高中必修一函數(shù)教案
發(fā)表時(shí)間:2020-04-03高一數(shù)學(xué)《函數(shù)及其表示》知識點(diǎn)總結(jié)。
俗話說,磨刀不誤砍柴工。作為教師準(zhǔn)備好教案是必不可少的一步。教案可以讓學(xué)生更好的吸收課堂上所講的知識點(diǎn),幫助教師緩解教學(xué)的壓力,提高教學(xué)質(zhì)量。你知道怎么寫具體的教案內(nèi)容嗎?下面是小編精心收集整理,為您帶來的《高一數(shù)學(xué)《函數(shù)及其表示》知識點(diǎn)總結(jié)》,僅供參考,歡迎大家閱讀。
高一數(shù)學(xué)《函數(shù)及其表示》知識點(diǎn)總結(jié)
考點(diǎn)一映射的概念
1.了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多
2.映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)元素x,在集合B中都存在唯一的一個(gè)元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對應(yīng),簡稱“對一”的對應(yīng)。包括:一對一多對一
考點(diǎn)二函數(shù)的概念
1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)數(shù)x,在集合B中都存在唯一確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù)。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。(作文5000網(wǎng) zw5000.Com)
2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系。這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù)。
3.區(qū)間的概念:設(shè)a,bR,且ab.我們規(guī)定:
①(a,b)={xaxb}②[a,b]={xa≤x≤b}③[a,b)={xa≤xb}④(a,b]={xax≤b}
⑤(a,+∞)={xxa}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xxb}⑧(-∞,b]={xx≤b}⑨(-∞,+∞)=R
考點(diǎn)三函數(shù)的表示方法
1.函數(shù)的三種表示方法列表法圖象法解析法
2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。
能力知識清單
考點(diǎn)一求定義域的幾種情況
①若f(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
③若f(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
④若f(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。
⑤.因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。
⑥若f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
⑦若f(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
相關(guān)知識
高一數(shù)學(xué)《函數(shù)與方程》知識點(diǎn)總結(jié)
一名優(yōu)秀的教師在每次教學(xué)前有自己的事先計(jì)劃,高中教師要準(zhǔn)備好教案,這是教師工作中的一部分。教案可以讓學(xué)生們能夠在上課時(shí)充分理解所教內(nèi)容,幫助高中教師提高自己的教學(xué)質(zhì)量。怎么才能讓高中教案寫的更加全面呢?下面是由小編為大家整理的“高一數(shù)學(xué)《函數(shù)與方程》知識點(diǎn)總結(jié)”,大家不妨來參考。希望您能喜歡!
高一數(shù)學(xué)《函數(shù)與方程》知識點(diǎn)總結(jié)
1.函數(shù)的零點(diǎn)
(1)定義:
對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點(diǎn).
(2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:
方程f(x)=0有實(shí)數(shù)根函數(shù)y=f(x)的圖象與x軸有交點(diǎn)函數(shù)y=f(x)有零點(diǎn).
(3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根.
2.二次函數(shù)y=ax2+bx+c(a0)的圖象與零點(diǎn)的關(guān)系
3.二分法
對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.
4.函數(shù)的零點(diǎn)不是點(diǎn):
函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個(gè)數(shù),而不是一個(gè)點(diǎn).在寫函數(shù)零點(diǎn)時(shí),所寫的一定是一個(gè)數(shù)字,而不是一個(gè)坐標(biāo).
5.對函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):
(1)f(x)在[a,b]上連續(xù);
(2)f(a)·f(b)0;
(3)在(a,b)內(nèi)存在零點(diǎn).
這是零點(diǎn)存在的一個(gè)充分條件,但不必要.
6.對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號.
高一數(shù)學(xué)《反函數(shù)、冪函數(shù)》知識點(diǎn)
俗話說,凡事預(yù)則立,不預(yù)則廢。作為教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生更好地進(jìn)入課堂環(huán)境中來,減輕教師們在教學(xué)時(shí)的教學(xué)壓力。優(yōu)秀有創(chuàng)意的教案要怎樣寫呢?急您所急,小編為朋友們了收集和編輯了“高一數(shù)學(xué)《反函數(shù)、冪函數(shù)》知識點(diǎn)”,相信您能找到對自己有用的內(nèi)容。
高一數(shù)學(xué)《反函數(shù)、冪函數(shù)》知識點(diǎn)
1.反函數(shù)的定義
設(shè)函數(shù)y=f(x)的定義域是A,值域是C.我們從式子y=f(x)中解出x得到式子x=φ(y).如果對于y在C中的任何一個(gè)值,通過式子x=φ(y),x在A中都有唯一的值和它對應(yīng),那么式子x=φ(y)叫函數(shù)y=f(x)的反函數(shù),記作x=f-1(y),習(xí)慣表示為y=f-1(x).注意:函數(shù)y=f(x)的定義域和值域,分別是反函數(shù)y=f-1(x)的值域和定義域,
例如:f(x)的定義域是[-1,+∞],值域是[0,+∞),它的反函數(shù)定義域?yàn)閇0,+∞),值域是[-1,+∞)。
2.反函數(shù)存在的條件
按照函數(shù)定義,y=f(x)定義域中的每一個(gè)元素x,都唯一地對應(yīng)著值域中的元素y,如果值域中的每一個(gè)元素y也有定義域中的唯一的一個(gè)元素x和它相對應(yīng),即定義域中的元素x和值域中的元素y,通過對應(yīng)法則y=f(x)存在著一一對應(yīng)關(guān)系,那么函數(shù)y=f(x)存在反函數(shù),否則不存在反函數(shù).例如:函數(shù)y=x2,x∈R,定義域中的元素±1,都對應(yīng)著值域中的同一個(gè)元素1,所以,沒有反函數(shù).而y=x2,x≥1表示定義域到值域的一一對應(yīng),因而存在反函數(shù).
3.函數(shù)與反函數(shù)圖象間的關(guān)系
函數(shù)y=f(x)和它的反函數(shù)y=f-1(x)的圖象關(guān)于y=x對稱.若點(diǎn)(a,b)在y=f(x)的圖象上,那么點(diǎn)(b,a)在它的反函數(shù)y=f-1(x)的圖象上.
4.反函數(shù)的幾個(gè)簡單命題
(1)一個(gè)奇函數(shù)y=f(x)如果存在反函數(shù),那么它的反函數(shù)y=f-1(x)一定是奇函數(shù).
(2)一個(gè)函數(shù)在某一區(qū)間是(減)函數(shù),并且存在反函數(shù),那么它的反函數(shù)在相應(yīng)區(qū)間也是增(減)函數(shù).
定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對于x0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對于x0和x0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:
如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。
(6)顯然冪函數(shù)無界。
1冪函數(shù)解析式的右端是個(gè)冪的形式。冪的底數(shù)是自變量,指數(shù)是常數(shù),可以為任何實(shí)數(shù);與指數(shù)函數(shù)的形式正好相反。
2冪函數(shù)的圖像和性質(zhì)比較復(fù)雜,高考只要求掌握指數(shù)為1、2、3、-1、時(shí)冪函數(shù)的圖像和性質(zhì)。
3了解其它冪函數(shù)的圖像和性質(zhì),主要有:
①當(dāng)自變量為正數(shù)時(shí),冪函數(shù)的圖像都在第一象限。指數(shù)為負(fù)數(shù)的冪函數(shù)都是過點(diǎn)(1,1)的減函數(shù),以坐標(biāo)軸為漸近線,指數(shù)越小越靠近
x軸。指數(shù)為正數(shù)的冪函數(shù)都是過原點(diǎn)和(1,1)的增函數(shù);在x=1的右側(cè)指數(shù)越大越遠(yuǎn)離x軸。
②冪函數(shù)的定義域可以根據(jù)冪的意義去求出:要么是x≥0,要么是關(guān)于原點(diǎn)對稱。前者只在第一象限有圖像;后者一定具有奇偶性,利用對稱性可以畫出二或三象限的圖像。注意第四象限絕對不會(huì)有圖像。
③定義域關(guān)于原點(diǎn)對稱的冪函數(shù)一定具有奇偶性。當(dāng)指數(shù)是偶數(shù)或分子是偶數(shù)的分?jǐn)?shù)時(shí)是偶函數(shù);否則是奇函數(shù)。
4冪函數(shù)奇偶性的一般規(guī)律:
⑴指數(shù)是偶數(shù)的冪函數(shù)是偶函數(shù)。
⑵指數(shù)是奇數(shù)的冪函數(shù)是奇函數(shù)。
⑶指數(shù)是分母為偶數(shù)的分?jǐn)?shù)時(shí),定義域x0或x≥0,沒有奇偶性。
⑷指數(shù)是分子為偶數(shù)的分?jǐn)?shù)時(shí),冪函數(shù)是偶函數(shù)。
⑸指數(shù)是分子分母為奇數(shù)的分?jǐn)?shù)時(shí),冪函數(shù)是奇數(shù)函數(shù)。
高一數(shù)學(xué)《函數(shù)的應(yīng)用》知識點(diǎn)總結(jié)
高一數(shù)學(xué)《函數(shù)的應(yīng)用》知識點(diǎn)總結(jié)
一、方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。
即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
1(代數(shù)法)求方程的實(shí)數(shù)根;
2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
(1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
(2)△=0,方程有兩相等實(shí)根,二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
(3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).
5.函數(shù)的模型
檢驗(yàn)
收集數(shù)據(jù)
畫散點(diǎn)圖
選擇函數(shù)模型
求函數(shù)模型
用函數(shù)模型解釋實(shí)際問題
符合實(shí)際
高一數(shù)學(xué)知識點(diǎn):函數(shù)
高一數(shù)學(xué)知識點(diǎn):函數(shù)
1.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)plusmn;f(-x)=0或(f(x)ne;0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式ale;g(x)le;b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于xisin;[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對xisin;R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱,高中數(shù)學(xué);
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;