小學(xué)二年級(jí)音樂(lè)課教案
發(fā)表時(shí)間:2020-10-06七年級(jí)下冊(cè)《平方根》第二課時(shí)教案。
作為老師的任務(wù)寫(xiě)教案課件是少不了的,大家應(yīng)該在準(zhǔn)備教案課件了。只有規(guī)劃好新的教案課件工作,這對(duì)我們接下來(lái)發(fā)展有著重要的意義!有沒(méi)有出色的范文是關(guān)于教案課件的?下面是小編為大家整理的“七年級(jí)下冊(cè)《平方根》第二課時(shí)教案”,大家不妨來(lái)參考。希望您能喜歡!
七年級(jí)下冊(cè)《平方根》第二課時(shí)教案
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
無(wú)限不循環(huán)小數(shù);求算術(shù)平方根的更一般的方法---用有理數(shù)估算、用計(jì)算器求值.
2.內(nèi)容解析
無(wú)限不循環(huán)小數(shù)的引入,教科書(shū)是通過(guò)用有理數(shù)估計(jì)的大小,得到的越來(lái)越精確的近似值,進(jìn)而發(fā)現(xiàn)是一個(gè)無(wú)限不循環(huán)小數(shù)的結(jié)論.發(fā)現(xiàn)無(wú)限不循環(huán)小數(shù)的過(guò)程就是反復(fù)運(yùn)用有理數(shù)估計(jì)無(wú)理數(shù)的大小的過(guò)程.
用有理數(shù)估計(jì)(一個(gè)帶算術(shù)平方根符號(hào)的)無(wú)理數(shù)的大致范圍,通常利用與被開(kāi)方數(shù)比較接近的完全平方數(shù)的算術(shù)平方根來(lái)估計(jì)這個(gè)被開(kāi)方數(shù)的算術(shù)平方根的大小,這種估算在生活中經(jīng)常遇到,是學(xué)生生活中需要的一種能力.
使用計(jì)算器可以求任何正數(shù)的平方根,但不同品牌的計(jì)算器,按鍵順序可能不同,教學(xué)中,可以讓學(xué)生根據(jù)計(jì)算器品牌,參考使用說(shuō)明書(shū),學(xué)習(xí)使用計(jì)算器求算術(shù)平方根的方法.這完全可以讓學(xué)生自己完成.
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:用有理數(shù)估計(jì)一個(gè)(帶算術(shù)平方根符號(hào)的)無(wú)理數(shù)的大致范圍.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)通過(guò)估算,體驗(yàn)“無(wú)限不循環(huán)小數(shù)”的含義,能用估算求一個(gè)數(shù)的算術(shù)平方根的近似值.
(2)會(huì)利用計(jì)算器求一個(gè)正數(shù)的算術(shù)平方根;理解被開(kāi)方數(shù)擴(kuò)大(或縮小)與它的算術(shù)平方根擴(kuò)大(或縮小)的規(guī)律.
2.目標(biāo)解析
(1)學(xué)生了解“無(wú)限不循環(huán)小數(shù)”是指小數(shù)位數(shù)無(wú)限,且小數(shù)部分不循環(huán)的小數(shù),感受這是不同于有理數(shù)的一類新數(shù);對(duì)于估算,學(xué)生要會(huì)利用估算比較大小;了解夾逼法,采用不足近似值和過(guò)剩近似值來(lái)估計(jì)一個(gè)數(shù)的范圍.
(2)學(xué)生會(huì)概述利用計(jì)算器求一個(gè)正數(shù)的算術(shù)平方根的程序(按鍵的順序);明白利用計(jì)算器求一個(gè)正數(shù)的算術(shù)平方根,計(jì)算器顯示的結(jié)果可能是近似值;會(huì)利用作為工具的計(jì)算器探究算術(shù)平方根的規(guī)律,理解被開(kāi)方數(shù)小數(shù)點(diǎn)向右或向左移動(dòng)2位,它的算術(shù)平方根就相應(yīng)地向右或向左移動(dòng)1位,即被開(kāi)方數(shù)每擴(kuò)大(或縮小)100倍,它的算術(shù)平方根就擴(kuò)大(或縮小)10倍.
三、教學(xué)問(wèn)題診斷分析
用有理數(shù)估計(jì)一個(gè)(帶算術(shù)平方根符號(hào)的)無(wú)理數(shù)的大致范圍,需要學(xué)生理解“算術(shù)平方根的被開(kāi)方數(shù)越大,對(duì)應(yīng)的算術(shù)平方根也越大”的性質(zhì),還要判斷被開(kāi)方數(shù)在哪兩個(gè)相鄰的整數(shù)平方數(shù)之間.為了讓學(xué)生體驗(yàn)“無(wú)限不循環(huán)小數(shù)”的含義,還要多次采用“夾逼法”進(jìn)行估計(jì),即利用其一系列不足近似值和過(guò)剩近似值來(lái)估計(jì)它的大小,這些對(duì)學(xué)生綜合運(yùn)用知識(shí)的能力有較高的要求.
基于以上分析,本課的教學(xué)難點(diǎn)是:用有理數(shù)估計(jì)一個(gè)(帶算術(shù)平方根符號(hào)的)無(wú)理數(shù)的大致范圍的過(guò)程,體驗(yàn)“無(wú)限不循環(huán)小數(shù)”的含義.
四、教學(xué)過(guò)程設(shè)計(jì)
1.梳理舊知,引出新課
問(wèn)題1(1)什么是算術(shù)平方根?怎樣表示?
(2)負(fù)數(shù)有算術(shù)平方根嗎?
師生活動(dòng)學(xué)生回答,教師說(shuō)明:我們上節(jié)課已經(jīng)能求出一些平方數(shù)的算術(shù)平方根了,例如,=4;但實(shí)際生活中,我們還會(huì)遇到被開(kāi)方數(shù)不是一個(gè)數(shù)的平方數(shù)的情況,這時(shí),它的算術(shù)平方根又該怎祥求呢?
設(shè)計(jì)意圖:復(fù)習(xí)與本節(jié)課相關(guān)的知識(shí),通過(guò)設(shè)問(wèn),引出本節(jié)課學(xué)習(xí)內(nèi)容.
2.問(wèn)題探究,學(xué)習(xí)新知
問(wèn)題2能否用兩個(gè)面積為1dm的小正方形拼成一個(gè)面積為2dm的大正方形?
師生活動(dòng):學(xué)生動(dòng)手操作,在小組內(nèi)討論交流,教師展示剪拼方法.
追問(wèn)(1)拼成的這個(gè)面積為2dm的大正方形的邊長(zhǎng)應(yīng)該是多少呢?
師生活動(dòng):學(xué)生自行解答,教師對(duì)解答有困難的學(xué)生進(jìn)行指導(dǎo).
追問(wèn)(2)小正方形的對(duì)角線的長(zhǎng)是多少呢?
師生活動(dòng):學(xué)生根據(jù)圖形,不難回答,小正方形的對(duì)角線的長(zhǎng)就是大正方形的邊長(zhǎng)dm.
設(shè)計(jì)意圖:通過(guò)實(shí)際問(wèn)題的操作探究,說(shuō)明實(shí)際生活中確實(shí)存在被開(kāi)方數(shù)不是一個(gè)數(shù)的平方數(shù)的情況,激發(fā)學(xué)生學(xué)習(xí)積極性,追問(wèn)(2)主要為后面介紹用數(shù)軸上的點(diǎn)表示作準(zhǔn)備.
問(wèn)題3有多大呢?為了弄清這個(gè)問(wèn)題,請(qǐng)同學(xué)們探究“在哪兩個(gè)整數(shù)之間呢?”
師生活動(dòng):先讓學(xué)生思考討論并估計(jì)大概有多大,由直觀可知大于1而小于2,教師引導(dǎo)學(xué)生利用“被開(kāi)方數(shù)越大,對(duì)應(yīng)的算術(shù)平方根也越大”說(shuō)明理由,教師板書(shū)推理過(guò)程.
追問(wèn)(1)那么是1點(diǎn)幾呢?你能不能得到的更精確的范圍?
師生活動(dòng):學(xué)生用試驗(yàn)的方法可得到平方數(shù)小于2且最接近的1位小數(shù)是1.4,而平方數(shù)大于2且最接近的1位小數(shù)是1.5,所以大于1.4而小于1.5……,在此基礎(chǔ)上教師按教科書(shū)上的推理進(jìn)行講解并板書(shū).說(shuō)明是一個(gè)無(wú)限不循環(huán)小數(shù),以及什么是無(wú)限不循環(huán)小數(shù).并要求學(xué)生回憶以前學(xué)過(guò)的數(shù),進(jìn)行比較.
追問(wèn)(2)實(shí)際上,許多正有理數(shù)的算術(shù)平方根,如,,等都是無(wú)限不循環(huán)小數(shù).根據(jù)估計(jì)的大小的方法,請(qǐng)你估計(jì)的整數(shù)部分是多少?
設(shè)計(jì)意圖:通過(guò)對(duì)大小的估計(jì),初步掌握利用的一系列不足近似值和過(guò)剩近似值來(lái)估計(jì)它的大小的方法,并從中體會(huì)是一個(gè)無(wú)限不循環(huán)小數(shù).讓學(xué)生回憶以前學(xué)過(guò)的數(shù),通過(guò)比較,了解無(wú)限不循環(huán)小數(shù)的特征,為后面學(xué)習(xí)無(wú)理數(shù)打下基礎(chǔ).追問(wèn)(2)主要為及時(shí)鞏固估算方法.
3.用計(jì)算器,求算術(shù)根
例1用計(jì)算器求下列各式的值:
(1);(2)(精確到0.001)
師生活動(dòng):教師指導(dǎo)學(xué)生操作,獲得問(wèn)題答案.解答完(2)后,讓學(xué)生與上面所估計(jì)的的大小進(jìn)行比較,體會(huì)夾逼法的可行性.說(shuō)明用計(jì)算器可以求出任意一個(gè)正數(shù)的算術(shù)平方根,但不同品牌的計(jì)算器,按鍵順序可能有所不同.用計(jì)算器求出的算術(shù)平方根,有的是準(zhǔn)確值,如題(1),有的是近似值,如題(2).
設(shè)計(jì)意圖:使學(xué)生會(huì)使用計(jì)算器求算術(shù)平方根.
練習(xí)教科書(shū)第44頁(yè)練習(xí)1.
師生活動(dòng):學(xué)生獨(dú)立完成后交流.
設(shè)計(jì)意圖:鞏固計(jì)算器求算術(shù)平方根.
4.綜合應(yīng)用,鞏固所學(xué)
現(xiàn)在我們來(lái)解決本章引言中的問(wèn)題.
問(wèn)題4(1)你會(huì)表示出,嗎?
(2)用計(jì)算器求,.(用科學(xué)記數(shù)法把結(jié)果寫(xiě)成的形式,其中保留小數(shù)點(diǎn)后一位)
師生活動(dòng):學(xué)生理解題意,根據(jù)公式,可得,,將,代入,利用計(jì)算器求出,.
設(shè)計(jì)意圖:讓學(xué)生體會(huì)計(jì)算器在解決實(shí)際問(wèn)題中的應(yīng)用.
問(wèn)題5利用計(jì)算器計(jì)算下表中的算術(shù)平方根,并將計(jì)算結(jié)果填在表中.
…
…
…
…
師生活動(dòng):學(xué)生計(jì)算填表.
追問(wèn)(1)你發(fā)現(xiàn)了什么規(guī)律?
師生活動(dòng):學(xué)生思考、討論,教師歸納:被開(kāi)方數(shù)的小數(shù)點(diǎn)向右或向左移動(dòng)2位,它的算術(shù)平方根的小數(shù)點(diǎn)就相應(yīng)地向右或向左移動(dòng)1位.
追問(wèn)(2)你能說(shuō)出其中的道理嗎?
師生活動(dòng):學(xué)生討論,交流,教師引導(dǎo)學(xué)生從被開(kāi)方數(shù)擴(kuò)大的倍數(shù)與其算術(shù)平方根擴(kuò)大的倍數(shù)思考回答.即當(dāng)被開(kāi)方數(shù)擴(kuò)大(或縮小)100倍,10000倍…時(shí),其算術(shù)平方根相應(yīng)地?cái)U(kuò)大(或縮小)10倍,100倍….
追問(wèn)(3)用計(jì)算器計(jì)算(精確到0.001),并利用剛才的得到規(guī)律說(shuō)出,,的近似值.
師生活動(dòng):學(xué)生計(jì)算,并根據(jù)所獲規(guī)律回答.
追問(wèn)(4)你能根據(jù)的值說(shuō)出是多少嗎?
師生活動(dòng):學(xué)生回答,因?yàn)楸婚_(kāi)方數(shù)30與3不符合上述規(guī)律,所以無(wú)法由的值說(shuō)出是多少.
設(shè)計(jì)意圖:鞏固用計(jì)算器求算術(shù)平方根以及其在探究規(guī)律中的應(yīng)用.
例2小麗想用一塊面積為400cm的長(zhǎng)方形紙片,沿著邊的方向剪出一塊面積為300cm的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為3:2.她不知能否裁得出來(lái),正在發(fā)愁.小明見(jiàn)了說(shuō):“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說(shuō)法嗎?小麗能用這塊紙片裁出符合要求的紙片嗎?
師生活動(dòng):教師出示問(wèn)題,學(xué)生理解題意,學(xué)生可能會(huì)和小明有同樣的想法,此時(shí)教師進(jìn)行如下引導(dǎo):
(1)你能將這個(gè)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題嗎?
(2)如何求出長(zhǎng)方形的長(zhǎng)和寬?
(3)長(zhǎng)方形的長(zhǎng)和寬與正方形的邊長(zhǎng)之間的大小關(guān)系是什么?
最后給出完整的解答過(guò)程.
設(shè)計(jì)意圖:讓學(xué)生體驗(yàn)估算的實(shí)際應(yīng)用.
5.歸納小結(jié):
師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:
(1)利用夾逼法來(lái)求算術(shù)平方根的近似值的依據(jù)是什么?
(2)利用計(jì)算器可以求出任意正數(shù)的算術(shù)平方根或近似值嗎?
(3)被開(kāi)方數(shù)擴(kuò)大(或縮小)與它的算術(shù)平方根擴(kuò)大(或縮小)的規(guī)律是怎樣的呢?
(4)怎樣的數(shù)是無(wú)限不循環(huán)小數(shù)?
設(shè)計(jì)意圖:讓學(xué)生對(duì)本節(jié)課知識(shí)進(jìn)行梳理,同時(shí)也幫助學(xué)生養(yǎng)成良好的習(xí)慣.
6.布置作業(yè):
教科書(shū)習(xí)題6.1第6、9、10題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1.求的整數(shù)部分.
【設(shè)計(jì)意圖】主要考查學(xué)生的估算能力.
2.比較下列各組數(shù)的大?。?/p>
(1)與;(2)與12;(3)與.
【設(shè)計(jì)意圖】主要考查學(xué)生的估算和比較大小的能力.
3.若,,那么_______;_______.
【設(shè)計(jì)意圖】主要考查學(xué)生對(duì)算術(shù)平方根概念以及有關(guān)規(guī)律的理解.
4.國(guó)際比賽的足球場(chǎng)的長(zhǎng)在100m到110m之間,寬在64m到75m之間,現(xiàn)有一個(gè)長(zhǎng)方形的足球場(chǎng)其長(zhǎng)是寬的1.5倍,面積為7560m,問(wèn):這個(gè)足球場(chǎng)能用作國(guó)際比賽嗎?
【設(shè)計(jì)意圖】主要考查學(xué)生運(yùn)用算術(shù)平方根解決實(shí)際問(wèn)題的能力.
延伸閱讀
七年級(jí)下冊(cè)《平方根》第二課時(shí)學(xué)案新版人教版
每個(gè)老師上課需要準(zhǔn)備的東西是教案課件,規(guī)劃教案課件的時(shí)刻悄悄來(lái)臨了。是時(shí)候?qū)ψ约航贪刚n件工作做個(gè)新的規(guī)劃了,接下來(lái)的工作才會(huì)更順利!你們了解多少教案課件范文呢?考慮到您的需要,小編特地編輯了“七年級(jí)下冊(cè)《平方根》第二課時(shí)學(xué)案新版人教版”,希望對(duì)您的工作和生活有所幫助。
七年級(jí)下冊(cè)《平方根》第二課時(shí)學(xué)案新版人教版
6.1平方根【第二課時(shí)】
【知識(shí)與技能】
通過(guò)學(xué)習(xí),進(jìn)一步熟悉開(kāi)平方的運(yùn)算過(guò)程,能熟練的進(jìn)行開(kāi)平方的運(yùn)算過(guò)程。
【過(guò)程與方法】
理解開(kāi)平方與平方是一對(duì)互逆的運(yùn)算,會(huì)用平方根的概念求某些數(shù)的平方根,并能用根號(hào)加以表示,能用科學(xué)計(jì)算器求平方根及其近似值。
【情感、態(tài)度與價(jià)值觀】
體會(huì)平方與開(kāi)平方這一對(duì)互逆運(yùn)算的辯證關(guān)系,感受平方根在現(xiàn)實(shí)世界中的客觀存在,增強(qiáng)數(shù)學(xué)知識(shí)的應(yīng)用意識(shí)。
【教學(xué)重點(diǎn)】理解開(kāi)平方與平方是一對(duì)互逆的運(yùn)算,會(huì)用平方根的概念求某些數(shù)的平方根,并能用根號(hào)加以表示。
【教學(xué)難點(diǎn)】能熟練的進(jìn)行開(kāi)平方運(yùn)算,并熟悉各種不同形式的開(kāi)平方運(yùn)算,為后續(xù)學(xué)習(xí)打下基礎(chǔ)。
【教具準(zhǔn)備】小黑板科學(xué)計(jì)算器
【教學(xué)過(guò)程】
一、復(fù)習(xí)導(dǎo)入
1、求下列各數(shù)的平方根:0.81,49/64,
2、的算術(shù)平方根是(B)A.B.C.D.,讀作:“根號(hào)a”;把a(bǔ)的負(fù)平方根記作-。
2、0的平方根有且只有一個(gè):0。0的平方根記作,即=0。
3、負(fù)數(shù)沒(méi)有平方根。
4、求一個(gè)非負(fù)數(shù)的平方根,叫做開(kāi)平方。
5、小結(jié):平方根的性質(zhì)
①一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);
②0只有一個(gè)平方根,它就是0本身;
③負(fù)數(shù)沒(méi)有平方根。
算術(shù)平方根的性質(zhì)
①正數(shù)的算術(shù)平方根是正數(shù);
②0的算術(shù)平方根就是0;
③負(fù)數(shù)沒(méi)有算術(shù)平方根。
(二)課堂練習(xí)
1、求下列各數(shù)的算術(shù)平方根:8+()2;b2-2b+1(b1)
思路與技巧:被開(kāi)方數(shù)是數(shù)字算式,一般可先算出算式的值,也可通過(guò)簡(jiǎn)單變形,把算式化為一個(gè)數(shù)的平方的形式。被開(kāi)方數(shù)是字母表達(dá)式時(shí),應(yīng)該先分析表達(dá)式的值是不是非負(fù)數(shù),負(fù)數(shù)沒(méi)有平方根。(參考答案:,1-b)
2、求各式的值:-===
思路與技巧:此題要求正確理解的意義,其中a≥0。
3、探究|a|與的關(guān)系。(參考答案:|a|=)
4、求下列各式中的x:(1)4x2-49=0;(2)x2=1。
(此題的關(guān)鍵是把原等式轉(zhuǎn)化成x2=a的形式,再利用平方根的定義及性質(zhì)求出x。)
5、如果一個(gè)正數(shù)的平方根是a+3與2a-15,那么這個(gè)正數(shù)是多少?
思路與技巧:因?yàn)橐粋€(gè)正數(shù)的兩個(gè)平方根互為相反數(shù),所以(a+3)+(2a-15)=0,從而求出a的值后,再求出這個(gè)數(shù)即可。(參考答案:49)
三、小結(jié)與鞏固
1、平方根與算術(shù)平方根有怎樣的性質(zhì)?
2、如果a2=b,已知b的值,求a的運(yùn)算過(guò)程叫做(開(kāi)平方)運(yùn)算;它與(平方)運(yùn)算互為逆運(yùn)算。
3、若=1.732,那么=(17.32)。
4、蓋房時(shí),在墻上留出了0.81m2的正方形墻洞預(yù)備安裝窗戶,求正方形窗戶的邊長(zhǎng)。(參考答案:0.9m)
七年級(jí)下冊(cè)《平方根》第一課時(shí)教案
老師工作中的一部分是寫(xiě)教案課件,大家應(yīng)該要寫(xiě)教案課件了。只有制定教案課件工作計(jì)劃,可以更好完成工作任務(wù)!你們到底知道多少優(yōu)秀的教案課件呢?小編特地為您收集整理“七年級(jí)下冊(cè)《平方根》第一課時(shí)教案”,歡迎閱讀,希望您能夠喜歡并分享!
七年級(jí)下冊(cè)《平方根》第一課時(shí)教案
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
算術(shù)平方根的概念,被開(kāi)方數(shù)越大,對(duì)應(yīng)的算術(shù)平方根也越大.
2.內(nèi)容解析
算術(shù)平方根是初中數(shù)學(xué)中的重要概念,引入算術(shù)平方根,是解決實(shí)際問(wèn)題的需要.作為《實(shí)數(shù)》的開(kāi)篇第一課,掌握好算術(shù)平方根的概念和計(jì)算,一方面可為后續(xù)研究平方根、立方根提供方法上的借鑒,另一方面也是為認(rèn)識(shí)無(wú)理數(shù),完成數(shù)集的擴(kuò)充,解決數(shù)學(xué)內(nèi)部運(yùn)算,以及二次根式的學(xué)習(xí)等作準(zhǔn)備.
算術(shù)平方根的概念分兩個(gè)部分,分別是關(guān)于一個(gè)正數(shù)算術(shù)平方根的定義和關(guān)于0的算術(shù)平方根的規(guī)定.由算術(shù)平方根的概念引出其符號(hào)表示、讀法及什么是被開(kāi)方數(shù).
根據(jù)算術(shù)平方根的概念,可以利用互逆關(guān)系,求一些數(shù)的算術(shù)平方根.根據(jù)這些數(shù)的算術(shù)平方根的結(jié)果,不難歸納得出“被開(kāi)方數(shù)越大,對(duì)應(yīng)的算術(shù)平方根也越大”的結(jié)論,其間體現(xiàn)了從特殊到一般的思想方法.
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:算術(shù)平方根的概念和求法.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)了解算術(shù)平方根的概念,會(huì)用根號(hào)表示一個(gè)非負(fù)數(shù)的算術(shù)平方根.
(2)會(huì)求一些數(shù)的算術(shù)平方根.
2.目標(biāo)解析
(1)學(xué)生能說(shuō)出正數(shù)的算術(shù)平方根的定義,記住0的算術(shù)平方根是0;會(huì)用符號(hào)表示一個(gè)非負(fù)數(shù)的算術(shù)平方根,并能正確讀出符號(hào),能夠說(shuō)出中數(shù)的名稱;理解符號(hào)中被開(kāi)方數(shù)≥0(即是一個(gè)非負(fù)數(shù))的條件,了解也是一個(gè)非負(fù)數(shù).
(2)學(xué)生能依據(jù)算術(shù)平方根的定義判斷一個(gè)數(shù)有沒(méi)有算術(shù)平方根;掌握用平方運(yùn)算求某些數(shù)的算術(shù)平方根的方法,會(huì)求出100以內(nèi)完全平方數(shù)或分子、分母均是這類數(shù)的分?jǐn)?shù)的算術(shù)平方根,以及上述這類數(shù)擴(kuò)大(或縮小)100倍、10000倍的數(shù)的算術(shù)平方根;了解被開(kāi)方數(shù)越大,對(duì)應(yīng)的算術(shù)平方根也越大.
三、教學(xué)問(wèn)題診斷分析
在本課學(xué)習(xí)之前,學(xué)生們已經(jīng)掌握了一些完全平方數(shù),對(duì)乘方運(yùn)算也有一定的認(rèn)識(shí).但對(duì)于算術(shù)平方根為什么只是就正數(shù)進(jìn)行定義,并對(duì)0的算術(shù)平方根作出規(guī)定,大多數(shù)學(xué)生不習(xí)慣.還有就是負(fù)數(shù)沒(méi)有算術(shù)平方根,這種某數(shù)不能進(jìn)行某種運(yùn)算的情況在有理數(shù)的前五種代數(shù)運(yùn)算中,一般不會(huì)碰到(0不能作除數(shù)除外);加之算術(shù)平方根的符號(hào)表示只涉及一個(gè)數(shù),這與前面所學(xué)都涉及兩個(gè)數(shù)的運(yùn)算不一樣,學(xué)生可能難以理解.
基于以上分析,本節(jié)課的教學(xué)難點(diǎn)是:深化對(duì)算術(shù)平方根的理解.
四、教學(xué)過(guò)程設(shè)計(jì)
1.創(chuàng)設(shè)情境,引入新課
教師展示教科書(shū)中本章的章前圖,說(shuō)明這是神舟七號(hào)宇宙飛船升空的照片,并提出下面的問(wèn)題.
問(wèn)題1請(qǐng)同學(xué)們閱讀本章的引言,你從引言中發(fā)現(xiàn)了哪些與數(shù)有關(guān)的概念?本章將要學(xué)習(xí)的主要內(nèi)容以及大致的研究思路是什么?
師生活動(dòng)學(xué)生閱讀,回答;教師補(bǔ)充說(shuō)明數(shù)的范圍不斷擴(kuò)大體現(xiàn)了人類在數(shù)的認(rèn)識(shí)上的不斷深入,讓學(xué)生感受數(shù)的擴(kuò)充的必要性.
設(shè)計(jì)意圖:通過(guò)“神州七號(hào)載人飛船發(fā)射成功”引入本章學(xué)習(xí),激發(fā)興趣,增強(qiáng)學(xué)生的學(xué)習(xí)熱情.
2.師生互動(dòng),學(xué)習(xí)新知
問(wèn)題2學(xué)校要舉行美術(shù)作品比賽,小鷗想裁出一塊面積為25dm的正方形畫(huà)布,畫(huà)上自己的得意之作參加比賽,這塊正方形畫(huà)布的邊長(zhǎng)應(yīng)取多少?
師生活動(dòng):學(xué)生可能很快答出邊長(zhǎng)為5dm.
追問(wèn)請(qǐng)說(shuō)一說(shuō),你是怎樣算出來(lái)的?
師生活動(dòng):學(xué)生理清解決問(wèn)題的思路,回答,教師可結(jié)合圖片強(qiáng)調(diào)思路.
設(shè)計(jì)意圖:從現(xiàn)實(shí)生活中提出數(shù)學(xué)問(wèn)題,使學(xué)生積極主動(dòng)的投入到數(shù)學(xué)活動(dòng)中去,同時(shí)為學(xué)習(xí)算術(shù)平方根提供實(shí)際背景和生活素材.
問(wèn)題3完成下表:
正方形的面積/dm
1
9
16
36
邊長(zhǎng)/dm
師生活動(dòng):學(xué)生可能很快答出.
設(shè)計(jì)意圖:通過(guò)多個(gè)已知正方形面積求邊長(zhǎng)問(wèn)題的解答,加強(qiáng)學(xué)生對(duì)這種運(yùn)算的理解,為引出算術(shù)平方根作好鋪墊.
問(wèn)題4你能指出問(wèn)題2與問(wèn)題3的共同特點(diǎn)嗎?
師生活動(dòng):學(xué)生可能回答:上述問(wèn)題都是“已知一個(gè)正方形的面積,求這個(gè)正方形的邊長(zhǎng)”的問(wèn)題,教師可引導(dǎo)學(xué)生進(jìn)一步歸納為“已知一個(gè)正數(shù)的平方,求這個(gè)正數(shù)”的問(wèn)題,從而揭示問(wèn)題的本質(zhì).在此基礎(chǔ)上教師給出算術(shù)平方根的定義.
一般地,如果一個(gè)正數(shù)的平方等于,即,那么這個(gè)正數(shù)叫做的算術(shù)平方根.的算術(shù)平方根記為,讀作“根號(hào)”,叫做被開(kāi)方數(shù).
問(wèn)題5上面就一個(gè)正數(shù)給出了算術(shù)平方根的定義,那么,你認(rèn)為“0的算術(shù)平方根是多少?”“怎樣表示”比較合適呢?
師生活動(dòng):學(xué)生不難回答“0的算術(shù)平方根是0”,可以表示為“”;教師指明:算術(shù)平方根的概念包含“正數(shù)算術(shù)平方根”的定義和“0的算術(shù)平方根”的規(guī)定兩部分.
追問(wèn)(1)根據(jù)以上學(xué)習(xí),你認(rèn)為對(duì)于算術(shù)平方根中被開(kāi)方數(shù)可以是哪些數(shù)?
師生活動(dòng):學(xué)生回答,教師明確:算術(shù)平方根中被開(kāi)方數(shù)可以是正數(shù)或0,即非負(fù)數(shù).
追問(wèn)(2)為什么負(fù)數(shù)沒(méi)有算術(shù)平方根呢?
師生活動(dòng):學(xué)生思考、回答,教師點(diǎn)撥:因?yàn)槿魏我粋€(gè)正數(shù)的平方都不可能是負(fù)數(shù).
設(shè)計(jì)意圖:通過(guò)不斷追問(wèn),由學(xué)生思考解決,體會(huì)分類討論,既加深學(xué)生對(duì)算術(shù)平方根的理解,又讓學(xué)生養(yǎng)成全面考慮問(wèn)題的習(xí)慣.
追問(wèn)(3)請(qǐng)判斷正誤:
(1)-5是-25的算術(shù)平方根;
(2)6是的算術(shù)平方根;
(3)0的算術(shù)平方根是0;
(4)0.01是0.1的算術(shù)平方根;
(5)一個(gè)正方形的邊長(zhǎng)就是這個(gè)正方形的面積的算術(shù)平方根.
師生活動(dòng):學(xué)生回答,其他學(xué)生討論,教師對(duì)有難度的進(jìn)行適當(dāng)引導(dǎo).
設(shè)計(jì)意圖:檢驗(yàn)對(duì)算術(shù)平方根的理解.
3.例題示范,學(xué)會(huì)應(yīng)用
例1求下列各數(shù)的算術(shù)平方根:
(1)100;(2);(3)0.0001.
師生活動(dòng):教師給出第(1)小題求數(shù)的算術(shù)平方根的思考過(guò)程,學(xué)生模仿獨(dú)立完成第(2)、第(3)小題,兩名學(xué)生板演后,全班交流.
追問(wèn)從例1中,你能發(fā)現(xiàn)被開(kāi)方數(shù)的大小與對(duì)應(yīng)的算術(shù)平方根的大小之間有什么關(guān)系嗎?
師生活動(dòng):學(xué)生比較被開(kāi)方數(shù)的大小以及其算術(shù)平方根的大小,試圖歸納出結(jié)論.如有困難,教師再舉一些具體例子加以引導(dǎo),說(shuō)明.
設(shè)計(jì)意圖:通過(guò)求大小不同的三種形式的正數(shù)的算術(shù)平方根的實(shí)踐,鞏固求算術(shù)平方根的方法,由特殊到一般歸納出結(jié)論:被開(kāi)方數(shù)越大,對(duì)應(yīng)的算術(shù)平方根也越大.為下節(jié)課學(xué)習(xí)估計(jì)平方根的大小做準(zhǔn)備.
例2求下列各式的值.
(1);(2);(3).
師生活動(dòng):學(xué)生先說(shuō)明所求式子的含義,然后三名學(xué)生板演,全班交流,教師點(diǎn)評(píng).
設(shè)計(jì)意圖:使學(xué)生熟悉算術(shù)平方根的符號(hào)表示,全面了解算術(shù)平方根.
4.即時(shí)訓(xùn)練,鞏固新知
(1)教科書(shū)第41頁(yè)的練習(xí).
(2)求的算術(shù)平方根.
師生活動(dòng):學(xué)生獨(dú)立完成,教師巡視,對(duì)個(gè)別差生進(jìn)行輔導(dǎo).對(duì)“求的算術(shù)平方根”,要讓學(xué)生明白此題包含兩層運(yùn)算,即先求=?,然后再求“?”的算術(shù)平方根,實(shí)際上就是上述例1、例2類型的綜合題.
設(shè)計(jì)意圖:通過(guò)練習(xí)使學(xué)生在了解算術(shù)平方根及有關(guān)概念的基礎(chǔ)上,達(dá)到能自己求一個(gè)數(shù)的算術(shù)平方根,進(jìn)一步鞏固、深化對(duì)算術(shù)平方根的理解.
5.課堂小結(jié)
師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:
(1)什么是算術(shù)平方根?
(2)如何求一個(gè)正數(shù)的算術(shù)平方根?
(3)什么數(shù)才有算術(shù)平方根?
設(shè)計(jì)意圖:讓學(xué)生對(duì)本節(jié)課知識(shí)進(jìn)行梳理,進(jìn)一步落實(shí)相關(guān)概念.
6.布置作業(yè):
教科書(shū)習(xí)題6.1第1、2題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1.若是49的算術(shù)平方根,則=().
A.7B.-7C.49D.-49
設(shè)計(jì)意圖:本題考查學(xué)生對(duì)算術(shù)平方根概念的理解.
2.說(shuō)出下列各式的意義,并求它們的值.
(1);(2);(3);(4).
設(shè)計(jì)意圖:本題考查學(xué)生對(duì)算術(shù)平方根概念的理解,以及是否能正確認(rèn)識(shí)符號(hào)化語(yǔ)言.
3.的算術(shù)平方根是_____.
設(shè)計(jì)意圖:本題考查學(xué)生對(duì)算術(shù)平方根概念的全面理解.
七年級(jí)下冊(cè)《平方根》第一課時(shí)學(xué)案新版人教版
七年級(jí)下冊(cè)《平方根》第一課時(shí)學(xué)案新版人教版
第六章實(shí)數(shù)
6.1平方根【第一課時(shí)】
教學(xué)目標(biāo):
【知識(shí)與技能】
了解平方根與算術(shù)平方根的概念,理解負(fù)數(shù)沒(méi)有平方根及非負(fù)數(shù)開(kāi)平方的意義。
【過(guò)程與方法】
理解開(kāi)平方與平方是一對(duì)互逆的運(yùn)算,會(huì)用平方根的概念求某些數(shù)的平方根,并能用根號(hào)加以表示,能用科學(xué)計(jì)算器求平方根及其近似值。
【情感、態(tài)度與價(jià)值觀】
體會(huì)平方與開(kāi)平方這一對(duì)互逆運(yùn)算的辯證關(guān)系,感受平方根在現(xiàn)實(shí)世界中的客觀存在,增強(qiáng)數(shù)學(xué)知識(shí)的應(yīng)用意識(shí)。
【教學(xué)重點(diǎn)】理解開(kāi)平方與平方是一對(duì)互逆的運(yùn)算,會(huì)用平方根的概念求某些數(shù)的平方根,并能用根號(hào)加以表示。
【教學(xué)難點(diǎn)】會(huì)用平方根的概念求某些數(shù)的平方根,并能用根號(hào)加以表示。
【教具準(zhǔn)備】小黑板科學(xué)計(jì)算器
【教學(xué)過(guò)程】
一、導(dǎo)入
1、通過(guò)七年級(jí)的學(xué)習(xí),相信同學(xué)們都對(duì)數(shù)學(xué)這門(mén)課程有了更深入的認(rèn)識(shí),這個(gè)學(xué)期,我們將一起來(lái)學(xué)習(xí)八年級(jí)的數(shù)學(xué)知識(shí),這個(gè)學(xué)期的知識(shí)將會(huì)更加有趣。
2、板書(shū):實(shí)數(shù)1.1平方根
二、新授
(一)探求新知
1、探討:有面積為8平方厘米的正方形嗎?如果有,那它的邊長(zhǎng)是多少?(少數(shù)學(xué)習(xí)超前的學(xué)生可能能答上來(lái))這個(gè)邊長(zhǎng)是個(gè)怎樣的數(shù)?你以前見(jiàn)過(guò)嗎?
2、引入“無(wú)理數(shù)”的概念:像(2.82842712……)這樣無(wú)限不循環(huán)的小數(shù)就叫做無(wú)理數(shù)。
3、你還能舉出哪些無(wú)理數(shù)?(,)、、1/3是無(wú)理數(shù)嗎?
4、有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。
(二)知識(shí)歸納:
1、板書(shū):1.1平方根
2、李老師家裝修廚房,鋪地磚10.8平方米,用去正方形的地磚120塊,你能算出所用地磚的邊長(zhǎng)是多少嗎?(0.3米)
3、怎么算?每塊地磚的面積是:10.8120=0.09平方米。
由于0.32=0.09,因此面積為0.09平方米的正方形,它的邊長(zhǎng)為0.3米。
4、練習(xí):
由于()=400,因此面積為400平方厘米的正方形,它的邊長(zhǎng)為()厘米。
5、在實(shí)際問(wèn)題中,我們常常遇到要找一個(gè)數(shù),使它的平方等于給定的數(shù),如已知一個(gè)數(shù)a,要求r,使r2=a,那么我們就把r叫做a的一個(gè)平方根。(也可叫做二次方根)
例如22=4,因此2是4的一個(gè)平方根;62=36,因此6是36的一個(gè)平方根。
6、說(shuō)一說(shuō):9,16,25,49的一個(gè)平方根是多少?
(三)探求新知:
1、4的平方根除了2以外,還有別的數(shù)嗎?
2、學(xué)生探究:因?yàn)椋?2)2=4,因此-2也是4的一個(gè)平方根。
3、除了2和-2以外,4的平方根還有別的數(shù)嗎?(4的平方根有且只有兩個(gè):2與-2。)
4、結(jié)論:如果r是正數(shù)a的一個(gè)平方根,那么a的平方根有且只有兩個(gè):r與-r。
5、我們把a(bǔ)的正平方根叫做a的算術(shù)平方根,記作,讀作:“根號(hào)a”;把a(bǔ)的負(fù)平方根記作-。
6、0的平方根有且只有一個(gè):0。0的平方根記作,即=0。
7、負(fù)數(shù)沒(méi)有平方根。
8、求一個(gè)非負(fù)數(shù)的平方根,叫做開(kāi)平方。
(四)鞏固練習(xí):
1、分別求下列各數(shù)的平方根:36,25/9,1.21。
(6和-6,5/3和-5/3,1.1和-1.1)(也可用號(hào)表示)
2、分別求下列各數(shù)的算術(shù)平方根:100,16/25,0.49。(10,4/5,0.7)
三、小結(jié)與提高:
1、面積是196平方厘米的正方形,它的邊長(zhǎng)是多少厘米?
2、求算術(shù)平方根:81,25/144,0.16