué)習(xí)過程中,體驗(yàn)用框圖表示數(shù)學(xué)問題解決過程以及事物發(fā)生、發(fā)展過程的優(yōu)越性,提高抽象概括能力和邏輯思維能力,能清晰地表達(dá)和交流思想。
高二下(理科)
微積分的創(chuàng)立是數(shù)學(xué)發(fā)展中的里程碑,它的發(fā)展和廣泛應(yīng)用開創(chuàng)了向近代數(shù)學(xué)過渡的新時期,為研究變量和函數(shù)提供了重要的方法和手段。導(dǎo)數(shù)概念是微積分的核心概念之一,它有極其豐富的實(shí)際背景和廣泛的應(yīng)用。在本模塊中,學(xué)生將通過大量實(shí)例,經(jīng)歷由平均變化率到瞬時變化率刻畫現(xiàn)實(shí)問題的過程,理解導(dǎo)數(shù)概念,了解導(dǎo)數(shù)在研究函數(shù)的單調(diào)性、極值等性質(zhì)中的作用,初步了解定積分的概念,為以后進(jìn)一步學(xué)習(xí)微積分打下基礎(chǔ)。通過該模塊的學(xué)習(xí),學(xué)生將體會導(dǎo)數(shù)的思想及其豐富內(nèi)涵,感受導(dǎo)數(shù)在解決實(shí)際問題中的作用,了解微積分的文化價值。
“推理與證明”是數(shù)學(xué)的基本思維過程,也是人們學(xué)習(xí)和生活中經(jīng)常使用的思維方式。推理一般包括合情推理和演繹推理。合情推理是根據(jù)已有的事實(shí)和正確的結(jié)論(包括定義、公理、定理等)、實(shí)驗(yàn)和實(shí)踐的結(jié)果,以及個人的經(jīng)驗(yàn)和直覺等推測某些結(jié)果的推理過程,歸納、類比是合情推理常用的思維方法。在解決問題的過程中,合情推理具有猜測和發(fā)現(xiàn)結(jié)論、探索和提供思路的作用,有利于創(chuàng)新意識的培養(yǎng)。演繹推理是根據(jù)已有的事實(shí)和正確的結(jié)論(包括定義、公理、定理等),按照嚴(yán)格的邏輯法則得到新的結(jié)論的推理過程。合情推理和演繹推理之間聯(lián)系緊密、相輔相成。證明通常包括邏輯證明和實(shí)驗(yàn)、實(shí)踐證明,數(shù)學(xué)結(jié)論的正確性必須通過邏輯證明來保證,即在前提正確的基礎(chǔ)上,通過正確使用推理規(guī)則得出結(jié)論。在本模塊中,學(xué)生將通過對已學(xué)知識的回顧,進(jìn)一步體會合情推理、演繹推理以及二者之間的聯(lián)系與差異;體會數(shù)學(xué)證明的特點(diǎn),了解數(shù)學(xué)證明的基本方法,包括直接證明的方法(如分析法、綜合法、數(shù)學(xué)歸納法)和間接證明的方法(如反證法);感受邏輯證明在數(shù)學(xué)以及日常生活中的作用,養(yǎng)成言之有理、論證有據(jù)的習(xí)慣。
數(shù)系擴(kuò)充的過程體現(xiàn)了數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造過程,同時體現(xiàn)了數(shù)學(xué)發(fā)生發(fā)展的客觀需求和背景,復(fù)數(shù)的引入是中學(xué)階段數(shù)系的最后一次擴(kuò)充。在本模塊中,學(xué)生將在問題情境中了解數(shù)系擴(kuò)充的過程以及引入復(fù)數(shù)的必要性,學(xué)習(xí)復(fù)數(shù)的一些基本知識,體會數(shù)系擴(kuò)充中人類理性思維的作用。
計數(shù)問題是數(shù)學(xué)中的重要研究對象之一,分類加法計數(shù)原理、分步乘法計數(shù)原理是解決計數(shù)問題的最基本、最重要的方法,也稱為基本計數(shù)原理,它們?yōu)榻鉀Q很多實(shí)際問題提供了思想和工具。在本模塊中,學(xué)生將學(xué)習(xí)計數(shù)基本原理、排列、組合、二項(xiàng)式定理及其應(yīng)用,了解計數(shù)與現(xiàn)實(shí)生活的聯(lián)系,會解決簡單的計數(shù)問題。
在必修課程學(xué)習(xí)概率的基礎(chǔ)上,學(xué)習(xí)某些離散型隨機(jī)變量分布列及其均值、方差等內(nèi)容,初步學(xué)會利用離散型隨機(jī)變量思想描述和分析某些隨機(jī)現(xiàn)象的方法,并能用所學(xué)知識解決一些簡單的實(shí)際問題,進(jìn)一步體會概率模型的作用及運(yùn)用概率思考問題的特點(diǎn),初步形成用隨機(jī)觀念觀察、分析問題的意識。
在必修課程學(xué)習(xí)統(tǒng)計的基礎(chǔ)上,通過對典型案例的討論,了解和使用一些常用的統(tǒng)計方法,進(jìn)一步體會運(yùn)用統(tǒng)計方法解決實(shí)際問題的基本思想,認(rèn)識統(tǒng)計方法在決策中的作用。
高三年級
選修4-1
第一章相似三角形的判定及有關(guān)性質(zhì)
第二章直線與圓的位置關(guān)系
第三章圓錐曲線性質(zhì)的探討
選修4-4
第一章坐標(biāo)系
第二章參數(shù)方程
選修4-5
第一章不等式和絕對值不等式
第二章證明不等式的基本方法
第三章柯西不等式與排序不等式
第四章數(shù)學(xué)歸納法證明不等式
(二)教學(xué)重點(diǎn)難點(diǎn)
1.認(rèn)真學(xué)習(xí)“一標(biāo)兩綱一本”(《課程標(biāo)準(zhǔn)》、《數(shù)學(xué)教學(xué)大綱》、《考試大綱》和課本)。重視對《考試大綱》的研究,并結(jié)合對近年高考題的認(rèn)真分析,深化對高考題的認(rèn)識,明確考試要求,克服盲目性,增強(qiáng)自覺性,更好地指導(dǎo)考生進(jìn)行復(fù)習(xí)。
2.立足基礎(chǔ),突出重點(diǎn),這是高考試卷構(gòu)成的主題?;局R、基本技能、基本方法始終是高考試題考查的重點(diǎn)。在切實(shí)重視基礎(chǔ)知識的落實(shí)中重視基本技能與基本方法的培養(yǎng)。
3.搞好數(shù)學(xué)思想方法的體現(xiàn)和發(fā)掘,發(fā)展理性思維?;舅枷牒头椒ǚ稚⒌貪B透在中學(xué)數(shù)學(xué)教材的各個內(nèi)容之中,在平時的教學(xué)中,教師和學(xué)生把主要精力集中于數(shù)學(xué)新課的教學(xué)之中,缺乏對基本思想和方法的歸納和總結(jié),在高考前的復(fù)習(xí)過程中,教師要在傳授知識的同時有意識地、恰當(dāng)?shù)刂v解和滲透數(shù)學(xué)的基本思想和方法,幫助學(xué)生掌握科學(xué)的方法,從而達(dá)到傳授知識,培養(yǎng)能力的目的,只有這樣,考生在高考中才能靈活運(yùn)用和綜合運(yùn)用所學(xué)的知識。高考提出“以能力立意命題”,正是為了更好地考查數(shù)學(xué)思想,促進(jìn)考生數(shù)學(xué)理性思維的發(fā)展。因此,要加強(qiáng)如何更好地考查數(shù)學(xué)思想的研究,特別是要研究試題解題過程的思維方法,注意考查不同思維方法的試題的協(xié)調(diào)和匹配,使考生的數(shù)學(xué)理性思維能力得到較全面的提高。
4.注意數(shù)學(xué)應(yīng)用問題。新教學(xué)大綱指出:要增強(qiáng)用數(shù)學(xué)的意識,一方面通過背景材料,進(jìn)行觀察、比較、分析、綜合、抽象和推理,得出數(shù)學(xué)概念和規(guī)律,另一方面更重要的是能夠運(yùn)用已有的知識將實(shí)際問題抽象為數(shù)學(xué)問題,建立數(shù)學(xué)模型。解答應(yīng)用性試題,要重視兩個環(huán)節(jié),一是閱讀、理解問題中陳述的材料;二是通過抽象,轉(zhuǎn)換成為數(shù)學(xué)問題,建立數(shù)學(xué)模型。函數(shù)模型、數(shù)列模型、不等式模型、幾何模型、計數(shù)模型是幾種最常見的數(shù)學(xué)模型,要注意歸納整理,用好這幾種數(shù)學(xué)模型。
5.彰顯創(chuàng)新意識,挖掘潛在能力(以課本為主干,重點(diǎn)研究開放性問題,創(chuàng)新問題,數(shù)形結(jié)合問題等)。高考對創(chuàng)新意識的考查,主要是要求考生不僅僅能理解一些概念、定義,掌握一些定理、公式,更重要的是能夠應(yīng)用這些知識和方法解決數(shù)學(xué)中和現(xiàn)實(shí)生活中的比較新穎的問題。數(shù)學(xué)教育的目的不單單是讓學(xué)生掌握一些知識,也不是把每個人都培養(yǎng)成數(shù)學(xué)家,而是把數(shù)學(xué)作為材料和工具,通過數(shù)學(xué)的學(xué)習(xí)和訓(xùn)練,在知識和方法的應(yīng)用中提高綜合能力和基本素質(zhì),形成科學(xué)的世界觀和方法論。因此,高考對創(chuàng)新意識的考查其意義已超出了數(shù)學(xué)學(xué)習(xí),對提高學(xué)習(xí)和工作能力,對今后的人生都有重要的意義。
6.回歸教材本源,發(fā)揮課本功能。數(shù)學(xué)復(fù)習(xí),任務(wù)重,時間緊,但絕不可因此而脫離教材.相反,要緊扣大綱,抓住教材,在總體上把握教材,明確每一章、節(jié)的知識在整體中的地位、作用.近年來高考每年的試題都與教材有著密切的聯(lián)系,有的是將教材中的題目略加修改、變形后作為高考題目;還有的是將教材中的題目合理拼湊、組合作為高考題的.因此,一定要高度重視教材。
(三)教學(xué)建議
高三文、理科對4—系列的選修都是在4—1,4—4,4—5中三選二。
選修4—1幾何證明選講有助于培養(yǎng)學(xué)生的邏輯推理能力,在幾何證明的過程中,不僅是邏輯演繹的程序,它還包含著大量的觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程。本專題從復(fù)習(xí)相似圖形的性質(zhì)入手,證明一些反映圓與直線關(guān)系的重要定理,并通過對圓錐曲線性質(zhì)的進(jìn)一步探索,提高學(xué)生空間想像能力、幾何直觀能力和運(yùn)用綜合幾何方法解決問題的能力。
內(nèi)容與要求
1.復(fù)習(xí)相似三角形的定義與性質(zhì),了解平行截割定理,證明直角三角形射影定理。
2.證明圓周角定理、圓的切線的判定定理及性質(zhì)定理。
3.證明相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線定理。
4.了解平行投影的含義,通過圓柱與平面的位置關(guān)系,體會平行投影;證明平面與圓柱面的截線是橢圓(特殊情形是圓)。
5.通過觀察平面截圓錐面的情境,體會給定的定理。
選修4—4坐標(biāo)系與參數(shù)方程
坐標(biāo)系是解析幾何的基礎(chǔ)。在坐標(biāo)系中,可以用有序?qū)崝?shù)組確定點(diǎn)的位置,進(jìn)而用方程刻畫幾何圖形。為便于用代數(shù)的方法刻畫幾何圖形或描述自然現(xiàn)象,需要建立不同的坐標(biāo)系。極坐標(biāo)系、柱坐標(biāo)系、球坐標(biāo)系等是與直角坐標(biāo)系不同的坐標(biāo)系,對于有些幾何圖形,選用這些坐標(biāo)系可以使建立的方程更加簡單。
參數(shù)方程是以參變量為中介來表示曲線上點(diǎn)的坐標(biāo)的方程,是曲線在同一坐標(biāo)系下的又一種表示形式。某些曲線用參數(shù)方程表示比用普通方程表示更方便。
本專題是解析幾何初步、平面向量、三角函數(shù)等內(nèi)容的綜合應(yīng)用和進(jìn)一步深化。極坐標(biāo)系和參數(shù)方程是本專題的重點(diǎn)內(nèi)容,對于柱坐標(biāo)系、球坐標(biāo)系等只作簡單了解。通過對本專題的學(xué)習(xí),學(xué)生將掌握極坐標(biāo)和參數(shù)方程的基本概念,了解曲線的多種表現(xiàn)形式,體會從實(shí)際問題中抽象出數(shù)學(xué)問題的過程,培養(yǎng)探究數(shù)學(xué)問題的興趣和能力,體會數(shù)學(xué)在實(shí)際中的應(yīng)用價值,提高應(yīng)用意識和實(shí)踐能力。
內(nèi)容與要求
1.坐標(biāo)系
(1)回顧在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法,體會坐標(biāo)系的作用。
(2)通過具體例子,了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況。
(3)能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化。
(4)能在極坐標(biāo)系中給出簡單圖形(如過極點(diǎn)的直線、過極點(diǎn)或圓心在極點(diǎn)的圓)的方程。通過比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,體會在用方程刻畫平面圖形時選擇適當(dāng)坐標(biāo)系的意義。
2.參數(shù)方程
(1)通過分析拋物運(yùn)動中時間與運(yùn)動物體位置的關(guān)系,寫出拋物運(yùn)動軌跡的參數(shù)方程,體會參數(shù)的意義。
(2)分析直線、圓和圓錐曲線的幾何性質(zhì),選擇適當(dāng)?shù)膮?shù)寫出它們的參數(shù)方程。
(3)舉例說明某些曲線用參數(shù)方程表示比用普通方程表示更方便,感受參數(shù)方程的優(yōu)越性。
選修4-5:不等式選講。
本專題將介紹一些重要的不等式和它們的證明、數(shù)學(xué)歸納法和它的簡單應(yīng)用。本專題特別強(qiáng)調(diào)不等式及其證明的幾何意義與背景,以加深學(xué)生對這些不等式的數(shù)學(xué)本質(zhì)的理解,提高學(xué)生的邏輯思維能力和分析解決問題的能力。
內(nèi)容與要求
1.回顧和復(fù)習(xí)不等式的基本性質(zhì)和基本不等式。
2.理解絕對值的幾何意義,并能利用絕對值不等式的幾何意義證明以下不等式:
3.了解數(shù)學(xué)歸納法的原理及其使用范圍,會用數(shù)學(xué)歸納法證明一些簡單問題。
4.會用不等式證明一些簡單問題。
5.通過一些簡單問題了解證明不等式的基本方法:比較法、綜合法、分析法、反證法、放縮法。
人教版高中數(shù)學(xué)必背知識點(diǎn)
人教版高中數(shù)學(xué)必背知識點(diǎn)
1.課程內(nèi)容:
必修課程由5個模塊組成:
必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統(tǒng)計、概率。
必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。
必修5:解三角形、數(shù)列、不等式。
以上是每一個高中學(xué)生所必須學(xué)習(xí)的。
上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時,進(jìn)一步強(qiáng)調(diào)了這些知識的發(fā)生、發(fā)展過程和實(shí)際應(yīng)用,而不在技巧與難度上做過高的要求。
此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計等內(nèi)容。
2.重難點(diǎn)及考點(diǎn):
重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)
難點(diǎn):函數(shù)、圓錐曲線
高考相關(guān)考點(diǎn):
⑴集合與簡易邏輯:集合的概念與運(yùn)算、簡易邏輯、充要條件
⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用
⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用
⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用
⑸平面向量:有關(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用
⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用
⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用
⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
⑽排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用
⑾概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布
⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用
⒀復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算
高中數(shù)學(xué)函數(shù)必考知識點(diǎn)歸納
一名優(yōu)秀的教師就要對每一課堂負(fù)責(zé),準(zhǔn)備好一份優(yōu)秀的教案往往是必不可少的。教案可以讓學(xué)生更好的消化課堂內(nèi)容,有效的提高課堂的教學(xué)效率。所以你在寫教案時要注意些什么呢?下面是小編精心為您整理的“高中數(shù)學(xué)函數(shù)必考知識點(diǎn)歸納”,希望對您的工作和生活有所幫助。
高中數(shù)學(xué)函數(shù)必考知識點(diǎn)歸納
一次函數(shù)
一、定義與定義式自變量x和因變量y有如下關(guān)系:y=kx+b則此時稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì)1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì)1.作法與圖形:通過如下3個步驟(1)列表;(2)描點(diǎn);(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。當(dāng)b>0時,直線必通過一、二象限;當(dāng)b=0時,直線通過原點(diǎn)當(dāng)b<0時,直線必通過三、四象限。特別地,當(dāng)b=0時,直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。
四、一次函數(shù)在生活中的應(yīng)用1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
二次函數(shù)
一、定義與定義表達(dá)式一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax+bx+c(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,|a|還可以決定開口大小,|a|越大開口就越小,|a|越小開口就越大。)則稱y為x的二次函數(shù)。二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
二、二次函數(shù)的三種表達(dá)式一般式:y=ax+bx+c(a,b,c為常數(shù),a≠0)頂點(diǎn)式:y=a(x-h)+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]
三、二次函數(shù)的圖像在平面直角坐標(biāo)系中作出二次函數(shù)y=x的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
四、拋物線的性質(zhì)1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點(diǎn)P,坐標(biāo)為P(-b/2a,(4ac-b)/4a)當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b-4ac=0時,P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。拋物線與y軸交于(0,c)
反比例函數(shù)
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個坐標(biāo)軸作垂線,這點(diǎn)、兩個垂足及原點(diǎn)所圍成的矩形面積是定值,為|k|。
知識點(diǎn):1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x,若在分母上加減任意一個實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
對數(shù)函數(shù)
對數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。
(1)對數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。(2)對數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。(3)函數(shù)總是通過(1,0)這點(diǎn)。(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
(5)顯然對數(shù)函數(shù)無界。
指數(shù)函數(shù)
指數(shù)函數(shù)的一般形式為,從上面我們對于冪函數(shù)的討論就可以知道,要想使得x能夠取整個實(shí)數(shù)集合為定義域,則只有使得
可以得到:(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。(3)函數(shù)圖形都是下凹的。(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。(5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。(6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。(7)函數(shù)總是通過(0,1)這點(diǎn)。
(8)顯然指數(shù)函數(shù)無界。
奇偶性
一、定義一般地,對于函數(shù)f(x)(1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。(2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。(3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。(4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。說明:①奇、偶性是函數(shù)的整體性質(zhì),對整個定義域而言②奇、偶函數(shù)的定義域一定關(guān)于原點(diǎn)對稱,如果一個函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則這個函數(shù)一定不是奇(或偶)函數(shù)。(分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義
二、奇偶函數(shù)圖像的特征定理奇函數(shù)的圖像關(guān)于原點(diǎn)成中心對稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對稱圖形。f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點(diǎn)對稱點(diǎn)(x,y)→(-x,-y)奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上也是單調(diào)遞增。偶函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上單調(diào)遞減。
三、奇偶函數(shù)運(yùn)算1.兩個偶函數(shù)相加所得的和為偶函數(shù).2.兩個奇函數(shù)相加所得的和為奇函數(shù).3.一個偶函數(shù)與一個奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).4.兩個偶函數(shù)相乘所得的積為偶函數(shù).5.兩個奇函數(shù)相乘所得的積為偶函數(shù).
6.一個偶函數(shù)與一個奇函數(shù)相乘所得的積為奇函數(shù).
值域
一、名稱定義函數(shù)中,應(yīng)變量的取值范圍叫做這個函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合。
常用的求值域的方法(1)化歸法(2)圖象法(數(shù)形結(jié)合)(3)函數(shù)單調(diào)性法(4)配方法(5)換元法(6)反函數(shù)法(逆求法)(7)判別式法(8)復(fù)合函數(shù)法(9)三角代換法(10)基本不等式法等
二、關(guān)于函數(shù)值域誤區(qū)定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學(xué)中,實(shí)行“定義域優(yōu)先”的原則,無可置疑。
然而事物均具有二重性,在強(qiáng)化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學(xué)生對函數(shù)的掌握時好時壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)模^不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。
如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運(yùn)算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。
才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實(shí)踐證明,如果加強(qiáng)了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認(rèn)識。
三、“范圍”與“值域”相同嗎?“范圍”與“值域”是我們在學(xué)習(xí)中經(jīng)常遇到的兩個概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個不同的概念。
“值域”是所有函數(shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。
也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。