高中復(fù)數(shù)教案
發(fā)表時(shí)間:2020-12-01第十五章復(fù)數(shù)(高中數(shù)學(xué)競(jìng)賽標(biāo)準(zhǔn)教材)。
第十五章復(fù)數(shù)
一、基礎(chǔ)知識(shí)
1.復(fù)數(shù)的定義:設(shè)i為方程x2=-1的根,i稱為虛數(shù)單位,由i與實(shí)數(shù)進(jìn)行加、減、乘、除等運(yùn)算。便產(chǎn)生形如a+bi(a,b∈R)的數(shù),稱為復(fù)數(shù)。所有復(fù)數(shù)構(gòu)成的集合稱復(fù)數(shù)集。通常用C來(lái)表示。
2.復(fù)數(shù)的幾種形式。對(duì)任意復(fù)數(shù)z=a+bi(a,b∈R),a稱實(shí)部記作Re(z),b稱虛部記作Im(z).z=ai稱為代數(shù)形式,它由實(shí)部、虛部?jī)刹糠謽?gòu)成;若將(a,b)作為坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),那么z與坐標(biāo)平面唯一一個(gè)點(diǎn)相對(duì)應(yīng),從而可以建立復(fù)數(shù)集與坐標(biāo)平面內(nèi)所有的點(diǎn)構(gòu)成的集合之間的一一映射。因此復(fù)數(shù)可以用點(diǎn)來(lái)表示,表示復(fù)數(shù)的平面稱為復(fù)平面,x軸稱為實(shí)軸,y軸去掉原點(diǎn)稱為虛軸,點(diǎn)稱為復(fù)數(shù)的幾何形式;如果將(a,b)作為向量的坐標(biāo),復(fù)數(shù)z又對(duì)應(yīng)唯一一個(gè)向量。因此坐標(biāo)平面內(nèi)的向量也是復(fù)數(shù)的一種表示形式,稱為向量形式;另外設(shè)z對(duì)應(yīng)復(fù)平面內(nèi)的點(diǎn)Z,見(jiàn)圖15-1,連接OZ,設(shè)∠x(chóng)OZ=θ,|OZ|=r,則a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),這種形式叫做三角形式。若z=r(cosθ+isinθ),則θ稱為z的輻角。若0≤θ2π,則θ稱為z的輻角主值,記作θ=Arg(z).r稱為z的模,也記作|z|,由勾股定理知|z|=.如果用eiθ表示cosθ+isinθ,則z=reiθ,稱為復(fù)數(shù)的指數(shù)形式。
3.共軛與模,若z=a+bi,(a,b∈R),則a-bi稱為z的共軛復(fù)數(shù)。模與共軛的性質(zhì)有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,則。
4.復(fù)數(shù)的運(yùn)算法則:(1)按代數(shù)形式運(yùn)算加、減、乘、除運(yùn)算法則與實(shí)數(shù)范圍內(nèi)一致,運(yùn)算結(jié)果可以通過(guò)乘以共軛復(fù)數(shù)將分母分為實(shí)數(shù);(2)按向量形式,加、減法滿足平行四邊形和三角形法則;(3)按三角形式,若z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),則z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指數(shù)形式記為z1z2=r1r2ei(θ1+θ2),
5.棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).
6.開(kāi)方:若r(cosθ+isinθ),則,k=0,1,2,…,n-1。
7.單位根:若wn=1,則稱w為1的一個(gè)n次單位根,簡(jiǎn)稱單位根,記Z1=,則全部單位根可表示為1,,.單位根的基本性質(zhì)有(這里記,k=1,2,…,n-1):(1)對(duì)任意整數(shù)k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;(2)對(duì)任意整數(shù)m,當(dāng)n≥2時(shí),有=特別1+Z1+Z2+…+Zn-1=0;(3)xn-1+xn-2+…+x+1=(x-Z1)(x-Z2)…(x-Zn-1)=(x-Z1)(x-)…(x-).
8.復(fù)數(shù)相等的充要條件:(1)兩個(gè)復(fù)數(shù)實(shí)部和虛部分別對(duì)應(yīng)相等;(2)兩個(gè)復(fù)數(shù)的模和輻角主值分別相等。
9.復(fù)數(shù)z是實(shí)數(shù)的充要條件是z=;z是純虛數(shù)的充要條件是:z+=0(且z≠0).
10.代數(shù)基本定理:在復(fù)數(shù)范圍內(nèi),一元n次方程至少有一個(gè)根。
11.實(shí)系數(shù)方程虛根成對(duì)定理:實(shí)系數(shù)一元n次方程的虛根成對(duì)出現(xiàn),即若z=a+bi(b≠0)是方程的一個(gè)根,則=a-bi也是一個(gè)根。
12.若a,b,c∈R,a≠0,則關(guān)于x的方程ax2+bx+c=0,當(dāng)Δ=b2-4ac0時(shí)方程的根為
二、方法與例題
1.模的應(yīng)用。
例1求證:當(dāng)n∈N+時(shí),方程(z+1)2n+(z-1)2n=0只有純虛根。
[證明]若z是方程的根,則(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(+1)=(z-1)(-1),化簡(jiǎn)得z+=0,又z=0不是方程的根,所以z是純虛數(shù)。
例2設(shè)f(z)=z2+az+b,a,b為復(fù)數(shù),對(duì)一切|z|=1,有|f(z)|=1,求a,b的值。
[解]因?yàn)?=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)
=|f(1)+f(-1)-f(i)-f(-i)|
≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等號(hào)成立。
所以f(1),f(-1),-f(i),-f(-i)四個(gè)向量方向相同,且模相等。
所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.
2.復(fù)數(shù)相等。
例3設(shè)λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有兩個(gè)虛根,求λ滿足的充要條件。
[解]若方程有實(shí)根,則方程組有實(shí)根,由方程組得(λ+1)x+λ+1=0.若λ=-1,則方程x2-x+1=0中Δ0無(wú)實(shí)根,所以λ≠-1。所以x=-1,λ=2.所以當(dāng)λ≠2時(shí),方程無(wú)實(shí)根。所以方程有兩個(gè)虛根的充要條件為λ≠2。
3.三角形式的應(yīng)用。
例4設(shè)n≤2000,n∈N,且存在θ滿足(sinθ+icosθ)n=sinnθ+icosnθ,那么這樣的n有多少個(gè)?
[解]由題設(shè)得
,所以n=4k+1.又因?yàn)?≤n≤2000,所以1≤k≤500,所以這樣的n有500個(gè)。
4.二項(xiàng)式定理的應(yīng)用。
例5計(jì)算:(1);(2)
[解](1+i)100=[(1+i)2]50=(2i)50=-250,由二項(xiàng)式定理(1+i)100==)+()i,比較實(shí)部和虛部,得=-250,=0。
5.復(fù)數(shù)乘法的幾何意義。
例6以定長(zhǎng)線段BC為一邊任作ΔABC,分別以AB,AC為腰,B,C為直角頂點(diǎn)向外作等腰直角ΔABM、等腰直角ΔACN。求證:MN的中點(diǎn)為定點(diǎn)。
[證明]設(shè)|BC|=2a,以BC中點(diǎn)O為原點(diǎn),BC為x軸,建立直角坐標(biāo)系,確定復(fù)平面,則B,C對(duì)應(yīng)的復(fù)數(shù)為-a,a,點(diǎn)A,M,N對(duì)應(yīng)的復(fù)數(shù)為z1,z2,z3,,由復(fù)數(shù)乘法的幾何意義得:,①,②由①+②得z2+z3=i(z1+a)-i(z1-a)=2ai.設(shè)MN的中點(diǎn)為P,對(duì)應(yīng)的復(fù)數(shù)z=,為定值,所以MN的中點(diǎn)P為定點(diǎn)。
例7設(shè)A,B,C,D為平面上任意四點(diǎn),求證:ABAD+BCAD≥ACBD。
[證明]用A,B,C,D表示它們對(duì)應(yīng)的復(fù)數(shù),則(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因?yàn)閨A-B||C-D|+|B-C||A-D|≥(A-B)(C-D)+(B-C)(A-D).
所以|A-B||C-D|+|B-C||A-D|≥|A-C||B-D|,“=”成立當(dāng)且僅當(dāng),即=π,即A,B,C,D共圓時(shí)成立。不等式得證。
6.復(fù)數(shù)與軌跡。
例8ΔABC的頂點(diǎn)A表示的復(fù)數(shù)為3i,底邊BC在實(shí)軸上滑動(dòng),且|BC|=2,求ΔABC的外心軌跡。
[解]設(shè)外心M對(duì)應(yīng)的復(fù)數(shù)為z=x+yi(x,y∈R),B,C點(diǎn)對(duì)應(yīng)的復(fù)數(shù)分別是b,b+2.因?yàn)橥庑腗是三邊垂直平分線的交點(diǎn),而AB的垂直平分線方程為|z-b|=|z-3i|,BC的垂直平分線的方程為|z-b|=|z-b-2|,所以點(diǎn)M對(duì)應(yīng)的復(fù)數(shù)z滿足|z-b|=|z-3i|=|z-b-2|,消去b解得
所以ΔABC的外心軌跡是軌物線。
7.復(fù)數(shù)與三角。
例9已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求證:cos2α+cos2β+cos2γ=0。
[證明]令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isinγ,則
z1+z2+z3=0。所以又因?yàn)閨zi|=1,i=1,2,3.
所以zi=1,即
由z1+z2+z3=0得①
又
所以
所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.
所以cos2α+cos2β+cos2γ=0。
例10求和:S=cos200+2cos400+…+18cos18×200.
[解]令w=cos200+isin200,則w18=1,令P=sin200+2sin400+…+18sin18×200,則S+iP=w+2w2+…+18w18.①由①×w得w(S+iP)=w2+2w3+…+17w18+18w19,②由①-②得(1-w)(S+iP)=w+w2+…+w18-18w19=,所以S+iP=,所以
8.復(fù)數(shù)與多項(xiàng)式。
例11已知f(z)=c0zn+c1zn-1+…+cn-1z+cn是n次復(fù)系數(shù)多項(xiàng)式(c0≠0).
求證:一定存在一個(gè)復(fù)數(shù)z0,|z0|≤1,并且|f(z0)|≥|c0|+|cn|.
[證明]記c0zn+c1zn-1+…+cn-1z=g(z),令=Arg(cn)-Arg(z0),則方程g(Z)-c0eiθ=0為n次方程,其必有n個(gè)根,設(shè)為z1,z2,…,zn,從而g(z)-c0eiθ=(z-z1)(z-z2)…(z-zn)c0,令z=0得-c0eiθ=(-1)nz1z2…znc0,取模得|z1z2…zn|=1。所以z1,z2,…,zn中必有一個(gè)zi使得|zi|≤1,從而f(zi)=g(zi)+cn=c0eiθ=cn,所以|f(zi)|=|c0eiθ+cn|=|c0|+|cn|.
9.單位根的應(yīng)用。
例12證明:自⊙O上任意一點(diǎn)p到正多邊形A1A2…An各個(gè)頂點(diǎn)的距離的平方和為定值。
[證明]取此圓為單位圓,O為原點(diǎn),射線OAn為實(shí)軸正半軸,建立復(fù)平面,頂點(diǎn)A1對(duì)應(yīng)復(fù)數(shù)設(shè)為,則頂點(diǎn)A2A3…An對(duì)應(yīng)復(fù)數(shù)分別為ε2,ε3,…,εn.設(shè)點(diǎn)p對(duì)應(yīng)復(fù)數(shù)z,則|z|=1,且=2n-
=2n-命題得證。
10.復(fù)數(shù)與幾何。
例13如圖15-2所示,在四邊形ABCD內(nèi)存在一點(diǎn)P,使得ΔPAB,ΔPCD都是以P為直角頂點(diǎn)的等腰直角三角形。求證:必存在另一點(diǎn)Q,使得ΔQBC,ΔQDA也都是以Q為直角頂點(diǎn)的等腰直角三角形。
[證明]以P為原點(diǎn)建立復(fù)平面,并用A,B,C,D,P,Q表示它們對(duì)應(yīng)的復(fù)數(shù),由題設(shè)及復(fù)數(shù)乘法的幾何意義知D=iC,B=iA;取,則C-Q=i(B-Q),則ΔBCQ為等腰直角三角形;又由C-Q=i(B-Q)得,即A-Q=i(D-Q),所以ΔADQ也為等腰直角三角形且以Q為直角頂點(diǎn)。綜上命題得證。
例14平面上給定ΔA1A2A3及點(diǎn)p0,定義As=As-3,s≥4,構(gòu)造點(diǎn)列p0,p1,p2,…,使得pk+1為繞中心Ak+1順時(shí)針旋轉(zhuǎn)1200時(shí)pk所到達(dá)的位置,k=0,1,2,…,若p1986=p0.證明:ΔA1A2A3為等邊三角形。
[證明]令u=,由題設(shè),約定用點(diǎn)同時(shí)表示它們對(duì)應(yīng)的復(fù)數(shù),取給定平面為復(fù)平面,則p1=(1+u)A1-up0,
p2=(1+u)A2-up1,
p3=(1+u)A3-up2,
①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w為與p0無(wú)關(guān)的常數(shù)。同理得p6=w+p3=2w+p0,…,p1986=662w+p0=p0,所以w=0,從而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,這說(shuō)明ΔA1A2A3為正三角形。
三、基礎(chǔ)訓(xùn)練題
1.滿足(2x2+5x+2)+(y2-y-2)i=0的有序?qū)崝?shù)對(duì)(x,y)有__________組。
2.若z∈C且z2=8+6i,且z3-16z-=__________。
3.復(fù)數(shù)z滿足|z|=5,且(3+4i)z是純虛數(shù),則__________。
4.已知,則1+z+z2+…+z1992=__________。
5.設(shè)復(fù)數(shù)z使得的一個(gè)輻角的絕對(duì)值為,則z輻角主值的取值范圍是__________。
6.設(shè)z,w,λ∈C,|λ|≠1,則關(guān)于z的方程-Λz=w的解為z=__________。
7.設(shè)0x1,則2arctan__________。
8.若α,β是方程ax2+bx+c=0(a,b,c∈R)的兩個(gè)虛根且,則__________。
9.若a,b,c∈C,則a2+b2c2是a2+b2-c20成立的__________條件。
10.已知關(guān)于x的實(shí)系數(shù)方程x2-2x+2=0和x2+2mx+1=0的四個(gè)不同的根在復(fù)平面上對(duì)應(yīng)的點(diǎn)共圓,則m取值的集合是__________。
11.二次方程ax2+x+1=0的兩根的模都小于2,求實(shí)數(shù)a的取值范圍。
12.復(fù)平面上定點(diǎn)Z0,動(dòng)點(diǎn)Z1對(duì)應(yīng)的復(fù)數(shù)分別為z0,z1,其中z0≠0,且滿足方程|z1-z0|=|z1|,①另一個(gè)動(dòng)點(diǎn)Z對(duì)應(yīng)的復(fù)數(shù)z滿足z1z=-1,②求點(diǎn)Z的軌跡,并指出它在復(fù)平面上的形狀和位置。
13.N個(gè)復(fù)數(shù)z1,z2,…,zn成等比數(shù)列,其中|z1|≠1,公比為q,|q|=1且q≠±1,復(fù)數(shù)w1,w2,…,wn滿足條件:wk=zk++h,其中k=1,2,…,n,h為已知實(shí)數(shù),求證:復(fù)平面內(nèi)表示w1,w2,…,wn的點(diǎn)p1,p2,…,pn都在一個(gè)焦距為4的橢圓上。
四、高考水平訓(xùn)練題
1.復(fù)數(shù)z和cosθ+isinθ對(duì)應(yīng)的點(diǎn)關(guān)于直線|iz+1|=|z+i|對(duì)稱,則z=__________。
2.設(shè)復(fù)數(shù)z滿足z+|z|=2+i,那么z=__________。
3.有一個(gè)人在草原上漫步,開(kāi)始時(shí)從O出發(fā),向東行走,每走1千米后,便向左轉(zhuǎn)角度,他走過(guò)n千米后,首次回到原出發(fā)點(diǎn),則n=__________。
4.若,則|z|=__________。
5.若ak≥0,k=1,2,…,n,并規(guī)定an+1=a1,使不等式恒成立的實(shí)數(shù)λ的最大值為_(kāi)_________。
6.已知點(diǎn)P為橢圓上任意一點(diǎn),以O(shè)P為邊逆時(shí)針作正方形OPQR,則動(dòng)點(diǎn)R的軌跡方程為_(kāi)_________。
7.已知P為直線x-y+1=0上的動(dòng)點(diǎn),以O(shè)P為邊作正ΔOPQ(O,P,Q按順時(shí)針?lè)较蚺帕?。則點(diǎn)Q的軌跡方程為_(kāi)_________。
8.已知z∈C,則命題“z是純虛數(shù)”是命題“”的__________條件。
9.若n∈N,且n≥3,則方程zn+1+zn-1=0的模為1的虛根的個(gè)數(shù)為_(kāi)_________。
10.設(shè)(x2006+x2008+3)2007=a0+a1x+a2x2+…+anxn,則+…+a3k-__________。
11.設(shè)復(fù)數(shù)z1,z2滿足z1,其中A≠0,A∈C。證明:
(1)|z1+A||z2+A|=|A|2;(2)
12.若z∈C,且|z|=1,u=z4-z3-3z2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值時(shí)的復(fù)數(shù)z.
13.給定實(shí)數(shù)a,b,c,已知復(fù)數(shù)z1,z2,z3滿足求
|az1+bz2+cz3|的值。
三、聯(lián)賽一試水平訓(xùn)練題
1.已知復(fù)數(shù)z滿足則z的輻角主值的取值范圍是__________。
2.設(shè)復(fù)數(shù)z=cosθ+isinθ(0≤θ≤π),復(fù)數(shù)z,(1+i)z,2在復(fù)平面上對(duì)應(yīng)的三個(gè)點(diǎn)分別是P,Q,R,當(dāng)P,Q,R不共線時(shí),以PQ,PR為兩邊的平行四邊形第四個(gè)頂點(diǎn)為S,則S到原點(diǎn)距離的最大值為_(kāi)_________。
3.設(shè)復(fù)平面上單位圓內(nèi)接正20邊形的20個(gè)頂點(diǎn)所對(duì)應(yīng)的復(fù)數(shù)依次為z1,z2,…,z20,則復(fù)數(shù)所對(duì)應(yīng)的不同點(diǎn)的個(gè)數(shù)是__________。
4.已知復(fù)數(shù)z滿足|z|=1,則|z+iz+1|的最小值為_(kāi)_________。
5.設(shè),z1=w-z,z2=w+z,z1,z2對(duì)應(yīng)復(fù)平面上的點(diǎn)A,B,點(diǎn)O為原點(diǎn),∠AOB=900,|AO|=|BO|,則ΔOAB面積是__________。
6.設(shè),則(x-w)(x-w3)(x-w7)(x-w9)的展開(kāi)式為_(kāi)_________。
7.已知()m=(1+i)n(m,n∈N+),則mn的最小值是__________。
8.復(fù)平面上,非零復(fù)數(shù)z1,z2在以i為圓心,1為半徑的圓上,z2的實(shí)部為零,z1的輻角主值為,則z2=__________。
9.當(dāng)n∈N,且1≤n≤100時(shí),的值中有實(shí)數(shù)__________個(gè)。
10.已知復(fù)數(shù)z1,z2滿足,且,,,則的值是__________。
11.集合A={z|z18=1},B={w|w48=1},C={zw|z∈A,w∈B},問(wèn):集合C中有多少個(gè)不同的元素?
12.證明:如果復(fù)數(shù)A的模為1,那么方程的所有根都是不相等的實(shí)根(n∈N+).
13.對(duì)于適合|z|≤1的每一個(gè)復(fù)數(shù)z,要使0|αz+β|2總能成立,試問(wèn):復(fù)數(shù)α,β應(yīng)滿足什么條件?
六、聯(lián)賽二試水平訓(xùn)練題
1.設(shè)非零復(fù)數(shù)a1,a2,a3,a4,a5滿足
其中S為實(shí)數(shù)且|S|≤2,求證:復(fù)數(shù)a1,a2,a3,a4,a5在復(fù)平面上所對(duì)應(yīng)的點(diǎn)位于同一圓周上。
2.求證:。
3.已知p(z)=zn+c1zn-1+c2zn-2+…+cn是復(fù)變量z的實(shí)系數(shù)多項(xiàng)式,且|p(i)|1,求證:存在實(shí)數(shù)a,b,使得p(a+bi)=0且(a2+b2+1)24b2+1.
4.運(yùn)用復(fù)數(shù)證明:任給8個(gè)非零實(shí)數(shù)a1,a2,…,a8,證明六個(gè)數(shù)a1a3+a2a4,a1a5+a2a6,a1a7+a2a8,a3a5+a4a6,a3a7+a4a8,a5a7+a6a8中至少有一個(gè)是非負(fù)數(shù)。
5.已知復(fù)數(shù)z滿足11z10+10iz9+10iz-11=0,求證:|z|=1.
6.設(shè)z1,z2,z3為復(fù)數(shù),求證:
|z1|+|z2|+|z3|+|z1+z2+z3|≥|z1+z2|+|z2+z3|+|z3+z1|。
擴(kuò)展閱讀
高中數(shù)學(xué)競(jìng)賽標(biāo)準(zhǔn)教材(第五章數(shù)列)
第五章數(shù)列
一、基礎(chǔ)知識(shí)
定義1數(shù)列,按順序給出的一列數(shù),例如1,2,3,…,n,….數(shù)列分有窮數(shù)列和無(wú)窮數(shù)列兩種,數(shù)列{an}的一般形式通常記作a1,a2,a3,…,an或a1,a2,a3,…,an…。其中a1叫做數(shù)列的首項(xiàng),an是關(guān)于n的具體表達(dá)式,稱為數(shù)列的通項(xiàng)。
定理1若Sn表示{an}的前n項(xiàng)和,則S1=a1,當(dāng)n1時(shí),an=Sn-Sn-1.
定義2等差數(shù)列,如果對(duì)任意的正整數(shù)n,都有an+1-an=d(常數(shù)),則{an}稱為等差數(shù)列,d叫做公差。若三個(gè)數(shù)a,b,c成等差數(shù)列,即2b=a+c,則稱b為a和c的等差中項(xiàng),若公差為d,則a=b-d,c=b+d.
定理2等差數(shù)列的性質(zhì):1)通項(xiàng)公式an=a1+(n-1)d;2)前n項(xiàng)和公式:Sn=;3)an-am=(n-m)d,其中n,m為正整數(shù);4)若n+m=p+q,則an+am=ap+aq;5)對(duì)任意正整數(shù)p,q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一個(gè)不為零,則{an}是等差數(shù)列的充要條件是Sn=An2+Bn.
定義3等比數(shù)列,若對(duì)任意的正整數(shù)n,都有,則{an}稱為等比數(shù)列,q叫做公比。
定理3等比數(shù)列的性質(zhì):1)an=a1qn-1;2)前n項(xiàng)和Sn,當(dāng)q1時(shí),Sn=;當(dāng)q=1時(shí),Sn=na1;3)如果a,b,c成等比數(shù)列,即b2=ac(b0),則b叫做a,c的等比中項(xiàng);4)若m+n=p+q,則aman=apaq。
定義4極限,給定數(shù)列{an}和實(shí)數(shù)A,若對(duì)任意的0,存在M,對(duì)任意的nM(n∈N),都有|an-A|,則稱A為n→+∞時(shí)數(shù)列{an}的極限,記作
定義5無(wú)窮遞縮等比數(shù)列,若等比數(shù)列{an}的公比q滿足|q|1,則稱之為無(wú)窮遞增等比數(shù)列,其前n項(xiàng)和Sn的極限(即其所有項(xiàng)的和)為(由極限的定義可得)。
定理3第一數(shù)學(xué)歸納法:給定命題p(n),若:(1)p(n0)成立;(2)當(dāng)p(n)時(shí)n=k成立時(shí)能推出p(n)對(duì)n=k+1成立,則由(1),(2)可得命題p(n)對(duì)一切自然數(shù)n≥n0成立。
競(jìng)賽常用定理
定理4第二數(shù)學(xué)歸納法:給定命題p(n),若:(1)p(n0)成立;(2)當(dāng)p(n)對(duì)一切n≤k的自然數(shù)n都成立時(shí)(k≥n0)可推出p(k+1)成立,則由(1),(2)可得命題p(n)對(duì)一切自然數(shù)n≥n0成立。
定理5對(duì)于齊次二階線性遞歸數(shù)列xn=axn-1+bxn-2,設(shè)它的特征方程x2=ax+b的兩個(gè)根為α,β:(1)若αβ,則xn=c1an-1+c2βn-1,其中c1,c2由初始條件x1,x2的值確定;(2)若α=β,則xn=(c1n+c2)αn-1,其中c1,c2的值由x1,x2的值確定。
二、方法與例題
1.不完全歸納法。
這種方法是從特殊情況出發(fā)去總結(jié)更一般的規(guī)律,當(dāng)然結(jié)論未必都是正確的,但卻是人類探索未知世界的普遍方式。通常解題方式為:特殊→猜想→數(shù)學(xué)歸納法證明。
例1試給出以下幾個(gè)數(shù)列的通項(xiàng)(不要求證明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。
【解】1)an=n2-1;2)an=3n-2n;3)an=n2-2n.
例2已知數(shù)列{an}滿足a1=,a1+a2+…+an=n2an,n≥1,求通項(xiàng)an.
【解】因?yàn)閍1=,又a1+a2=22a2,
所以a2=,a3=,猜想(n≥1).
證明;1)當(dāng)n=1時(shí),a1=,猜想正確。2)假設(shè)當(dāng)n≤k時(shí)猜想成立。
當(dāng)n=k+1時(shí),由歸納假設(shè)及題設(shè),a1+a1+…+a1=[(k+1)2-1]ak+1,,
所以=k(k+2)ak+1,
即=k(k+2)ak+1,
所以=k(k+2)ak+1,所以ak+1=
由數(shù)學(xué)歸納法可得猜想成立,所以
例3設(shè)0a1,數(shù)列{an}滿足an=1+a,an-1=a+,求證:對(duì)任意n∈N+,有an1.
【證明】證明更強(qiáng)的結(jié)論:1an≤1+a.
1)當(dāng)n=1時(shí),1a1=1+a,①式成立;
2)假設(shè)n=k時(shí),①式成立,即1an≤1+a,則當(dāng)n=k+1時(shí),有
由數(shù)學(xué)歸納法可得①式成立,所以原命題得證。
2.迭代法。
數(shù)列的通項(xiàng)an或前n項(xiàng)和Sn中的n通常是對(duì)任意n∈N成立,因此可將其中的n換成n+1或n-1等,這種辦法通常稱迭代或遞推。
例4數(shù)列{an}滿足an+pan-1+qan-2=0,n≥3,q0,求證:存在常數(shù)c,使得an+
【證明】an+1+(pan+1+an+2)+=an+2(-qan)+=
+an(pqn+1+qan)]=q().
若=0,則對(duì)任意n,+=0,取c=0即可.
若0,則{+}是首項(xiàng)為,公式為q的等比數(shù)列。
所以+=qn.
取即可.
綜上,結(jié)論成立。
例5已知a1=0,an+1=5an+,求證:an都是整數(shù),n∈N+.
【證明】因?yàn)閍1=0,a2=1,所以由題設(shè)知當(dāng)n≥1時(shí)an+1an.
又由an+1=5an+移項(xiàng)、平方得
①
當(dāng)n≥2時(shí),把①式中的n換成n-1得,即
②
因?yàn)閍n-1an+1,所以①式和②式說(shuō)明an-1,an+1是方程x2-10anx+-1=0的兩個(gè)不等根。由韋達(dá)定理得an+1+an-1=10an(n≥2).
再由a1=0,a2=1及③式可知,當(dāng)n∈N+時(shí),an都是整數(shù)。
3.?dāng)?shù)列求和法。
數(shù)列求和法主要有倒寫(xiě)相加、裂項(xiàng)求和法、錯(cuò)項(xiàng)相消法等。
例6已知an=(n=1,2,…),求S99=a1+a2+…+a99.
【解】因?yàn)閍n+a100-n=+=,
所以S99=
例7求和:+…+
【解】一般地,
,
所以Sn=
例8已知數(shù)列{an}滿足a1=a2=1,an+2=an+1+an,Sn為數(shù)列的前n項(xiàng)和,求證:Sn2。
【證明】由遞推公式可知,數(shù)列{an}前幾項(xiàng)為1,1,2,3,5,8,13。
因?yàn)?,?br>
所以。②
由①-②得,
所以。
又因?yàn)镾n-2Sn且0,
所以Sn,所以,
所以Sn2,得證。
4.特征方程法。
例9已知數(shù)列{an}滿足a1=3,a2=6,an+2=4n+1-4an,求an.
【解】由特征方程x2=4x-4得x1=x2=2.
故設(shè)an=(α+βn)2n-1,其中,
所以α=3,β=0,
所以an=32n-1.
例10已知數(shù)列{an}滿足a1=3,a2=6,an+2=2an+1+3an,求通項(xiàng)an.
【解】由特征方程x2=2x+3得x1=3,x2=-1,
所以an=α3n+β(-1)n,其中,
解得α=,β,
所以3]。
5.構(gòu)造等差或等比數(shù)列。
例11正數(shù)列a0,a1,…,an,…滿足=2an-1(n≥2)且a0=a1=1,求通項(xiàng)。
【解】由得=1,
即
令bn=+1,則{bn}是首項(xiàng)為+1=2,公比為2的等比數(shù)列,
所以bn=+1=2n,所以=(2n-1)2,
所以an=…a0=
注:C1C2…Cn.
例12已知數(shù)列{xn}滿足x1=2,xn+1=,n∈N+,求通項(xiàng)。
【解】考慮函數(shù)f(x)=的不動(dòng)點(diǎn),由=x得x=
因?yàn)閤1=2,xn+1=,可知{xn}的每項(xiàng)均為正數(shù)。
又+2≥,所以xn+1≥(n≥1)。又
Xn+1-==,①
Xn+1+==,②
由①÷②得。③
又0,
由③可知對(duì)任意n∈N+,0且,
所以是首項(xiàng)為,公比為2的等比數(shù)列。
所以,所以,
解得。
注:本例解法是借助于不動(dòng)點(diǎn),具有普遍意義。
三、基礎(chǔ)訓(xùn)練題
1.?dāng)?shù)列{xn}滿足x1=2,xn+1=Sn+(n+1),其中Sn為{xn}前n項(xiàng)和,當(dāng)n≥2時(shí),xn=_________.
2.數(shù)列{xn}滿足x1=,xn+1=,則{xn}的通項(xiàng)xn=_________.
3.數(shù)列{xn}滿足x1=1,xn=+2n-1(n≥2),則{xn}的通項(xiàng)xn=_________.
4.等差數(shù)列{an}滿足3a8=5a13,且a10,Sn為前n項(xiàng)之和,則當(dāng)Sn最大時(shí),n=_________.
5.等比數(shù)列{an}前n項(xiàng)之和記為Sn,若S10=10,S30=70,則S40=_________.
6.數(shù)列{xn}滿足xn+1=xn-xn-1(n≥2),x1=a,x2=b,Sn=x1+x2+…+xn,則S100=_________.
7.數(shù)列{an}中,Sn=a1+a2+…+an=n2-4n+1則|a1|+|a2|+…+|a10|=_________.
8.若,并且x1+x2+…+xn=8,則x1=_________.
9.等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn和Tn,若,則=_________.
10.若n!=n(n-1)…21,則=_________.
11.若{an}是無(wú)窮等比數(shù)列,an為正整數(shù),且滿足a5+a6=48,log2a2log2a3+log2a2log2a5+log2a2log2a6+log2a5log2a6=36,求的通項(xiàng)。
12.已知數(shù)列{an}是公差不為零的等差數(shù)列,數(shù)列{}是公比為q的等比數(shù)列,且b1=1,b2=5,b3=17,求:(1)q的值;(2)數(shù)列{bn}的前n項(xiàng)和Sn。
四、高考水平訓(xùn)練題
1.已知函數(shù)f(x)=,若數(shù)列{an}滿足a1=,an+1=f(an)(n∈N+),則a2006=_____________.
2.已知數(shù)列{an}滿足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),則{an}的通項(xiàng)an=.
3.若an=n2+,且{an}是遞增數(shù)列,則實(shí)數(shù)的取值范圍是__________.
4.設(shè)正項(xiàng)等比數(shù)列{an}的首項(xiàng)a1=,前n項(xiàng)和為Sn,且210S30-(210+1)S20+S10=0,則an=_____________.
5.已知,則a的取值范圍是______________.
6.?dāng)?shù)列{an}滿足an+1=3an+n(n∈N+),存在_________個(gè)a1值,使{an}成等差數(shù)列;存在________個(gè)a1值,使{an}成等比數(shù)列。
7.已知(n∈N+),則在數(shù)列{an}的前50項(xiàng)中,最大項(xiàng)與最小項(xiàng)分別是____________.
8.有4個(gè)數(shù),其中前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,并且第一個(gè)數(shù)與第四個(gè)數(shù)的和中16,第二個(gè)數(shù)與第三個(gè)數(shù)的和是12,則這四個(gè)數(shù)分別為_(kāi)___________.
9.設(shè){an}是由正數(shù)組成的數(shù)列,對(duì)于所有自然數(shù)n,an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng),則an=____________.
10.在公比大于1的等比數(shù)列中,最多連續(xù)有__________項(xiàng)是在100與1000之間的整數(shù).
11.已知數(shù)列{an}中,an0,求證:數(shù)列{an}成等差數(shù)列的充要條件是
(n≥2)①恒成立。
12.已知數(shù)列{an}和{bn}中有an=an-1bn,bn=(n≥2),當(dāng)a1=p,b1=q(p0,q0)且p+q=1時(shí),(1)求證:an0,bn0且an+bn=1(n∈N);(2)求證:an+1=;(3)求數(shù)列
13.是否存在常數(shù)a,b,c,使題設(shè)等式
122+232+…+n(n+1)2=(an2+bn+c)
對(duì)于一切自然數(shù)n都成立?證明你的結(jié)論。
五、聯(lián)賽一試水平訓(xùn)練題
1.設(shè)等差數(shù)列的首項(xiàng)及公差均為非負(fù)整數(shù),項(xiàng)數(shù)不少于3,且各項(xiàng)和為972,這樣的數(shù)列共有_________個(gè)。
2.設(shè)數(shù)列{xn}滿足x1=1,xn=,則通項(xiàng)xn=__________.
3.設(shè)數(shù)列{an}滿足a1=3,an0,且,則通項(xiàng)an=__________.
4.已知數(shù)列a0,a1,a2,…,an,…滿足關(guān)系式(3-an+1)(6+an)=18,且a0=3,則=__________.
5.等比數(shù)列a+log23,a+log43,a+log83的公比為=__________.
6.各項(xiàng)均為實(shí)數(shù)的等差數(shù)列的公差為4,其首項(xiàng)的平方與其余各項(xiàng)之和不超過(guò)100,這樣的數(shù)列至多有__________項(xiàng).
7.數(shù)列{an}滿足a1=2,a2=6,且=2,則
________.
8.數(shù)列{an}稱為等差比數(shù)列,當(dāng)且僅當(dāng)此數(shù)列滿足a0=0,{an+1-qan}構(gòu)成公比為q的等比數(shù)列,q稱為此等差比數(shù)列的差比。那么,由100以內(nèi)的自然數(shù)構(gòu)成等差比數(shù)列而差比大于1時(shí),項(xiàng)數(shù)最多有__________項(xiàng).
9.設(shè)h∈N+,數(shù)列{an}定義為:a0=1,an+1=。問(wèn):對(duì)于怎樣的h,存在大于0的整數(shù)n,使得an=1?
10.設(shè){ak}k≥1為一非負(fù)整數(shù)列,且對(duì)任意k≥1,滿足ak≥a2k+a2k+1,(1)求證:對(duì)任意正整數(shù)n,數(shù)列中存在n個(gè)連續(xù)項(xiàng)為0;(2)求出一個(gè)滿足以上條件,且其存在無(wú)限個(gè)非零項(xiàng)的數(shù)列。
11.求證:存在唯一的正整數(shù)數(shù)列a1,a2,…,使得
a1=1,a21,an+1(an+1-1)=
六、聯(lián)賽二試水平訓(xùn)練題
1.設(shè)an為下述自然數(shù)N的個(gè)數(shù):N的各位數(shù)字之和為n且每位數(shù)字只能取1,3或4,求證:a2n是完全平方數(shù),這里n=1,2,….
2.設(shè)a1,a2,…,an表示整數(shù)1,2,…,n的任一排列,f(n)是這些排列中滿足如下性質(zhì)的排列數(shù)目:①a1=1;②|ai-ai+1|≤2,i=1,2,…,n-1。
試問(wèn)f(2007)能否被3整除?
3.設(shè)數(shù)列{an}和{bn}滿足a0=1,b0=0,且
求證:an(n=0,1,2,…)是完全平方數(shù)。
4.無(wú)窮正實(shí)數(shù)數(shù)列{xn}具有以下性質(zhì):x0=1,xi+1xi(i=0,1,2,…),
(1)求證:對(duì)具有上述性質(zhì)的任一數(shù)列,總能找到一個(gè)n≥1,使≥3.999均成立;
(2)尋求這樣的一個(gè)數(shù)列使不等式4對(duì)任一n均成立。
5.設(shè)x1,x2,…,xn是各項(xiàng)都不大于M的正整數(shù)序列且滿足xk=|xk-1-xk-2|(k=3,4,…,n)①.試問(wèn)這樣的序列最多有多少項(xiàng)?
6.設(shè)a1=a2=,且當(dāng)n=3,4,5,…時(shí),an=,
(ⅰ)求數(shù)列{an}的通項(xiàng)公式;(ⅱ)求證:是整數(shù)的平方。
7.整數(shù)列u0,u1,u2,u3,…滿足u0=1,且對(duì)每個(gè)正整數(shù)n,un+1un-1=kuu,這里k是某個(gè)固定的正整數(shù)。如果u2000=2000,求k的所有可能的值。
8.求證:存在無(wú)窮有界數(shù)列{xn},使得對(duì)任何不同的m,k,有|xm-xk|≥
9.已知n個(gè)正整數(shù)a0,a1,…,an和實(shí)數(shù)q,其中0q1,求證:n個(gè)實(shí)數(shù)b0,b1,…,bn和滿足:(1)akbk(k=1,2,…,n);
(2)q(k=1,2,…,n);
(3)b1+b2+…+bn(a0+a1+…+an).
第三章函數(shù)(高中數(shù)學(xué)競(jìng)賽標(biāo)準(zhǔn)教材)
第三章函數(shù)
一、基礎(chǔ)知識(shí)
定義1映射,對(duì)于任意兩個(gè)集合A,B,依對(duì)應(yīng)法則f,若對(duì)A中的任意一個(gè)元素x,在B中都有唯一一個(gè)元素與之對(duì)應(yīng),則稱f:A→B為一個(gè)映射。
定義2單射,若f:A→B是一個(gè)映射且對(duì)任意x,y∈A,xy,都有f(x)f(y)則稱之為單射。
定義3滿射,若f:A→B是映射且對(duì)任意y∈B,都有一個(gè)x∈A使得f(x)=y,則稱f:A→B是A到B上的滿射。
定義4一一映射,若f:A→B既是單射又是滿射,則叫做一一映射,只有一一映射存在逆映射,即從B到A由相反的對(duì)應(yīng)法則f-1構(gòu)成的映射,記作f-1:A→B。
定義5函數(shù),映射f:A→B中,若A,B都是非空數(shù)集,則這個(gè)映射為函數(shù)。A稱為它的定義域,若x∈A,y∈B,且f(x)=y(即x對(duì)應(yīng)B中的y),則y叫做x的象,x叫y的原象。集合{f(x)|x∈A}叫函數(shù)的值域。通常函數(shù)由解析式給出,此時(shí)函數(shù)定義域就是使解析式有意義的未知數(shù)的取值范圍,如函數(shù)y=3-1的定義域?yàn)閧x|x≥0,x∈R}.
定義6反函數(shù),若函數(shù)f:A→B(通常記作y=f(x))是一一映射,則它的逆映射f-1:A→B叫原函數(shù)的反函數(shù),通常寫(xiě)作y=f-1(x).這里求反函數(shù)的過(guò)程是:在解析式y(tǒng)=f(x)中反解x得x=f-1(y),然后將x,y互換得y=f-1(x),最后指出反函數(shù)的定義域即原函數(shù)的值域。例如:函數(shù)y=的反函數(shù)是y=1-(x0).
定理1互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)于直線y=x對(duì)稱。
定理2在定義域上為增(減)函數(shù)的函數(shù),其反函數(shù)必為增(減)函數(shù)。
定義7函數(shù)的性質(zhì)。
(1)單調(diào)性:設(shè)函數(shù)f(x)在區(qū)間I上滿足對(duì)任意的x1,x2∈I并且x1x2,總有f(x1)f(x2)(f(x)f(x2)),則稱f(x)在區(qū)間I上是增(減)函數(shù),區(qū)間I稱為單調(diào)增(減)區(qū)間。
(2)奇偶性:設(shè)函數(shù)y=f(x)的定義域?yàn)镈,且D是關(guān)于原點(diǎn)對(duì)稱的數(shù)集,若對(duì)于任意的x∈D,都有f(-x)=-f(x),則稱f(x)是奇函數(shù);若對(duì)任意的x∈D,都有f(-x)=f(x),則稱f(x)是偶函數(shù)。奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,偶函數(shù)的圖象關(guān)于y軸對(duì)稱。
(3)周期性:對(duì)于函數(shù)f(x),如果存在一個(gè)不為零的常數(shù)T,使得當(dāng)x取定義域內(nèi)每一個(gè)數(shù)時(shí),f(x+T)=f(x)總成立,則稱f(x)為周期函數(shù),T稱為這個(gè)函數(shù)的周期,如果周期中存在最小的正數(shù)T0,則這個(gè)正數(shù)叫做函數(shù)f(x)的最小正周期。
定義8如果實(shí)數(shù)ab,則數(shù)集{x|axb,x∈R}叫做開(kāi)區(qū)間,記作(a,b),集合{x|a≤x≤b,x∈R}記作閉區(qū)間[a,b],集合{x|ax≤b}記作半開(kāi)半閉區(qū)間(a,b],集合{x|a≤xb}記作半閉半開(kāi)區(qū)間[a,b),集合{x|xa}記作開(kāi)區(qū)間(a,+∞),集合{x|x≤a}記作半開(kāi)半閉區(qū)間(-∞,a].
定義9函數(shù)的圖象,點(diǎn)集{(x,y)|y=f(x),x∈D}稱為函數(shù)y=f(x)的圖象,其中D為f(x)的定義域。通過(guò)畫(huà)圖不難得出函數(shù)y=f(x)的圖象與其他函數(shù)圖象之間的關(guān)系(a,b0);(1)向右平移a個(gè)單位得到y(tǒng)=f(x-a)的圖象;(2)向左平移a個(gè)單位得到y(tǒng)=f(x+a)的圖象;(3)向下平移b個(gè)單位得到y(tǒng)=f(x)-b的圖象;(4)與函數(shù)y=f(-x)的圖象關(guān)于y軸對(duì)稱;(5)與函數(shù)y=-f(-x)的圖象關(guān)于原點(diǎn)成中心對(duì)稱;(6)與函數(shù)y=f-1(x)的圖象關(guān)于直線y=x對(duì)稱;(7)與函數(shù)y=-f(x)的圖象關(guān)于x軸對(duì)稱。
定理3復(fù)合函數(shù)y=f[g(x)]的單調(diào)性,記住四個(gè)字:“同增異減”。例如y=,u=2-x在(-∞,2)上是減函數(shù),y=在(0,+∞)上是減函數(shù),所以y=在(-∞,2)上是增函數(shù)。
注:復(fù)合函數(shù)單調(diào)性的判斷方法為同增異減。這里不做嚴(yán)格論證,求導(dǎo)之后是顯然的。
二、方法與例題
1.?dāng)?shù)形結(jié)合法。
例1求方程|x-1|=的正根的個(gè)數(shù).
【解】分別畫(huà)出y=|x-1|和y=的圖象,由圖象可知兩者有唯一交點(diǎn),所以方程有一個(gè)正根。
例2求函數(shù)f(x)=的最大值。
【解】f(x)=,記點(diǎn)P(x,x2),A(3,2),B(0,1),則f(x)表示動(dòng)點(diǎn)P到點(diǎn)A和B距離的差。
因?yàn)閨PA|-|PA|≤|AB|=,當(dāng)且僅當(dāng)P為AB延長(zhǎng)線與拋物線y=x2的交點(diǎn)時(shí)等號(hào)成立。
所以f(x)max=
2.函數(shù)性質(zhì)的應(yīng)用。
例3設(shè)x,y∈R,且滿足,求x+y.
【解】設(shè)f(t)=t3+1997t,先證f(t)在(-∞,+∞)上遞增。事實(shí)上,若ab,則f(b)-f(a)=b3-a3+1997(b-a)=(b-a)(b2+ba+a2+1997)0,所以f(t)遞增。
由題設(shè)f(x-1)=-1=f(1-y),所以x-1=1-y,所以x+y=2.
例4奇函數(shù)f(x)在定義域(-1,1)內(nèi)是減函數(shù),又f(1-a)+f(1-a2)0,求a的取值范圍。
【解】因?yàn)閒(x)是奇函數(shù),所以f(1-a2)=-f(a2-1),由題設(shè)f(1-a)f(a2-1)。
又f(x)在定義域(-1,1)上遞減,所以-11-aa2-11,解得0a1。
例5設(shè)f(x)是定義在(-∞,+∞)上以2為周期的函數(shù),對(duì)k∈Z,用Ik表示區(qū)間(2k-1,2k+1],已知當(dāng)x∈I0時(shí),f(x)=x2,求f(x)在Ik上的解析式。
【解】設(shè)x∈Ik,則2k-1x≤2k+1,
所以f(x-2k)=(x-2k)2.
又因?yàn)閒(x)是以2為周期的函數(shù),
所以當(dāng)x∈Ik時(shí),f(x)=f(x-2k)=(x-2k)2.
例6解方程:(3x-1)()+(2x-3)(+1)=0.
【解】令m=3x-1,n=2x-3,方程化為
m(+1)+n(+1)=0.①
若m=0,則由①得n=0,但m,n不同時(shí)為0,所以m0,n0.
ⅰ)若m0,則由①得n0,設(shè)f(t)=t(+1),則f(t)在(0,+∞)上是增函數(shù)。又f(m)=f(-n),所以m=-n,所以3x-1+2x-3=0,所以x=
ⅱ)若m0,且n0。同理有m+n=0,x=,但與m0矛盾。
綜上,方程有唯一實(shí)數(shù)解x=
3.配方法。
例7求函數(shù)y=x+的值域。
【解】y=x+=[2x+1+2+1]-1
=(+1)-1≥-1=-.
當(dāng)x=-時(shí),y取最小值-,所以函數(shù)值域是[-,+∞)。
4.換元法。
例8求函數(shù)y=(++2)(+1),x∈[0,1]的值域。
【解】令+=u,因?yàn)閤∈[0,1],所以2≤u2=2+2≤4,所以≤u≤2,所以≤≤2,1≤≤2,所以y=,u2∈[+2,8]。
所以該函數(shù)值域?yàn)閇2+,8]。
5.判別式法。
例9求函數(shù)y=的值域。
【解】由函數(shù)解析式得(y-1)x2+3(y+1)x+4y-4=0.①
當(dāng)y1時(shí),①式是關(guān)于x的方程有實(shí)根。
所以△=9(y+1)2-16(y-1)2≥0,解得≤y≤1.
又當(dāng)y=1時(shí),存在x=0使解析式成立,
所以函數(shù)值域?yàn)閇,7]。
6.關(guān)于反函數(shù)。
例10若函數(shù)y=f(x)定義域、值域均為R,且存在反函數(shù)。若f(x)在(-∞,+∞)上遞增,求證:y=f-1(x)在(-∞,+∞)上也是增函數(shù)。
【證明】設(shè)x1x2,且y1=f-1(x1),y2=f-1(x2),則x1=f(y1),x2=f(y2),若y1≥y2,則因?yàn)閒(x)在(-∞,+∞)上遞增,所以x1≥x2與假設(shè)矛盾,所以y1y2。
即y=f-1(x)在(-∞,+∞)遞增。
例11設(shè)函數(shù)f(x)=,解方程:f(x)=f-1(x).
【解】首先f(wàn)(x)定義域?yàn)椋?∞,-)∪[-,+∞);其次,設(shè)x1,x2是定義域內(nèi)變量,且x1x2-;=0,
所以f(x)在(-∞,-)上遞增,同理f(x)在[-,+∞)上遞增。
在方程f(x)=f-1(x)中,記f(x)=f-1(x)=y,則y≥0,又由f-1(x)=y得f(y)=x,所以x≥0,所以x,y∈[-,+∞).
若xy,設(shè)xy,則f(x)=yf(y)=x,矛盾。
同理若xy也可得出矛盾。所以x=y.
即f(x)=x,化簡(jiǎn)得3x5+2x4-4x-1=0,
即(x-1)(3x4+5x3+5x2+5x+1)=0,
因?yàn)閤≥0,所以3x4+5x3+5x2+5x+10,所以x=1.
三、基礎(chǔ)訓(xùn)練題
1.已知X={-1,0,1},Y={-2,-1,0,1,2},映射f:X→Y滿足:對(duì)任意的x∈X,它在Y中的象f(x)使得x+f(x)為偶數(shù),這樣的映射有_______個(gè)。
2.給定A={1,2,3},B={-1,0,1}和映射f:X→Y,若f為單射,則f有_______個(gè);若f為滿射,則f有_______個(gè);滿足f[f(x)]=f(x)的映射有_______個(gè)。
3.若直線y=k(x-2)與函數(shù)y=x2+2x圖象相交于點(diǎn)(-1,-1),則圖象與直線一共有_______個(gè)交點(diǎn)。
4.函數(shù)y=f(x)的值域?yàn)閇],則函數(shù)g(x)=f(x)+的值域?yàn)開(kāi)______。
5.已知f(x)=,則函數(shù)g(x)=f[f(x)]的值域?yàn)開(kāi)______。
6.已知f(x)=|x+a|,當(dāng)x≥3時(shí)f(x)為增函數(shù),則a的取值范圍是_______。
7.設(shè)y=f(x)在定義域(,2)內(nèi)是增函數(shù),則y=f(x2-1)的單調(diào)遞減區(qū)間為_(kāi)______。
8.若函數(shù)y=(x)存在反函數(shù)y=-1(x),則y=-1(x)的圖象與y=-(-x)的圖象關(guān)于直線_______對(duì)稱。
9.函數(shù)f(x)滿足=1-,則f()=_______。
10.函數(shù)y=,x∈(1,+∞)的反函數(shù)是_______。
11.求下列函數(shù)的值域:(1)y=;(2)y=;(3)y=x+2;(4)y=
12.已知定義在R上,對(duì)任意x∈R,f(x)=f(x+2),且f(x)是偶函數(shù),又當(dāng)x∈[2,3]時(shí),f(x)=x,則當(dāng)x∈[-2,0]時(shí),求f(x)的解析式。
四、高考水平訓(xùn)練題
1.已知a∈,f(x)定義域是(0,1],則g(x)=f(x+a)+f(x-a)+f(x)的定義域?yàn)開(kāi)______。
2.設(shè)0≤a1時(shí),f(x)=(a-1)x2-6ax+a+1恒為正值。則f(x)定義域?yàn)開(kāi)______。
3.映射f:{a,b,c,d}→{1,2,3}滿足10f(a)f(b)f(c)f(d)20,這樣的映射f有_______個(gè)。
4.設(shè)函數(shù)y=f(x)(x∈R)的值域?yàn)镽,且為增函數(shù),若方程f(x)=x解集為P,f[f(x)]=x解集為Q,則P,Q的關(guān)系為:P_______Q(填=、、)。
5.下列函數(shù)是否為奇函數(shù):(1)f(x)=(x-1);(2)g(x)=|2x+1|-|2x-1|;(3)(x)=;(4)y=
6.設(shè)函數(shù)y=f(x)(x∈R且x0),對(duì)任意非零實(shí)數(shù)x1,x2滿足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函數(shù),則不等式f(x)+f(x-)≤0的解集為_(kāi)______。
7.函數(shù)f(x)=,其中P,M為R的兩個(gè)非空子集,又規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M},給出如下判斷:①若P∩M=,則f(P)∩f(M)=;②若P∩M,則f(P)∩f(M);③若P∪M=R,則f(P)∪f(wàn)(M)=R;④若P∪MR,則f(P)∪f(wàn)(M)R.其中正確的判斷是_______。
8.函數(shù)y=f(x+1)的反函數(shù)是y=f-1(x+1),并且f(1)=3997,則f(1998)=_______。
9.已知y=f(x)是定義域?yàn)閇-6,6]的奇函數(shù),且當(dāng)x∈[0,3]時(shí)是一次函數(shù),當(dāng)x∈[3,6]時(shí)是二次函數(shù),又f(6)=2,當(dāng)x∈[3,6]時(shí),f(x)≤f(5)=3。求f(x)的解析式。
10.設(shè)a0,函數(shù)f(x)定義域?yàn)镽,且f(x+a)=,求證:f(x)為周期函數(shù)。
11.設(shè)關(guān)于x的方程2x2-tx-2=0的兩根為α,β(αβ),已知函數(shù)f(x)=,(1)求f(α)、f(β);(2)求證:f(x)在[α,β]上是增函數(shù);(3)對(duì)任意正數(shù)x1,x2,求證:2|α-β|.
五、聯(lián)賽一試水平訓(xùn)練題
1.奇函數(shù)f(x)存在函數(shù)f-1(x),若把y=f(x)的圖象向上平移3個(gè)單位,然后向右平移2個(gè)單位后,再關(guān)于直線y=-x對(duì)稱,得到的曲線所對(duì)應(yīng)的函數(shù)是________.
2.若a0,a1,F(x)是奇函數(shù),則G(x)=F(x)是________(奇偶性).
3.若=x,則下列等式中正確的有________.①F(-2-x)=-2-F(x);②F(-x)=;③F(x-1)=F(x);④F(F(x))=-x.
4.設(shè)函數(shù)f:R→R滿足f(0)=1,且對(duì)任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,則f(x)=________.
5.已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1。若g(x)=f(x)+1-x,則g(2002)=________.
6.函數(shù)f(x)=的單調(diào)遞增區(qū)間是________.
7.函數(shù)f(x)=的奇偶性是:________奇函數(shù),________偶函數(shù)(填是,非)。
8.函數(shù)y=x+的值域?yàn)開(kāi)_______.
9.設(shè)f(x)=,
對(duì)任意的a∈R,記V(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]},試求V(a)的最小值。
10.解方程組:(在實(shí)數(shù)范圍內(nèi))
11.設(shè)k∈N+,f:N+→N+滿足:(1)f(x)嚴(yán)格遞增;(2)對(duì)任意n∈N+,有f[f(n)]=kn,求證:對(duì)任意n∈N+,都有n≤f(n)≤
六、聯(lián)賽二試水平訓(xùn)練題
1.求證:恰有一個(gè)定義在所有非零實(shí)數(shù)上的函數(shù)f,滿足:(1)對(duì)任意x≠0,f(x)=xf;(2)對(duì)所有的x≠-y且xy≠0,有f(x)+f(y)=1+f(x+y).
2.設(shè)f(x)對(duì)一切x0有定義,且滿足:(ⅰ)f(x)在(0,+∞)是增函數(shù);(ⅱ)任意x0,f(x)f=1,試求f(1).
3.f:[0,1]→R滿足:(1)任意x∈[0,1],f(x)≥0;(2)f(1)=1;(3)當(dāng)x,y,x+y∈[0,1]時(shí),f(x)+f(y)≤f(x+y),試求最小常數(shù)c,對(duì)滿足(1),(2),(3)的函數(shù)f(x)都有f(x)≤cx.
4.試求f(x,y)=6(x2+y2)(x+y)-4(x2+xy+y2)-3(x+y)+5(x0,y0)的最小值。
5.對(duì)給定的正數(shù)p,q∈(0,1),有p+q1≥p2+q2,試求f(x)=(1-x)+在[1-q,p]上的最大值。
6.已知f:(0,1)→R且f(x)=.
當(dāng)x∈時(shí),試求f(x)的最大值。
7.函數(shù)f(x)定義在整數(shù)集上,且滿足f(n)=,求f(100)的值。
8.函數(shù)y=f(x)定義在整個(gè)實(shí)軸上,它的圖象在圍繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)角后不變。(1)求證:方程f(x)=x恰有一個(gè)解;(2)試給出一個(gè)具有上述性質(zhì)的函數(shù)。
9.設(shè)Q+是正有理數(shù)的集合,試構(gòu)造一個(gè)函數(shù)f:Q+→Q+,滿足這樣的條件:f(xf(y))=x,y∈Q+.
高中數(shù)學(xué)競(jìng)賽標(biāo)準(zhǔn)教材(第十一章圓錐曲線)
一名優(yōu)秀的教師在每次教學(xué)前有自己的事先計(jì)劃,作為高中教師就要根據(jù)教學(xué)內(nèi)容制定合適的教案。教案可以讓學(xué)生更好的吸收課堂上所講的知識(shí)點(diǎn),幫助高中教師緩解教學(xué)的壓力,提高教學(xué)質(zhì)量。那么如何寫(xiě)好我們的高中教案呢?下面是小編為大家整理的“高中數(shù)學(xué)競(jìng)賽標(biāo)準(zhǔn)教材(第十一章圓錐曲線)”,歡迎閱讀,希望您能夠喜歡并分享!
第十一章圓錐曲線
一、基礎(chǔ)知識(shí)
1.橢圓的定義,第一定義:平面上到兩個(gè)定點(diǎn)的距離之和等于定長(zhǎng)(大于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的軌跡,即|PF1|+|PF2|=2a(2a|F1F2|=2c).
第二定義:平面上到一個(gè)定點(diǎn)的距離與到一條定直線的距離之比為同一個(gè)常數(shù)e(0e1)的點(diǎn)的軌跡(其中定點(diǎn)不在定直線上),即
(0e1).
第三定義:在直角坐標(biāo)平面內(nèi)給定兩圓c1:x2+y2=a2,c2:x2+y2=b2,a,b∈R+且a≠b。從原點(diǎn)出發(fā)的射線交圓c1于P,交圓c2于Q,過(guò)P引y軸的平行線,過(guò)Q引x軸的平行線,兩條線的交點(diǎn)的軌跡即為橢圓。
2.橢圓的方程,如果以橢圓的中心為原點(diǎn),焦點(diǎn)所在的直線為坐標(biāo)軸建立坐標(biāo)系,由定義可求得它的標(biāo)準(zhǔn)方程,若焦點(diǎn)在x軸上,列標(biāo)準(zhǔn)方程為
(ab0),
參數(shù)方程為(為參數(shù))。
若焦點(diǎn)在y軸上,列標(biāo)準(zhǔn)方程為
(ab0)。
3.橢圓中的相關(guān)概念,對(duì)于中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓
,
a稱半長(zhǎng)軸長(zhǎng),b稱半短軸長(zhǎng),c稱為半焦距,長(zhǎng)軸端點(diǎn)、短軸端點(diǎn)、兩個(gè)焦點(diǎn)的坐標(biāo)分別為(±a,0),(0,±b),(±c,0);與左焦點(diǎn)對(duì)應(yīng)的準(zhǔn)線(即第二定義中的定直線)為,與右焦點(diǎn)對(duì)應(yīng)的準(zhǔn)線為;定義中的比e稱為離心率,且,由c2+b2=a2知0e1.
橢圓有兩條對(duì)稱軸,分別是長(zhǎng)軸、短軸。
4.橢圓的焦半徑公式:對(duì)于橢圓1(ab0),F1(-c,0),F2(c,0)是它的兩焦點(diǎn)。若P(x,y)是橢圓上的任意一點(diǎn),則|PF1|=a+ex,|PF2|=a-ex.
5.幾個(gè)常用結(jié)論:1)過(guò)橢圓上一點(diǎn)P(x0,y0)的切線方程為
;
2)斜率為k的切線方程為;
3)過(guò)焦點(diǎn)F2(c,0)傾斜角為θ的弦的長(zhǎng)為
。
6.雙曲線的定義,第一定義:
滿足||PF1|-|PF2||=2a(2a2c=|F1F2|,a0)的點(diǎn)P的軌跡;
第二定義:到定點(diǎn)的距離與到定直線距離之比為常數(shù)e(1)的點(diǎn)的軌跡。
7.雙曲線的方程:中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線方程為
,
參數(shù)方程為(為參數(shù))。
焦點(diǎn)在y軸上的雙曲線的標(biāo)準(zhǔn)方程為
。
8.雙曲線的相關(guān)概念,中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線
(a,b0),
a稱半實(shí)軸長(zhǎng),b稱為半虛軸長(zhǎng),c為半焦距,實(shí)軸的兩個(gè)端點(diǎn)為(-a,0),(a,0).左、右焦點(diǎn)為F1(-c,0),F2(c,0),對(duì)應(yīng)的左、右準(zhǔn)線方程分別為離心率,由a2+b2=c2知e1。兩條漸近線方程為,雙曲線與有相同的漸近線,它們的四個(gè)焦點(diǎn)在同一個(gè)圓上。若a=b,則稱為等軸雙曲線。
9.雙曲線的常用結(jié)論,1)焦半徑公式,對(duì)于雙曲線,F(xiàn)1(-c,0),F2(c,0)是它的兩個(gè)焦點(diǎn)。設(shè)P(x,y)是雙曲線上的任一點(diǎn),若P在右支上,則|PF1|=ex+a,|PF2|=ex-a;若P(x,y)在左支上,則|PF1|=-ex-a,|PF2|=-ex+a.
2)過(guò)焦點(diǎn)的傾斜角為θ的弦長(zhǎng)是。
10.拋物線:平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線,點(diǎn)F叫焦點(diǎn),直線l叫做拋物線的準(zhǔn)線。若取經(jīng)過(guò)焦點(diǎn)F且垂直于準(zhǔn)線l的直線為x軸,x軸與l相交于K,以線段KF的垂直平分線為y軸,建立直角坐標(biāo)系,設(shè)|KF|=p,則焦點(diǎn)F坐標(biāo)為,準(zhǔn)線方程為,標(biāo)準(zhǔn)方程為y2=2px(p0),離心率e=1.
11.拋物線常用結(jié)論:若P(x0,y0)為拋物線上任一點(diǎn),
1)焦半徑|PF|=;
2)過(guò)點(diǎn)P的切線方程為y0y=p(x+x0);
3)過(guò)焦點(diǎn)傾斜角為θ的弦長(zhǎng)為。
12.極坐標(biāo)系,在平面內(nèi)取一個(gè)定點(diǎn)為極點(diǎn)記為O,從O出發(fā)的射線為極軸記為Ox軸,這樣就建立了極坐標(biāo)系,對(duì)于平面內(nèi)任意一點(diǎn)P,記|OP|=ρ,∠x(chóng)OP=θ,則由(ρ,θ)唯一確定點(diǎn)P的位置,(ρ,θ)稱為極坐標(biāo)。
13.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比為常數(shù)e的點(diǎn)P,若0e1,則點(diǎn)P的軌跡為橢圓;若e1,則點(diǎn)P的軌跡為雙曲線的一支;若e=1,則點(diǎn)P的軌跡為拋物線。這三種圓錐曲線統(tǒng)一的極坐標(biāo)方程為。
二、方法與例題
1.與定義有關(guān)的問(wèn)題。
例1已知定點(diǎn)A(2,1),F(xiàn)是橢圓的左焦點(diǎn),點(diǎn)P為橢圓上的動(dòng)點(diǎn),當(dāng)3|PA|+5|PF|取最小值時(shí),求點(diǎn)P的坐標(biāo)。
[解]見(jiàn)圖11-1,由題設(shè)a=5,b=4,c==3,.橢圓左準(zhǔn)線的方程為,又因?yàn)椋渣c(diǎn)A在橢圓內(nèi)部,又點(diǎn)F坐標(biāo)為(-3,0),過(guò)P作PQ垂直于左準(zhǔn)線,垂足為Q。由定義知,則|PF|=|PQ|。
所以3|PA|+5|PF|=3(|PA|+|PF|)=3(|PA|+|PQ|)≥3|AM|(AM左準(zhǔn)線于M)。
所以當(dāng)且僅當(dāng)P為AM與橢圓的交點(diǎn)時(shí),3|PA|+5|PF|取最小值,把y=1代入橢圓方程得,又x0,所以點(diǎn)P坐標(biāo)為
例2已知P,為雙曲線C:右支上兩點(diǎn),延長(zhǎng)線交右準(zhǔn)線于K,PF1延長(zhǎng)線交雙曲線于Q,(F1為右焦點(diǎn))。求證:∠F1K=∠KF1Q.
[證明]記右準(zhǔn)線為l,作PDl于D,于E,因?yàn)?/PD,則,又由定義,所以,由三角形外角平分線定理知,F(xiàn)1K為∠PF1P的外角平分線,所以∠=∠KF1Q。
2.求軌跡問(wèn)題。
例3已知一橢圓及焦點(diǎn)F,點(diǎn)A為橢圓上一動(dòng)點(diǎn),求線段FA中點(diǎn)P的軌跡方程。
[解法一]利用定義,以橢圓的中心為原點(diǎn)O,焦點(diǎn)所在的直線為x軸,建立直角坐標(biāo)系,設(shè)橢圓方程:=1(ab0).F坐標(biāo)為(-c,0).設(shè)另一焦點(diǎn)為。連結(jié),OP,則。所以|FP|+|PO|=(|FA|+|A|)=a.
所以點(diǎn)P的軌跡是以F,O為兩焦點(diǎn)的橢圓(因?yàn)閍|FO|=c),將此橢圓按向量m=(,0)平移,得到中心在原點(diǎn)的橢圓:。由平移公式知,所求橢圓的方程為
[解法二]相關(guān)點(diǎn)法。設(shè)點(diǎn)P(x,y),A(x1,y1),則,即x1=2x+c,y1=2y.又因?yàn)辄c(diǎn)A在橢圓上,所以代入得關(guān)于點(diǎn)P的方程為。它表示中心為,焦點(diǎn)分別為F和O的橢圓。
例4長(zhǎng)為a,b的線段AB,CD分別在x軸,y軸上滑動(dòng),且A,B,C,D四點(diǎn)共圓,求此動(dòng)圓圓心P的軌跡。
[解]設(shè)P(x,y)為軌跡上任意一點(diǎn),A,B,C,D的坐標(biāo)分別為A(x-,0),B(x+,0),C(0,y-),D(0,y+),記O為原點(diǎn),由圓冪定理知|OA||OB|=|OC||OD|,用坐標(biāo)表示為,即
當(dāng)a=b時(shí),軌跡為兩條直線y=x與y=-x;
當(dāng)ab時(shí),軌跡為焦點(diǎn)在x軸上的兩條等軸雙曲線;
當(dāng)ab時(shí),軌跡為焦點(diǎn)在y軸上的兩條等軸雙曲線。
例5在坐標(biāo)平面內(nèi),∠AOB=,AB邊在直線l:x=3上移動(dòng),求三角形AOB的外心的軌跡方程。
[解]設(shè)∠x(chóng)OB=θ,并且B在A的上方,則點(diǎn)A,B坐標(biāo)分別為B(3,3tanθ),A(3,3tan(θ-)),設(shè)外心為P(x,y),由中點(diǎn)公式知OB中點(diǎn)為M。
由外心性質(zhì)知再由得
×tanθ=-1。結(jié)合上式有
tanθ=①
又tanθ+=②
又
所以tanθ-=兩邊平方,再將①,②代入得。即為所求。
3.定值問(wèn)題。
例6過(guò)雙曲線(a0,b0)的右焦點(diǎn)F作B1B2軸,交雙曲線于B1,B2兩點(diǎn),B2與左焦點(diǎn)F1連線交雙曲線于B點(diǎn),連結(jié)B1B交x軸于H點(diǎn)。求證:H的橫坐標(biāo)為定值。
[證明]設(shè)點(diǎn)B,H,F(xiàn)的坐標(biāo)分別為(asecα,btanα),(x0,0),(c,0),則F1,B1,B2的坐標(biāo)分別為(-c,0),(c,),(c,),因?yàn)镕1,H分別是直線B2F,BB1與x軸的交點(diǎn),所以
①
所以
。
由①得
代入上式得
即(定值)。
注:本例也可借助梅涅勞斯定理證明,讀者不妨一試。
例7設(shè)拋物線y2=2px(p0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線交拋物線于A,B兩點(diǎn),點(diǎn)C在準(zhǔn)線上,且BC//x軸。證明:直線AC經(jīng)過(guò)定點(diǎn)。
[證明]設(shè),則,焦點(diǎn)為,所以,,,。由于,所以y2-y1=0,即=0。因?yàn)?,所以。所以,即。所以,即直線AC經(jīng)過(guò)原點(diǎn)。
例8橢圓上有兩點(diǎn)A,B,滿足OAOB,O為原點(diǎn),求證:為定值。
[證明]設(shè)|OA|=r1,|OB|=r2,且∠x(chóng)OA=θ,∠x(chóng)OB=,則點(diǎn)A,B的坐標(biāo)分別為A(r1cosθ,r1sinθ),B(-r2sinθ,r2cosθ)。由A,B在橢圓上有
即①
②
①+②得(定值)。
4.最值問(wèn)題。
例9設(shè)A,B是橢圓x2+3y2=1上的兩個(gè)動(dòng)點(diǎn),且OAOB(O為原點(diǎn)),求|AB|的最大值與最小值。
[解]由題設(shè)a=1,b=,記|OA|=r1,|OB|=r2,,參考例8可得=4。設(shè)m=|AB|2=,
因?yàn)?,且a2b2,所以,所以b≤r1≤a,同理b≤r2≤a.所以。又函數(shù)f(x)=x+在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)t=1即|OA|=|OB|時(shí),|AB|取最小值1;當(dāng)或時(shí),|AB|取最大值。
例10設(shè)一橢圓中心為原點(diǎn),長(zhǎng)軸在x軸上,離心率為,若圓C:1上點(diǎn)與這橢圓上點(diǎn)的最大距離為,試求這個(gè)橢圓的方程。
[解]設(shè)A,B分別為圓C和橢圓上動(dòng)點(diǎn)。由題設(shè)圓心C坐標(biāo)為,半徑|CA|=1,因?yàn)閨AB|≤|BC|+|CA|=|BC|+1,所以當(dāng)且僅當(dāng)A,B,C共線,且|BC|取最大值時(shí),|AB|取最大值,所以|BC|最大值為
因?yàn)?;所以可設(shè)橢圓半長(zhǎng)軸、半焦距、半短軸長(zhǎng)分別為2t,,t,橢圓方程為,并設(shè)點(diǎn)B坐標(biāo)為B(2tcosθ,tsinθ),則|BC|2=(2tcosθ)2+=3t2sin2θ-3tsinθ++4t2=-3(tsinθ+)2+3+4t2.
若,則當(dāng)sinθ=-1時(shí),|BC|2取最大值t2+3t+,與題設(shè)不符。
若t,則當(dāng)sinθ=時(shí),|BC|2取最大值3+4t2,由3+4t2=7得t=1.
所以橢圓方程為。
5.直線與二次曲線。
例11若拋物線y=ax2-1上存在關(guān)于直線x+y=0成軸對(duì)稱的兩點(diǎn),試求a的取值范圍。
[解]拋物線y=ax2-1的頂點(diǎn)為(0,-1),對(duì)稱軸為y軸,存在關(guān)于直線x+y=0對(duì)稱兩點(diǎn)的條件是存在一對(duì)點(diǎn)P(x1,y1),(-y1,-x1),滿足y1=a且-x1=a(-y1)2-1,相減得x1+y1=a(),因?yàn)镻不在直線x+y=0上,所以x1+y1≠0,所以1=a(x1-y1),即x1=y1+
所以此方程有不等實(shí)根,所以,求得,即為所求。
例12若直線y=2x+b與橢圓相交,(1)求b的范圍;(2)當(dāng)截得弦長(zhǎng)最大時(shí),求b的值。
[解]二方程聯(lián)立得17x2+16bx+4(b2-1)=0.由Δ0,得b;設(shè)兩交點(diǎn)為P(x1,y1),Q(x2,y2),由韋達(dá)定理得|PQ|=。所以當(dāng)b=0時(shí),|PQ|最大。
三、基礎(chǔ)訓(xùn)練題
1.A為半徑是R的定圓⊙O上一定點(diǎn),B為⊙O上任一點(diǎn),點(diǎn)P是A關(guān)于B的對(duì)稱點(diǎn),則點(diǎn)P的軌跡是________.
2.一動(dòng)點(diǎn)到兩相交直線的距離的平方和為定值m2(0),則動(dòng)點(diǎn)的軌跡是________.
3.橢圓上有一點(diǎn)P,它到左準(zhǔn)線的距離是10,它到右焦點(diǎn)的距離是________.
4.雙曲線方程,則k的取值范圍是________.
5.橢圓,焦點(diǎn)為F1,F(xiàn)2,橢圓上的點(diǎn)P滿足∠F1PF2=600,則ΔF1PF2的面積是________.
6.直線l被雙曲線所截的線段MN恰被點(diǎn)A(3,-1)平分,則l的方程為_(kāi)_______.
7.ΔABC的三個(gè)頂點(diǎn)都在拋物線y2=32x上,點(diǎn)A(2,8),且ΔABC的重心與這條拋物線的焦點(diǎn)重合,則直線BC的斜率為_(kāi)_______.
8.已知雙曲線的兩條漸近線方程為3x-4y-2=0和3x+4y-10=0,一條準(zhǔn)線方程為5y+4=0,則雙曲線方程為_(kāi)_______.
9.已知曲線y2=ax,與其關(guān)于點(diǎn)(1,1)對(duì)稱的曲線有兩個(gè)不同的交點(diǎn),如果過(guò)這兩個(gè)交點(diǎn)的直線的傾斜角為450,那么a=________.
10.P為等軸雙曲線x2-y2=a2上一點(diǎn),的取值范圍是________.
11.已知橢圓與雙曲線有公共的焦點(diǎn)F1,F(xiàn)2,設(shè)P是它們的一個(gè)焦點(diǎn),求∠F1PF2和ΔPF1F2的面積。
12.已知(i)半圓的直徑AB長(zhǎng)為2r;(ii)半圓外的直線l與BA的延長(zhǎng)線垂直,垂足為T(mén),設(shè)|AT|=2a(2a);(iii)半圓上有相異兩點(diǎn)M,N,它們與直線l的距離|MP|,|NQ|滿足求證:|AM|+|AN|=|AB|。
13.給定雙曲線過(guò)點(diǎn)A(2,1)的直線l與所給的雙曲線交于點(diǎn)P1和P2,求線段P1P2的中點(diǎn)的軌跡方程。
四、高考水平測(cè)試題
1.雙曲線與橢圓x2+4y2=64共焦點(diǎn),它的一條漸近線方程是=0,則此雙曲線的標(biāo)準(zhǔn)方程是_________.
2.過(guò)拋物線焦點(diǎn)F的直線與拋物線相交于A,B兩點(diǎn),若A,B在拋物線準(zhǔn)線上的射影分別是A1,B1,則∠A1FB1=_________.
3.雙曲線的一個(gè)焦點(diǎn)為F1,頂點(diǎn)為A1,A2,P是雙曲線上任一點(diǎn),以|PF1|為直徑的圓與以|A1A2|為直徑的圓的位置關(guān)系為_(kāi)________.
4.橢圓的中心在原點(diǎn),離心率,一條準(zhǔn)線方程為x=11,橢圓上有一點(diǎn)M橫坐標(biāo)為-1,M到此準(zhǔn)線異側(cè)的焦點(diǎn)F1的距離為_(kāi)________.
5.4a2+b2=1是直線y=2x+1與橢圓恰有一個(gè)公共點(diǎn)的_________條件.
6.若參數(shù)方程(t為參數(shù))表示的拋物線焦點(diǎn)總在一條定直線上,這條直線的方程是_________.
7.如果直線y=kx+1與焦點(diǎn)在x軸上的橢圓總有公共點(diǎn),則m的范圍是_________.
8.過(guò)雙曲線的左焦點(diǎn),且被雙曲線截得線段長(zhǎng)為6的直線有_________條.
9.過(guò)坐標(biāo)原點(diǎn)的直線l與橢圓相交于A,B兩點(diǎn),若以AB為直徑的圓恰好通過(guò)橢圓的右焦點(diǎn)F,則直線l的傾斜角為_(kāi)________.
10.以橢圓x2+a2y2=a2(a1)的一個(gè)頂點(diǎn)C(0,1)為直角頂點(diǎn)作此橢圓的內(nèi)接等腰直角三角形ABC,這樣的三角形最多可作_________個(gè).
11.求橢圓上任一點(diǎn)的兩條焦半徑夾角θ的正弦的最大值。
12.設(shè)F,O分別為橢圓的左焦點(diǎn)和中心,對(duì)于過(guò)點(diǎn)F的橢圓的任意弦AB,點(diǎn)O都在以AB為直徑的圓內(nèi),求橢圓離心率e的取值范圍。
13.已知雙曲線C1:(a0),拋物線C2的頂點(diǎn)在原點(diǎn)O,C2的焦點(diǎn)是C1的左焦點(diǎn)F1。
(1)求證:C1,C2總有兩個(gè)不同的交點(diǎn)。
(2)問(wèn):是否存在過(guò)C2的焦點(diǎn)F1的弦AB,使ΔAOB的面積有最大值或最小值?若存在,求直線AB的方程與SΔAOB的最值,若不存在,說(shuō)明理由。
五、聯(lián)賽一試水平訓(xùn)練題
1.在平面直角坐標(biāo)系中,若方程m(x2+y2+2y+1)=(x-2y+3)2表示的曲線為橢圓,則m的取值范圍是_________.
2.設(shè)O為拋物線的頂點(diǎn),F(xiàn)為焦點(diǎn),且PQ為過(guò)F的弦,已知|OF|=a,|PQ|=b,ΔOPQ面積為_(kāi)________.
3.給定橢圓,如果存在過(guò)左焦點(diǎn)F的直線交橢圓于P,Q兩點(diǎn),且OPOQ,則離心率e的取值范圍是_________.
4.設(shè)F1,F(xiàn)2分別是雙曲線(ab0)的左、右焦點(diǎn),P為雙曲線上的動(dòng)點(diǎn),過(guò)F1作∠F1PF2平分線的垂線,垂足為M,則M的軌跡為_(kāi)________.
5.ΔABC一邊的兩頂點(diǎn)坐標(biāo)為B(0,)和C(0,),另兩邊斜率的乘積為,若點(diǎn)T坐標(biāo)為(t,0)(t∈R+),則|AT|的最小值為_(kāi)________.
6.長(zhǎng)為l(l1)的線段AB的兩端點(diǎn)在拋物線y=x2上滑動(dòng),則線段AB的中點(diǎn)M到x軸的最短距離等于_________.
7.已知拋物線y2=2px及定點(diǎn)A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點(diǎn),設(shè)直線AM,BM與拋物線的另一個(gè)交點(diǎn)分別為M1,M2,當(dāng)M變動(dòng)時(shí),直線M1M2恒過(guò)一個(gè)定點(diǎn),此定點(diǎn)坐標(biāo)為_(kāi)________.
8.已知點(diǎn)P(1,2)既在橢圓內(nèi)部(含邊界),又在圓x2+y2=外部(含邊界),若a,b∈R+,則a+b的最小值為_(kāi)________.
9.已知橢圓的內(nèi)接ΔABC的邊AB,AC分別過(guò)左、右焦點(diǎn)F1,F(xiàn)2,橢圓的左、右頂點(diǎn)分別為D,E,直線DB與直線CE交于點(diǎn)P,當(dāng)點(diǎn)A在橢圓上變動(dòng)時(shí),試求點(diǎn)P的軌跡。
10.設(shè)曲線C1:(a為正常數(shù))與C2:y2=2(x+m)在x軸上方有一個(gè)公共點(diǎn)P。(1)求實(shí)數(shù)m的取值范圍(用a表示);
(2)O為原點(diǎn),若C1與x軸的負(fù)半軸交于點(diǎn)A,當(dāng)0a時(shí),試求ΔOAP面積的最大值(用a表示)。
11.已知直線l過(guò)原點(diǎn),拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸正半軸上,若點(diǎn)A(-1,0)和B(0,8)關(guān)于l的對(duì)稱點(diǎn)都在C上,求直線l和拋物線的方程。
六、聯(lián)賽二試水平訓(xùn)練題
1.在四邊形ABCD中,對(duì)角線AC平分∠BAD,在CD上取一點(diǎn)E,BE與AC相交于F,延長(zhǎng)DF交BC于G,求證:∠GAC=∠EAC。
2.求證:在坐標(biāo)平面上不存在一條具有奇數(shù)個(gè)頂點(diǎn),每段長(zhǎng)都為1的閉折線,它的每個(gè)頂點(diǎn)坐標(biāo)都是有理數(shù)。
3.以B0和B1為焦點(diǎn)的橢圓與ΔAB0B1的邊ABi交于Ci(i=0,1),在AB0的延長(zhǎng)線上任取點(diǎn)P0,以B0為圓心,B0P0為半徑作圓弧交C1B0的延長(zhǎng)線于Q0;以C1為圓心,C1Q0為半徑作圓弧Q0P1交B1A的延長(zhǎng)線于P1;B1為圓心,B1P1為半徑作圓弧P1Q1交B1C0的延長(zhǎng)線于Q1;以C0為圓心,C0Q1為半徑作圓弧Q1,交AB0的延長(zhǎng)線于。求證:(1)點(diǎn)與點(diǎn)P0重合,且圓弧P0Q0與P0Q1相內(nèi)切于P0;(2)P0,Q0,P1,Q1共圓。
4.在坐標(biāo)平面內(nèi),從原點(diǎn)出發(fā)以同一初速度v0和不同發(fā)射角(即發(fā)射方向與x軸正向之間的夾角)α(α∈[0,π],α≠)射出的質(zhì)點(diǎn),在重力的作用下運(yùn)動(dòng)軌跡是拋物線,所有這些拋物線組成一個(gè)拋物線族,若兩條拋物線在同一個(gè)交點(diǎn)處的切線互相垂直,則稱這個(gè)交點(diǎn)為正交點(diǎn)。證明:此拋物線族的所有正交點(diǎn)的集合是一段橢圓弧,并求此橢圓弧的方程(確定變量取值范圍)。
5.直角ΔABC斜邊為AB,內(nèi)切圓切BC,CA,AB分別于D,E,F(xiàn)點(diǎn),AD交內(nèi)切圓于P點(diǎn)。若CPBP,求證:PD=AE+AP。
6.已知BCCD,點(diǎn)A為BD中點(diǎn),點(diǎn)Q在BC上,AC=CQ,又在BQ上找一點(diǎn)R,使BR=2RQ,CQ上找一點(diǎn)S,使QS=RQ,求證:∠ASB=2∠DRC。
答案:
基礎(chǔ)訓(xùn)練題
1.圓。設(shè)AO交圓于另一點(diǎn)是A關(guān)于的對(duì)稱點(diǎn)。則因?yàn)锳B,所以P在以為直徑的圓上。
2.圓或橢圓。設(shè)給定直線為y=±kx(k0),P(x,y)為軌跡上任一點(diǎn),則?;?jiǎn)為2k2x2+2y2=m2(1+k2).
當(dāng)k≠1時(shí),表示橢圓;當(dāng)k=1時(shí),表示圓。
3.12.由題設(shè)a=10,b=6,c=8,從而P到左焦點(diǎn)距離為10e=10×=8,所以P到右焦點(diǎn)的距離為20-8=12。
4.-2k2或k5.由(|k|-2)(5-k)0解得k5或-2k2.
5.設(shè)兩條焦半徑分別為m,n,則因?yàn)閨F1F2|=12,m+n=20.由余弦定理得122=m2+n2-2mncos600,即(m+n)2-3mn=144.所以,
6.3x+4y-5=0.設(shè)M(x1,y1),N(x2,y2),則兩式相減得-(y1+y2)(y1-y2)=0.由,得。故方程y+1=(x-3).
7.-4.設(shè)B(x1,y1),C(x2,y2),則=0,所以y1+y2=-8,故直線BC的斜率為
8.=1。由漸近線交點(diǎn)為雙曲線中心,解方程組得中心為(2,1),又準(zhǔn)線為,知其實(shí)軸平行于y軸,設(shè)其方程為=1。其漸近線方程為=0。所以y-1=(x-1).由題設(shè),將雙曲線沿向量m=(-2,-1)平移后中心在原點(diǎn),其標(biāo)準(zhǔn)方程為=1。由平移公式平移后準(zhǔn)線為,再結(jié)合,解得a2=9,b2=16,故雙曲線為=1。
9.2.曲線y2=ax關(guān)于點(diǎn)(1,1)的對(duì)稱曲線為(2-y)2=a(2-x),
由得y2-2y+2-a=0,故y1+y2=2,從而=
=1,所以a=2.
10.(2,]。設(shè)P(x1,y1)及,由|PF1|=ex1+a
,|PF2|=ex1-a,|PF1|+|PF2|=2ex1,所以,即。因,所以,所以即2t≤2.
11.解:由對(duì)稱性,不妨設(shè)點(diǎn)P在第一象限,由題設(shè)|F1F2|2=4=4c2,又根據(jù)橢圓與雙曲線定義
解得|PF1|=a1+a2,|PF2|=a1-a2.
在ΔF1PF2中,由余弦定理
從而
又sin∠F1PF2=
所以
12.解:以直線AB為x軸,AT的中垂線為y軸建立直角坐標(biāo)系,則由定義知M,N兩點(diǎn)既在拋物線y2=4ax上,又在圓[x-(a+r)]2+y2=r2上,兩方程聯(lián)立得x2+(2a-2r)x+2ra+a2=0,設(shè)點(diǎn)M,N坐標(biāo)分別為(x1,y1),(x2,y2),則x1+x2=2r-2a.又|AM|=|MP|=x1+a,|AN|=|NP|=x2+a.|AB|=2r,所以
|AM|+|AN|=x1+x2+2a=2r=|AB|.
得證。
13.解:若直線l垂直于x軸,因其過(guò)點(diǎn)A(2,1),根據(jù)對(duì)稱性,P1P2的中點(diǎn)為(2,0)。
若l不垂直于x軸,設(shè)l的方程為y-1=k(x-2),即
y=kx+1-2k.①
將①代入雙曲線方程消元y得
(2-k2)x2+2k(2k-1)x-(4k2-4k+3)=0.②
這里且Δ=[2k(2k-1)]2+4(2-k)2(4k2-4k+3)=8(3k2-4k+3)0,
設(shè)x1,x2是方程②的兩根,由韋達(dá)定理
③
由①,③得y1+y2=kx1+(1-2k)+kx2+(1-2k)
=k(x1+x2)+2(1-2k)=④
設(shè)P1P2的中點(diǎn)P坐標(biāo)(x,y),由中點(diǎn)公式及③,④得
消去k得
點(diǎn)(2,0)滿足此方程,故這就是點(diǎn)P的軌跡方程。
高考水平測(cè)試題
1.由橢圓方程得焦點(diǎn)為,設(shè)雙曲線方程,漸近線為由題設(shè),所以a2=3b2,又,c2=a2+b2.所以b2=12,a2=36.
2.900。見(jiàn)圖1,由定義得|FA|=|AA1|,|FB|=|BB1|,有∠1=∠BFB1,∠2=∠AFA1,又∠1=∠3,∠2=∠4,所以∠3+∠4=∠BFB1+∠AFA1=900。
3.相切,若P(x,y)在左支上,設(shè)F1為左焦點(diǎn),F(xiàn)2為右焦點(diǎn),M為PF1中點(diǎn),則|MO|=|PF2|=(a-ex),又|PF1|=-a-ex,所以兩圓半徑之和(-a-ex)+a=(a-ex)=|MO|,所以兩圓外切。當(dāng)P(x,y)在右支上時(shí),同理得兩圓內(nèi)切。
4.與F1對(duì)應(yīng)的另一條準(zhǔn)線為x=-11,因|MF1|與M到直線x=-11距離d1之比為e,且d1=|xm+11|=10.所以,所以|MF1|=
5.充要。將y=2x+1代入橢圓方程得(b2+4a2)x2+4a2x+a2(1-b2)=0.①
若Δ=(4a2)2-4(b2+4a2)a2(1-b2)=0,則直線與橢圓僅有一個(gè)公共點(diǎn),即b2+4a2=1;反之,4a2+b2=1,直線與橢圓有一個(gè)公共點(diǎn)。
6.y=2(x-1)。消去參數(shù)得(y-2m)2=4(x-m),焦點(diǎn)為它在直線y=2(x-1)上。
7.1≤m5。直線過(guò)定點(diǎn)(0,1),所以0≤1.又因?yàn)榻裹c(diǎn)在x軸上,所以5m,所以1≤m5。
8.3.雙曲線實(shí)軸長(zhǎng)為6,通徑為4,故線段端點(diǎn)在異支上一條,在同支上有二條,一共有三條。
9.或。設(shè)直線l:y=kx與橢圓交于A(x1,y1),B(x2,y2),把y=kx代入橢圓方程得(1+3k2)x2-6x+3=0,由韋達(dá)定理得
①
②
因F(1,0),AFBF,所以(x1-1)(x2-1)+y1y2=0,即
x1x2-(x1+x2)+1+k2x1x2=0.③
把①,②代入③得,所以傾斜角為或
10.3.首先這樣的三角形一定存在,不妨設(shè)A,B分別位于y軸左、右兩側(cè),設(shè)CA斜率為k(k0),CA的直線方程為y=kx+1,代入橢圓方程為(a2k2+1)x2+2a2kx=0,得x=0或,于是,|CA|=
由題設(shè),同理可得|CB|=,利用|CA|=|CB|可得
(k-1)[k2-(a2-1)k+1]=0,
解得k=1或k2-(a2-1)k+1]=0。①
對(duì)于①,當(dāng)1a時(shí),①無(wú)解;當(dāng)時(shí),k=1;當(dāng)a時(shí),①有兩個(gè)不等實(shí)根,故最多有3個(gè)。
11.解設(shè)焦點(diǎn)為F1,F(xiàn)2,橢圓上任一點(diǎn)為P(x0,y0),∠F1PF2=θ,根據(jù)余弦定理得
|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ,
又|PF1|+|PF2|=2a,則4c2=(2a)2-2|PF1||PF2|(1+cosθ),再將|PF1|=a+ex0,|PF2|=a-ex0及a2=b2+c2代入得4b2=2(a2-e2)(1+cosθ).
于是有
由0,得,所以。因θ∈[0,π],所以cosθ為減函數(shù),故0
當(dāng)2b2a2即時(shí),,arccos,sinθ為增函數(shù),sinθ取最大值;當(dāng)2b2≤a2時(shí),arccos,θ∈[0,π],則sinθ最大值為1。
12.解設(shè)A(x1,y1),B(x2,y2),若AB斜率不為0,設(shè)為k,直線AB方程為y=k(x+c),代入橢圓方程并化簡(jiǎn)得
(b2+a2k2)x2+2a2k2cx+a2(k2c2-b2)=0.①
則x1,x2為方程①的兩根,由韋達(dá)定理得
②
③
因?yàn)閥1y2=k2(x1+c)(x2+c),再由②,③得
所以=x1x2+y1y2=,O點(diǎn)在以AB為直徑的圓內(nèi),等價(jià)0,即k2(a2c2-b4)-a2b20對(duì)任意k∈R成立,等價(jià)于a2c2-b2≤0,即ac-b2≤0,即e2+e-1≤0.所以0e≤
若斜率不存在,問(wèn)題等價(jià)于即,綜上
13.解(1)由雙曲線方程得,所以F1(,0),拋物線焦點(diǎn)到準(zhǔn)線的距離,拋物線
①
把①代入C1方程得
②
Δ=64a20,所以方程②必有兩個(gè)不同實(shí)根,設(shè)為x1,x2,由韋達(dá)定理得x1x2=-a20,所以②必有一個(gè)負(fù)根設(shè)為x1,把x1代入①得y2=,所以(因?yàn)閤1≠0),所以C1,C2總有兩個(gè)不同交點(diǎn)。
(2)設(shè)過(guò)F1(,0)的直線AB為my=(x+a),由得y2+4may-12a2=0,因?yàn)棣?48m2a2+48a20,設(shè)y1,y2分別為A,B的縱坐標(biāo),則y1+y2=,y1y2=-12a2.所以(y1-y2)2=48a2(m2+1).所以SΔAOB=|y1-y2||OF1|=aa,當(dāng)且僅當(dāng)m=0時(shí),SΔAOB的面積取最小值;當(dāng)m→+∞時(shí),SΔAOB→+∞,無(wú)最大值。所以存在過(guò)F的直線x=使ΔAOB面積有最小值6a2.
聯(lián)賽一試水平訓(xùn)練題
1.m5.由已知得,說(shuō)明(x,y)到定點(diǎn)(0,-1)與到定直線x-2y+3=0的距離比為常數(shù),由橢圓定義1,所以m5.
2.因?yàn)閎=|PQ|=|PF|+|QF|=,所以。所以SΔOPQ=absinθ=.
3.。設(shè)點(diǎn)P坐標(biāo)為(r1cosθ,r1sinθ),點(diǎn)Q坐標(biāo)為(-r2sinθ,r2cosθ),因?yàn)镻,Q在橢圓上,可得,RtΔOPQ斜邊上的高為≤|OF|=c.所以a2b2≤c2(a2+b2),解得≤e1.
4.以O(shè)為圓心,a為半徑的圓。延長(zhǎng)F1M交PF2延長(zhǎng)線于N,則F2N,而|F2N|=|PN|-|PF2|=|PF1|-|PF2|=2a,所以|OM|=a.
5.t∈(0,1]時(shí)|AT|min=,t1時(shí)|AT|min=|t-2|.由題設(shè)kABkAC=-,設(shè)A(x,y),則(x≠0),整理得=1(x≠0),所以|AT|2=(x-t)2+y2=(x-t)2+(x-2t)2+2-t2.因?yàn)閨x|≤2,所以當(dāng)t∈(0,1]時(shí)取x=2t,|AT|取最小值。當(dāng)t1時(shí),取x=2,|AT|取最小值|t-2|.
6.設(shè)點(diǎn)M(x0,y0),直線AB傾斜角為θ,并設(shè)A(x0-),B(x0+),因?yàn)锳,B在拋物線上,所以
①
②
由①,②得2x0cosθ=sinθ.③
所以
因?yàn)閘21,所以函數(shù)f(x)=.在(0,1]在遞減,
所以。當(dāng)cosθ=1即l平行于x軸時(shí),距離取最小值
7.設(shè),由A,M,M1共線得y1=,同理B,M,M2共線得,設(shè)(x,y)是直線M1M2上的點(diǎn),則y1y2=y(y1+y2)-2px,將以上三式中消去y1,y2得
y02(2px-by)+y02pb(a-x)+2pa(by-2pa)=0.
當(dāng)x=a,y=時(shí)上式恒成立,即定點(diǎn)為
8.。由題設(shè)且a2+2b2≤15,解得5≤b2≤6.
所以a+b≥(t=b2-4∈[1,2]),而
,又t≤2可得上式成立。
9.解設(shè)A(2cosθ,),B(2cosα,sinα),C(2cosβ,sinβ),這里α≠β,則過(guò)A,B的直線為lAB:,由于直線AB過(guò)點(diǎn)F1(-1,0),代入有(sinθ-sinα)(1+2cosθ)=2sinθ(cosθ-cosα),即2sin(α-θ)=sinθ-sinα=2,故,即。又lBD:(x+2)=,同理得。lCE:(x-2)=
(x-2).
兩直線方程聯(lián)立,得P點(diǎn)坐標(biāo)為,消去得點(diǎn)P(x,y)在橢圓上(除去點(diǎn)(-2,0),(2,0)).
10.解(1)由消去y得x2+2a2x+2a2m-a2=0,①設(shè)f(x)=x2+2a2x+2a2m-a2,問(wèn)題(1)轉(zhuǎn)化為方程①在x∈(-a,a)上有唯一解或等根。只需討論以下三種情況:
10.Δ=0,得,此時(shí)xp=-a2,當(dāng)且僅當(dāng)-a-a2a即0a1時(shí)適合;20。f(a)f(-a)0,當(dāng)且僅當(dāng)-ama時(shí)適合;30。f(-a)=0得m=a,此時(shí)xp=a-2a2,當(dāng)且僅當(dāng)-aa-2a2a即0a1時(shí)適合。令f(a)=0得m=-a,此時(shí)xp=-a-2a2.由于-a-2a2-a,從而m≠-a.綜上當(dāng)0a1時(shí),或-am≤a;當(dāng)a≥1時(shí),-ama.
(2)ΔOAP的面積因?yàn)?a,故當(dāng)-am≤a時(shí),0-a2+,由唯一性得xp=-a2+.當(dāng)m=a時(shí),xp取最小值。由于xp0,從而時(shí)取值最大,此時(shí),故;當(dāng)時(shí),xp=-a2,yp=,此時(shí)以下比較與的大小。令,得,故當(dāng)0a≤時(shí),,此時(shí);當(dāng)時(shí),有,此時(shí)
11.解:設(shè)A,B關(guān)于l的對(duì)稱點(diǎn)分別為A1(x2,y2),B1(x1,y1),則AA1中點(diǎn)在l上,
所以y2=k(x2-1)①
又lAA1,所以
②
由①,②得
同理,由BB1中點(diǎn)在l上,且lBB1,解得
設(shè)拋物線方程為y2=2px,將A1,B1坐標(biāo)代入并消去p得k2-k-1=0.
所以,由題設(shè)k0,所以,從而
所以直線l的方程為,拋物線C的方程為
聯(lián)賽二試水平訓(xùn)練題
1.以A為原點(diǎn),直線AC為x軸,建立直角坐標(biāo)系,設(shè)C(c,0),F(f,0),D(xD,kxD),B(xB,-kxB),則直線DF的方程為
①
直線BC的方程為②
c×①-f×②得
(c-f)x+③
③表示一條直線,它過(guò)原點(diǎn),也過(guò)DF與BC的交點(diǎn)G,因而③就是直線AG的方程。
同理
,直線AE的方程為
(c-f)x+④
③,④的斜率互為相反數(shù),所以∠GAC=∠EAC。
2.證明假設(shè)這樣的閉折線存在,不妨設(shè)坐標(biāo)原點(diǎn)是其中一個(gè)頂點(diǎn),記它為A0,其他頂點(diǎn)坐標(biāo)為:,…,,其中都是既約分?jǐn)?shù),并記An+1=A0.若p與q奇偶性相同,則記p≡q,否則記p≠q,下面用數(shù)學(xué)歸納法證明。
bk≡1,dk≡1(k=1,2,…,n),ak+ck≠ak-1+ck-1(k=1,2,…,n,n+1)。
當(dāng)k=1時(shí),由,得,因?yàn)閍1,b1互質(zhì),所以d1被b1整除,反之亦然(即b1被d1整除)。
因此b1=±d1,從而不可能都是偶數(shù)(否則b1也是偶數(shù),與互質(zhì)矛盾);不可能都是奇數(shù),因?yàn)閮蓚€(gè)奇數(shù)的平方和模8余2不是4的倍數(shù),也不可能是完全平方數(shù),因此,a1≠c1,b1≡d1≡1,并且a1+c1≠0=a0+c0.
設(shè)結(jié)論對(duì)k=1,2,…,m-1≤n都成立,令
這里是既約分?jǐn)?shù),因?yàn)槊恳欢蔚拈L(zhǎng)為1,所以=1,與k=1情況類似:a≡c,d≡b≡1,又因?yàn)?,分?jǐn)?shù)既約,所以bm是bbm-1的一個(gè)因子,bm≡1.
同理可知dm≡1,又am≡abm-1+bam-1(同理cm≡cdm-1+dcm-1).
因此(am+cm-am-1-cm-1)≡(abm-1+bam-1+cdm-1+dcm-1-am-1-cm-1)≡am-1(b-1)+abm-1+cm-1(d-1)+cdm-1≡a+c≡1.
所以am+cm≠am-1+cm-1,結(jié)論成立,于是在頂點(diǎn)數(shù)n+1為奇數(shù)時(shí),an+1+cn+1≠a0+c0,故折線不可能是閉的。
3.證明(1)由已知B0P0=B0Q0,并由圓弧P0Q0和Q0P0,Q0P1和P1Q1,P1Q1和Q1P1分別相內(nèi)切于點(diǎn)Q0,P1,Q1,得C1B0+B0Q0=C1P1,B1C1+C1P1=B1C0+C0Q1以及C0Q1=C0B0+,四式相加,利用B1C1+C1B0=B1C0+C0B0,以及。在B0P0或其延長(zhǎng)線上,有B0P0=B0,從而可知點(diǎn)與點(diǎn)P0重合。由于圓弧Q1P0的圓心C0,圓弧P0Q0的圓心B0以及P0在同一直線上,所以圓弧Q1P0和P0Q0相內(nèi)切于點(diǎn)P0。
(2)現(xiàn)分別過(guò)點(diǎn)P0和P1引上述相應(yīng)相切圓弧的公切線P0T和P1T交于點(diǎn)T。又過(guò)點(diǎn)Q1引相應(yīng)相切圓弧的公切線R1S1,分別交P0T和P1T于點(diǎn)R1和S1,連接P0Q1和P1Q1,得等腰ΔP0Q1R1和ΔP1Q1S1,由此得∠P0Q1P1=π-∠P0Q1P1-∠P1Q1S1=π-(∠P1P0T-∠Q1P0P)-(∠P0P1T-∠Q1P1P0),而π-∠P0Q1P1=∠Q1P0P1+∠Q1P1P0,代入上式后,即得∠P0Q1P1=π-(∠P0B0Q0+∠P1C1Q0).
同理得∠P0Q0P1=π-(∠P0B0Q0+∠P1C1Q0),所以P0,Q0,Q1,P1共圓。
4.證明引理:拋物線y=ax2+bx+c(a≠0)在(x0,y0)處的切線斜率是2ax0+b.
引理的證明:設(shè)(x0,y0)處的切線方程為y-y0=k(x-x0),代入拋物線方程得
ax2+(b-k)x+c+kx0-y0=0.①
又
故①可化簡(jiǎn)成(x-x0)[a(x+x0)+b-k]=0,②
因?yàn)棰谥挥幸粋€(gè)實(shí)根,所以k=2ax0+b.引理得證。
設(shè)P(x0,y0)為任一正交點(diǎn),則它是由線y=xtanx2與y=xtanx2的交點(diǎn),則兩條切線的斜率分別為(由引理)
又由題設(shè)k1k2=-1,所以
③
又因?yàn)镻(x0,y0)在兩條拋物線上,所以代入③式得
(※)
又因?yàn)閠anα1,tanα2是方程t2-t+=0的兩根,所以
tanα1+tanα2=④
tanα1tanα2=。⑤
把④,⑤代入(※)式得
,即
5.證明以C為原點(diǎn),CB所在直線為x軸,建立直角坐標(biāo)系,設(shè)∠ADC=θ,|PD|=r.各點(diǎn)坐標(biāo)分別為D(x1,0),E(0,x1),A(0,x1tanθ),B(x0,0),P(x1-rcosθ,rsinθ).
則lAB方程為,即x1x+x0cotθy-x1x0=0,因?yàn)閘AB與圓相切,可得x1=x0x1cotθ-x1x0|,約去x1,再兩邊平方得
,所以x1.①
又因?yàn)辄c(diǎn)P在圓上,所以(rcos)2+(x1-rsin)2=,化簡(jiǎn)得r=2x1sin.②
要證DP=AP+AE2DP=AD+AE2r=+x1tan-x11+sin-cos=4sincos.③
又因?yàn)?,所?br>
因?yàn)?(x1-x0-rcosθ,rsinθ),=(x1-rcosθ,rsinθ),
所以(x1-rcosθ)(x1-rcosθ-x0)+r2sin2θ=0.④
把②代入④化簡(jiǎn)得
⑤
由①得x0=x1
代入⑤并約去x1,化簡(jiǎn)得4sin22-3sin2=0,因?yàn)閟in2≠0,所以sin2=,又因?yàn)閟in==cos,所以sin-cos0.
所以sin-cos=,所以1+sin-cos==4sincos,即③成立。所以DP=AP+AE。
6.證明設(shè)BC=d,CD=b,BD=c,則AC=CQ=,取BC中點(diǎn)M,則AMBC,以M為原點(diǎn),直線BC為x軸建立直角坐標(biāo)系,則各點(diǎn)坐標(biāo)分別為,,,,,因?yàn)?,所以點(diǎn),所以
因?yàn)?∠DRC,0∠ASQπ,所以只需證tan∠ASQ=tan2∠DRC,即,化簡(jiǎn)得9d2-9c2-9b2=0即d2=b2+c2,顯然成立。所以命題得證。
第十四章極限與導(dǎo)數(shù)(高中數(shù)學(xué)競(jìng)賽標(biāo)準(zhǔn)教材)
第十四章極限與導(dǎo)數(shù)
一、基礎(chǔ)知識(shí)
1.極限定義:(1)若數(shù)列{un}滿足,對(duì)任意給定的正數(shù)ε,總存在正數(shù)m,當(dāng)nm且n∈N時(shí),恒有|un-A|ε成立(A為常數(shù)),則稱A為數(shù)列un當(dāng)n趨向于無(wú)窮大時(shí)的極限,記為,另外=A表示x大于x0且趨向于x0時(shí)f(x)極限為A,稱右極限。類似地表示x小于x0且趨向于x0時(shí)f(x)的左極限。
2.極限的四則運(yùn)算:如果f(x)=a,g(x)=b,那么[f(x)±g(x)]=a±b,[f(x)g(x)]=ab,
3.連續(xù):如果函數(shù)f(x)在x=x0處有定義,且f(x)存在,并且f(x)=f(x0),則稱f(x)在x=x0處連續(xù)。
4.最大值最小值定理:如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在[a,b]上有最大值和最小值。
5.導(dǎo)數(shù):若函數(shù)f(x)在x0附近有定義,當(dāng)自變量x在x0處取得一個(gè)增量Δx時(shí)(Δx充分?。?,因變量y也隨之取得增量Δy(Δy=f(x0+Δx)-f(x0)).若存在,則稱f(x)在x0處可導(dǎo),此極限值稱為f(x)在點(diǎn)x0處的導(dǎo)數(shù)(或變化率),記作(x0)或或,即。由定義知f(x)在點(diǎn)x0連續(xù)是f(x)在x0可導(dǎo)的必要條件。若f(x)在區(qū)間I上有定義,且在每一點(diǎn)可導(dǎo),則稱它在此敬意上可導(dǎo)。導(dǎo)數(shù)的幾何意義是:f(x)在點(diǎn)x0處導(dǎo)數(shù)(x0)等于曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的斜率。
6.幾個(gè)常用函數(shù)的導(dǎo)數(shù):(1)=0(c為常數(shù));(2)(a為任意常數(shù));(3)(4);(5);(6);(7);(8)
7.導(dǎo)數(shù)的運(yùn)算法則:若u(x),v(x)在x處可導(dǎo),且u(x)≠0,則
(1);(2);(3)(c為常數(shù));(4);(5)。
8.復(fù)合函數(shù)求導(dǎo)法:設(shè)函數(shù)y=f(u),u=(x),已知(x)在x處可導(dǎo),f(u)在對(duì)應(yīng)的點(diǎn)u(u=(x))處可導(dǎo),則復(fù)合函數(shù)y=f[(x)]在點(diǎn)x處可導(dǎo),且(f[(x)]=.
9.導(dǎo)數(shù)與函數(shù)的性質(zhì):(1)若f(x)在區(qū)間I上可導(dǎo),則f(x)在I上連續(xù);(2)若對(duì)一切x∈(a,b)有,則f(x)在(a,b)單調(diào)遞增;(3)若對(duì)一切x∈(a,b)有,則f(x)在(a,b)單調(diào)遞減。
10.極值的必要條件:若函數(shù)f(x)在x0處可導(dǎo),且在x0處取得極值,則
11.極值的第一充分條件:設(shè)f(x)在x0處連續(xù),在x0鄰域(x0-δ,x0+δ)內(nèi)可導(dǎo),(1)若當(dāng)x∈(x-δ,x0)時(shí),當(dāng)x∈(x0,x0+δ)時(shí),則f(x)在x0處取得極小值;(2)若當(dāng)x∈(x0-δ,x0)時(shí),當(dāng)x∈(x0,x0+δ)時(shí),則f(x)在x0處取得極大值。
12.極值的第二充分條件:設(shè)f(x)在x0的某領(lǐng)域(x0-δ,x0+δ)內(nèi)一階可導(dǎo),在x=x0處二階可導(dǎo),且。(1)若,則f(x)在x0處取得極小值;(2)若,則f(x)在x0處取得極大值。
13.羅爾中值定理:若函數(shù)f(x)在[a,b]上連續(xù),在(a,b)上可導(dǎo),且f(a)=f(b),則存在ξ∈(a,b),使
[證明]若當(dāng)x∈(a,b),f(x)≡f(a),則對(duì)任意x∈(a,b),.若當(dāng)x∈(a,b)時(shí),f(x)≠f(a),因?yàn)閒(x)在[a,b]上連續(xù),所以f(x)在[a,b]上有最大值和最小值,必有一個(gè)不等于f(a),不妨設(shè)最大值mf(a)且f(c)=m,則c∈(a,b),且f(c)為最大值,故,綜上得證。
14.Lagrange中值定理:若f(x)在[a,b]上連續(xù),在(a,b)上可導(dǎo),則存在ξ∈(a,b),使
[證明]令F(x)=f(x)-,則F(x)在[a,b]上連續(xù),在(a,b)上可導(dǎo),且F(a)=F(b),所以由13知存在ξ∈(a,b)使=0,即
15.曲線凸性的充分條件:設(shè)函數(shù)f(x)在開(kāi)區(qū)間I內(nèi)具有二階導(dǎo)數(shù),(1)如果對(duì)任意x∈I,,則曲線y=f(x)在I內(nèi)是下凸的;(2)如果對(duì)任意x∈I,,則y=f(x)在I內(nèi)是上凸的。通常稱上凸函數(shù)為凸函數(shù),下凸函數(shù)為凹函數(shù)。
16.琴生不等式:設(shè)α1,α2,…,αn∈R+,α1+α2+…+αn=1。(1)若f(x)是[a,b]上的凸函數(shù),則x1,x2,…,xn∈[a,b]有f(a1x1+a2x2+…+anxn)≤a1f(x1)+a2f(x2)+…+anf(xn).
二、方法與例題
1.極限的求法。
例1求下列極限:(1);(2);(3);(4)
[解](1)=;
(2)當(dāng)a1時(shí),
當(dāng)0a1時(shí),
當(dāng)a=1時(shí),
(3)因?yàn)?br>
而
所以
(4)
例2求下列極限:(1)(1+x)(1+x2)(1+)…(1+)(|x|1);
(2);(3)。
[解](1)(1+x)(1+x2)(1+)…(1+)
=
(2)
=
(3)
=
2.連續(xù)性的討論。
例3設(shè)f(x)在(-∞,+∞)內(nèi)有定義,且恒滿足f(x+1)=2f(x),又當(dāng)x∈[0,1)時(shí),f(x)=x(1-x)2,試討論f(x)在x=2處的連續(xù)性。
[解]當(dāng)x∈[0,1)時(shí),有f(x)=x(1-x)2,在f(x+1)=2f(x)中令x+1=t,則x=t-1,當(dāng)x∈[1,2)時(shí),利用f(x+1)=2f(x)有f(t)=2f(t-1),因?yàn)閠-1∈[0,1),再由f(x)=x(1-x)2得f(t-1)=(t-1)(2-t)2,從而t∈[1,2)時(shí),有f(t)=2(t-1)(2-t)2;同理,當(dāng)x∈[1,2)時(shí),令x+1=t,則當(dāng)t∈[2,3)時(shí),有f(t)=2f(t-1)=4(t-2)(3-t)2.從而f(x)=所以
,所以f(x)=f(x)=f(2)=0,所以f(x)在x=2處連續(xù)。
3.利用導(dǎo)數(shù)的幾何意義求曲線的切線方程。
[解]因?yàn)辄c(diǎn)(2,0)不在曲線上,設(shè)切點(diǎn)坐標(biāo)為(x0,y0),則,切線的斜率為,所以切線方程為y-y0=,即。又因?yàn)榇饲芯€過(guò)點(diǎn)(2,0),所以,所以x0=1,所以所求的切線方程為y=-(x-2),即x+y-2=0.
4.導(dǎo)數(shù)的計(jì)算。
例5求下列函數(shù)的導(dǎo)數(shù):(1)y=sin(3x+1);(2);(3)y=ecos2x;(4);(5)y=(1-2x)x(x0且)。
[解](1)3cos(3x+1).
(2)
(3)
(4)
(5)
5.用導(dǎo)數(shù)討論函數(shù)的單調(diào)性。
例6設(shè)a0,求函數(shù)f(x)=-ln(x+a)(x∈(0,+∞))的單調(diào)區(qū)間。
[解],因?yàn)閤0,a0,所以x2+(2a-4)x+a20;x2+(2a-4)x+a+0.
(1)當(dāng)a1時(shí),對(duì)所有x0,有x2+(2a-4)x+a20,即(x)0,f(x)在(0,+∞)上單調(diào)遞增;(2)當(dāng)a=1時(shí),對(duì)x≠1,有x2+(2a-4)x+a20,即,所以f(x)在(0,1)內(nèi)單調(diào)遞增,在(1,+∞)內(nèi)遞增,又f(x)在x=1處連續(xù),因此f(x)在(0,+∞)內(nèi)遞增;(3)當(dāng)0a1時(shí),令,即x2+(2a-4)x+a20,解得x2-a-或x2-a+,因此,f(x)在(0,2-a-)內(nèi)單調(diào)遞增,在(2-a+,+∞)內(nèi)也單調(diào)遞增,而當(dāng)2-a-x2-a+時(shí),x2+(2a-4)x+a20,即,所以f(x)在(2-a-,2-a+)內(nèi)單調(diào)遞減。
6.利用導(dǎo)數(shù)證明不等式。
例7設(shè),求證:sinx+tanx2x.
[證明]設(shè)f(x)=sinx+tanx-2x,則=cosx+sec2x-2,當(dāng)時(shí),(因?yàn)?cosx1),所以=cosx+sec2x-2=cosx+.又f(x)在上連續(xù),所以f(x)在上單調(diào)遞增,所以當(dāng)x∈時(shí),f(x)f(0)=0,即sinx+tanx2x.
7.利用導(dǎo)數(shù)討論極值。
例8設(shè)f(x)=alnx+bx2+x在x1=1和x2=2處都取得極值,試求a與b的值,并指出這時(shí)f(x)在x1與x2處是取得極大值還是極小值。
[解]因?yàn)閒(x)在(0,+∞)上連續(xù),可導(dǎo),又f(x)在x1=1,x2=2處取得極值,所以,又+2bx+1,所以解得
所以.
所以當(dāng)x∈(0,1)時(shí),,所以f(x)在(0,1]上遞減;
當(dāng)x∈(1,2)時(shí),,所以f(x)在[1,2]上遞增;
當(dāng)x∈(2,+∞)時(shí),,所以f(x)在[2,+∞)上遞減。
綜上可知f(x)在x1=1處取得極小值,在x2=2處取得極大值。
例9設(shè)x∈[0,π],y∈[0,1],試求函數(shù)f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x的最小值。
[解]首先,當(dāng)x∈[0,π],y∈[0,1]時(shí),
f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x=(1-y)2x=(1-y)2x,令g(x)=,
當(dāng)時(shí),因?yàn)閏osx0,tanxx,所以;
當(dāng)時(shí),因?yàn)閏osx0,tanx0,x-tanx0,所以;
又因?yàn)間(x)在(0,π)上連續(xù),所以g(x)在(0,π)上單調(diào)遞減。
又因?yàn)?(1-y)xxπ,所以g[(1-y)x]g(x),即,
又因?yàn)?,所以?dāng)x∈(0,π),y∈(0,1)時(shí),f(x,y)0.
其次,當(dāng)x=0時(shí),f(x,y)=0;當(dāng)x=π時(shí),f(x,y)=(1-y)sin(1-y)π≥0.
當(dāng)y=1時(shí),f(x,y)=-sinx+sinx=0;當(dāng)y=1時(shí),f(x,y)=sinx≥0.
綜上,當(dāng)且僅當(dāng)x=0或y=0或x=π且y=1時(shí),f(x,y)取最小值0。
三、基礎(chǔ)訓(xùn)練題
1.=_________.
2.已知,則a-b=_________.
3._________.
4._________.
5.計(jì)算_________.
6.若f(x)是定義在(-∞,+∞)上的偶函數(shù),且存在,則_________.
7.函數(shù)f(x)在(-∞,+∞)上可導(dǎo),且,則_________.
8.若曲線f(x)=x4-x在點(diǎn)P處的切線平行于直線3x-y=0,則點(diǎn)P坐標(biāo)為_(kāi)________.
9.函數(shù)f(x)=x-2sinx的單調(diào)遞增區(qū)間是_________.
10.函數(shù)的導(dǎo)數(shù)為_(kāi)________.
11.若曲線在點(diǎn)處的切線的斜率為,求實(shí)數(shù)a.
12.求sin290的近似值。
13.設(shè)0ba,求證:
四、高考水平練習(xí)題
1.計(jì)算=_________.
2.計(jì)算_________.
3.函數(shù)f(x)=2x3-6x2+7的單調(diào)遞增區(qū)間是_________.。
4.函數(shù)的導(dǎo)數(shù)是_________.
5.函數(shù)f(x)在x0鄰域內(nèi)可導(dǎo),a,b為實(shí)常數(shù),若,則_________.
6.函數(shù)f(x)=ex(sinx+cosx),x的值域?yàn)開(kāi)________.
7.過(guò)拋物線x2=2py上一點(diǎn)(x0,y0)的切線方程為_(kāi)________.
8.當(dāng)x0時(shí),比較大?。簂n(x+1)_________x.
9.函數(shù)f(x)=x5-5x4+5x3+1,x∈[-1,2]的最大值為_(kāi)________,最小值為_(kāi)________.
10.曲線y=e-x(x≥0)在點(diǎn)M(t,e-t)處的切線l與x軸、y軸所圍成的三角形面積為S(t),則S(t)的最大值為_(kāi)________.
11.若x0,求證:(x2-1)lnx≥(x-1)2.
12.函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo)。導(dǎo)函數(shù)是減函數(shù),且0,x0∈(0,+∞).y=kx+m是曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程,另設(shè)g(x)=kx+m,(1)用x0,f(x0),表示m;(2)證明:當(dāng)x∈(0,+∞)時(shí),g(x)≥f(x);(3)若關(guān)于x的不等式x2+1≥ax+b≥在(0,+∞)上恒成立,其中a,b為實(shí)數(shù),求b的取值范圍及a,b所滿足的關(guān)系。
13.設(shè)各項(xiàng)為正的無(wú)窮數(shù)列{xn}滿足lnxn+,證明:xn≤1(n∈N+).
五、聯(lián)賽一試水平訓(xùn)練題
1.設(shè)Mn={(十進(jìn)制)n位純小數(shù)0只取0或1(i=1,2,…,n-1),an=1},Tn是Mn中元素的個(gè)數(shù),Sn是Mn中所有元素的和,則_________.
2.若(1-2x)9展開(kāi)式的第3項(xiàng)為288,則_________.
3.設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x0時(shí),
,且g(-3)=0,則不等式f(x)g(x)0的解集為_(kāi)________.
4.曲線與的交點(diǎn)處的切線夾角是_________.
5.已知a∈R+,函數(shù)f(x)=x2eax的單調(diào)遞增區(qū)間為_(kāi)________.
6.已知在(a,3-a2)上有最大值,則a的取值范圍是_________.
7.當(dāng)x∈(1,2]時(shí),f(x)=恒成立,則y=lg(a2-a+3)的最小值為_(kāi)________.
8.已知f(x)=ln(ex+a)(a0),若對(duì)任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|+ln[]0恒成立,則實(shí)數(shù)m取值范圍是_________.
9.已知函數(shù)f(x)=ln(1+x)-x,g(x)=xlnx,(1)求函數(shù)f(x)的最大值;(2)設(shè)0ab,證明:0g(a)+g(b)-(b-a)ln2.
10.(1)設(shè)函數(shù)f(x)=xlog2x+(1-x)log2(1-x)(0x1),求f(x)的最小值;(2)設(shè)正數(shù)p1,p2,…,滿足p1+p2+p3+…+=1,求證:p1log2p1+p2log2p2+…+log2≥-n.
11.若函數(shù)gA(x)的定義域A=[a,b),且gA(x)=,其中a,b為任意的正實(shí)數(shù),且ab,(1)求gA(x)的最小值;
(2)討論gA(x)的單調(diào)性;
(3)若x1∈Ik=[k2,(k+1)2],x2∈Ik+1=[(k+1)2,(k+2)2],證明:
六、聯(lián)賽二試水平訓(xùn)練題
1.證明下列不等式:(1);
(2)。
2.當(dāng)0a≤b≤c≤d時(shí),求f(a,b,c,d)=的最小值。
3.已知x,y∈(0,1)求證:xy+yx1.