小學(xué)數(shù)學(xué)角教案
發(fā)表時(shí)間:2020-12-01高三數(shù)學(xué)下冊《空間角問題》知識(shí)點(diǎn)。
高三數(shù)學(xué)下冊《空間角問題》知識(shí)點(diǎn)
一、直線與直線所成的角
①兩平行直線所成的角:規(guī)定為。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
二、直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為。
②平面的垂線與平面所成的角:規(guī)定為。(迷你句子網(wǎng) Jz139.com)
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:一作,二證,三計(jì)算。
在作角時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
三、解題技巧
在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息
(1)斜線上一點(diǎn)到面的垂線;
(2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來,如果兩個(gè)平面垂直,那么所成的二面角為直二面角。
④求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角。
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角。
精選閱讀
高三數(shù)學(xué)下冊《三角函數(shù)》知識(shí)點(diǎn)復(fù)習(xí)
作為杰出的教學(xué)工作者,能夠保證教課的順利開展,作為高中教師準(zhǔn)備好教案是必不可少的一步。教案可以保證學(xué)生們在上課時(shí)能夠更好的聽課,幫助高中教師更好的完成實(shí)現(xiàn)教學(xué)目標(biāo)。寫好一份優(yōu)質(zhì)的高中教案要怎么做呢?為此,小編從網(wǎng)絡(luò)上為大家精心整理了《高三數(shù)學(xué)下冊《三角函數(shù)》知識(shí)點(diǎn)復(fù)習(xí)》,僅供參考,歡迎大家閱讀。
高三數(shù)學(xué)下冊《三角函數(shù)》知識(shí)點(diǎn)復(fù)習(xí)
三角函數(shù)線的定義:
設(shè)任意角α的頂點(diǎn)在原點(diǎn)O,始邊與x軸的正半軸重合,終邊與單位圓相交于點(diǎn)P(x,y),過P點(diǎn)作x軸的垂線,垂足為M,過點(diǎn)A(1,0)作單位圓的切線
設(shè)它與角α的終邊或其反向延長線相交于點(diǎn)T,則有向線段MP、OM,AT分別叫做角α的正弦線,余弦線,正切線,即:sinα=MP,cosα=OM,tanα=AT
三角函數(shù)??碱}型:
1.三角函數(shù)恒等變形的基本策略。
(1)常值代換:特別是用1的代換,如等。
(2)項(xiàng)的分拆與角的配湊,學(xué)習(xí)效率。
如分拆項(xiàng):
配湊角:=()-,=-等。
(3)降次與升次。即倍角公式降次與半角公式升次。
(4)化弦(切)法。將三角函數(shù)利用同角三角函數(shù)基本關(guān)系化成弦(切)。
(5)引入輔助角。asin+bcos=sin(+),這里輔助角所在象限由a、b的符號(hào)確定,角的值由tan=確定。
(6)萬能代換法。巧用萬能公式可將三角函數(shù)化成tan的有理式。
2.證明三角等式的思路和方法。
(1)思路:利用三角公式進(jìn)行化名,化角,改變運(yùn)算結(jié)構(gòu),使等式兩邊化為同一形式。
(2)證明方法:綜合法、分析法、比較法、代換法、相消法、數(shù)學(xué)歸納法。
3.證明三角不等式的方法:比較法、配方法、反證法、分析法,利用函數(shù)的單調(diào)性,利用正、余弦函數(shù)的有界性,利用單位圓三角函數(shù)線及判別法等。
4.解答三角高考題的策略。
(1)發(fā)現(xiàn)差異:觀察角、函數(shù)運(yùn)算間的差異,即進(jìn)行所謂的差異分析。
(2)尋找聯(lián)系:運(yùn)用相關(guān)公式,找出差異之間的內(nèi)在聯(lián)系。
(3)合理轉(zhuǎn)化:選擇恰當(dāng)?shù)墓?,促使差異的轉(zhuǎn)化。
三角函數(shù)公式:
銳角三角函數(shù)公式
sinα=∠α的對邊/斜邊
cosα=∠α的鄰邊/斜邊
tanα=∠α的對邊/∠α的鄰邊
cotα=∠α的鄰邊/∠α的對邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα,學(xué)習(xí)方法?sin(π/3+α)sin(π/3-α)
cos3α=4cosα?cos(π/3+α)cos(π/3-α)
tan3a=tana?tan(π/3+a)?tan(π/3-a)
三倍角公式推導(dǎo)
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
輔助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
推導(dǎo)公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-sin2a)cosa
=4cos3a-3cosa
sin3a=3sina-4sin3a
=4sina(3/4-sin2a)
=4sina[(√3/2)2-sin2a]
=4sina(sin260°-sin2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa
=4cosa(cos2a-3/4)
=4cosa[cos2a-(√3/2)2]
=4cosa(cos2a-cos230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
三角函數(shù)記憶口訣:
三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對角,
頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,
變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號(hào)原來函數(shù)判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。
逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;
1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
高三數(shù)學(xué)知識(shí)點(diǎn):空間幾何體
高三數(shù)學(xué)知識(shí)點(diǎn):空間幾何體
一、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
結(jié)構(gòu)特征
圖例
棱柱
(1)兩底面相互平行,其余各面都是平行四邊形;
(2)側(cè)棱平行且相等.
圓柱
(1)兩底面相互平行;(2)側(cè)面的母線平行于圓柱的軸;
(3)是以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱錐
(1)底面是多邊形,各側(cè)面均是三角形;
(2)各側(cè)面有一個(gè)公共頂點(diǎn).
圓錐
(1)底面是圓;(2)是以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體.
棱臺(tái)
(1)兩底面相互平行;(2)是用一個(gè)平行于棱錐底面的平面去截棱錐,底面和截面之間的部分.
圓臺(tái)
(1)兩底面相互平行;
(2)是用一個(gè)平行于圓錐底面的平面去截圓錐,底面和截面之間的部分.
球
(1)球心到球面上各點(diǎn)的距離相等;(2)是以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體.
二、簡單組合體的結(jié)構(gòu)特征
三、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:
正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
四、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
五、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,h為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
(4)球體的表面積和體積公式:
高三數(shù)學(xué)下冊《函數(shù)》知識(shí)點(diǎn)
俗話說,凡事預(yù)則立,不預(yù)則廢。作為教師就要在上課前做好適合自己的教案。教案可以讓學(xué)生們能夠更好的找到學(xué)習(xí)的樂趣,幫助教師緩解教學(xué)的壓力,提高教學(xué)質(zhì)量。你知道如何去寫好一份優(yōu)秀的教案呢?小編經(jīng)過搜集和處理,為您提供高三數(shù)學(xué)下冊《函數(shù)》知識(shí)點(diǎn),僅供參考,希望能為您提供參考!
高三數(shù)學(xué)下冊《函數(shù)》知識(shí)點(diǎn)
1.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;
4.函數(shù)的周期性
(1)y=f(x)對x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5.方程k=f(x)有解k∈D(D為f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a0,a≠1,b0,n∈R+);
(2)logaN=(a0,a≠1,b0,b≠1);
(3)logab的符號(hào)由口訣“同正異負(fù)”記憶;
(4)alogaN=N(a0,a≠1,N0);
8.判斷對應(yīng)是否為映射時(shí),抓住兩點(diǎn):
(1)A中元素必須都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);
(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;
(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合
二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;
12.依據(jù)單調(diào)性
利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題;
13.恒成立問題的處理方法
(1)分離參數(shù)法;
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;
練習(xí)題:
1.設(shè)集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},則M∪N=()
A.{0}B.{0,2}
C.{-2,0}D.{-2,0,2}
解析M={x|x(x+2)=0.,x∈R}={0,-2},N={x|x(x-2)=0,x∈R}={0,2},所以M∪N={-2,0,2}.
答案D
2.設(shè)f:x→|x|是集合A到集合B的映射,若A={-2,0,2},則A∩B=()
A.{0}B.{2}
C.{0,2}D.{-2,0}
解析依題意,得B={0,2},∴A∩B={0,2}.
答案C
3.f(x)是定義在R上的奇函數(shù),f(-3)=2,則下列各點(diǎn)在函數(shù)f(x)圖象上的是()
A.(3,-2)B.(3,2)
C.(-3,-2)D.(2,-3)
解析∵f(x)是奇函數(shù),∴f(-3)=-f(3).
又f(-3)=2,∴f(3)=-2,∴點(diǎn)(3,-2)在函數(shù)f(x)的圖象上.
答案A
高三數(shù)學(xué)下冊《導(dǎo)數(shù)》知識(shí)點(diǎn)
高三數(shù)學(xué)下冊《導(dǎo)數(shù)》知識(shí)點(diǎn)
一、綜述
導(dǎo)數(shù)是微積分的初步知識(shí),是研究函數(shù),解決實(shí)際問題的有力工具。在高中階段對于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個(gè)方面:
1.導(dǎo)數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細(xì)微);(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。
2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。
3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個(gè)方向,應(yīng)引起注意。
二、知識(shí)整合
1.導(dǎo)數(shù)概念的理解。
2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問題的最大值與最小值。
復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對法則進(jìn)行了證明。
練習(xí)題:
1.已知某函數(shù)的導(dǎo)數(shù)為y′=12(x-1),則這個(gè)函數(shù)可能是()
A.y=ln1-x
B.y=ln11-x
C.y=ln(1-x)D.y=ln11-x
答案:A
解析:對選項(xiàng)求導(dǎo).
(ln1-x)′=11-x(1-x)′
=11-x12(1-x)-12(-1)
=12(x-1).故選A.
2.設(shè)函數(shù)f(x)=g(x)+x2,曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為y=2x+1,則曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率為()
A.4
B.-14
C.2
D.-12
答案:A
解析:f′(x)=g′(x)+2x.
∵y=g(x)在點(diǎn)(1,g(1))處的切線方程為y=2x+1,
∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,
∴y=f(x)在點(diǎn)(1,f(1))處切線斜率為4.
3.曲線y=xx-2在點(diǎn)(1,-1)處的切線方程為()
A.y=x-2B.y=-3x+2
C.y=2x-3D.y=-2x+1
答案:D
解析:y′=(xx-2)′=-2(x-2)2,
∴k=y(tǒng)′|x=1=-2.
l:y+1=-2(x-1),則y=-2x+1.故選D.