高中語文必修一教案
發(fā)表時間:2020-09-27高一數學必修1知識點總結。
作為杰出的教學工作者,能夠保證教課的順利開展,作為高中教師就要在上課前做好適合自己的教案。教案可以讓學生更容易聽懂所講的內容,幫助高中教師緩解教學的壓力,提高教學質量。所以你在寫高中教案時要注意些什么呢?小編經過搜集和處理,為您提供高一數學必修1知識點總結,大家不妨來參考。希望您能喜歡!
高一數學必修一知識點總結
第一章集合與函數概念
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集:N*或N+
整數集:Z
有理數集:Q
實數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{xR|x-32},{x|x-32}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。AA
②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)
③如果AB,BC,那么AC
④如果AB同時BA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數:
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型交集并集補集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作,即
CSA=
韋
恩
圖
示
性
質AA=A
AΦ=Φ
AB=BA
ABA
ABB
AA=A
AΦ=A
AB=BA
ABA
ABB
(CuA)(CuB)
=Cu(AB)
(CuA)(CuB)
=Cu(AB)
A(CuA)=U
A(CuA)=Φ.
二、函數的有關概念
1.函數的概念
設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數不小于零;
(3)對數式的真數必須大于零;
(4)指數、對數式的底必須大于零且不等于1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等于零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);
②定義域一致(兩點必須同時具備)
2.值域:先考慮其定義域
(1)觀察法(2)配方法(3)代換法
3.函數圖象知識歸納
(1)定義:
在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.
(2)畫法
1.描點法:2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f(對應關系):A(原象)B(象)”
對于映射f:A→B來說,則應滿足:
(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中對應的象可以是同一個;
(3)不要求集合B中的每一個元素在集合A中都有原象。
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變量的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1x2時,都有f(x1)f(x2),那么就說f(x)在區(qū)間D上是增函數.區(qū)間D稱為y=f(x)的單調增區(qū)間.
如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1x2時,都有f(x1)>f(x2),那么就說f(x)在這個區(qū)間上是減函數.區(qū)間D稱為y=f(x)的單調減區(qū)間.
注意:函數的單調性是函數的局部性質;
(2)圖象的特點
如果函數y=f(x)在某個區(qū)間是增函數或減函數,那么說函數y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區(qū)間與單調性的判定方法
(A)定義法:
(1)任取x1,x2∈D,且x1x2;
(2)作差f(x1)-f(x2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(即判斷差f(x1)-f(x2)的正負);
(5)下結論(指出函數f(x)在給定的區(qū)間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”
注意:函數的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成其并集.
8.函數的奇偶性(整體性質)
(1)偶函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(2)奇函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特征:偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
9.利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,并判斷其是否關于原點對稱;
○2確定f(-x)與f(x)的關系;
○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數的圖象判定.
10、函數的解析表達式
(1)函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:1.湊配法2.待定系數法3.換元法4.消參法
11.函數最大(小)值
○1利用二次函數的性質(配方法)求函數的最大(?。┲?br>
○2利用圖象求函數的最大(?。┲?br>
○3利用函數單調性的判斷函數的最大(?。┲担?br>
如果函數y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
第三章基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根,其中1,且∈*.
負數沒有偶次方根;0的任何次方根都是0,記作。
當是奇數時,,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規(guī)定:
,
0的正分數指數冪等于0,0的負分數指數冪沒有意義
3.實數指數冪的運算性質
(1);
(2);
(3).
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數,其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
a10a1
定義域R定義域R
值域y>0值域y>0
在R上單調遞增在R上單調遞減
非奇非偶函數非奇非偶函數
函數圖象都過定點(0,1)函數圖象都過定點(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數當且僅當;
(3)對于指數函數,總有;
二、對數函數
(一)對數
1.對數的概念:
一般地,如果,那么數叫做以為底的對數,記作:(—底數,—真數,—對數式)
說明:○1注意底數的限制,且;
○2;
○3注意對數的書寫格式.
兩個重要對數:
○1常用對數:以10為底的對數;
○2自然對數:以無理數為底的對數的對數.
指數式與對數式的互化
冪值真數
=N=b
底數
指數對數
(二)對數的運算性質
如果,且,,,那么:
○1+;
○2-;
○3.
注意:換底公式:(,且;,且;).
利用換底公式推導下面的結論:(1);(2).
(3)、重要的公式①、負數與零沒有對數;②、,③、對數恒等式
(二)對數函數
1、對數函數的概念:函數,且叫做對數函數,其中是自變量,函數的定義域是(0,+∞).
注意:○1對數函數的定義與指數函數類似,都是形式定義,注意辨別。如:,都不是對數函數,而只能稱其為對數型函數.
○2對數函數對底數的限制:,且.
2、對數函數的性質:
a10a1
定義域x>0定義域x>0
值域為R值域為R
在R上遞增在R上遞減
函數圖象都過定點(1,0)函數圖象都過定點(1,0)
(三)冪函數
1、冪函數定義:一般地,形如的函數稱為冪函數,其中為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義并且圖象都過點(1,1);
(2)時,冪函數的圖象通過原點,并且在區(qū)間上是增函數.特別地,當時,冪函數的圖象下凸;當時,冪函數的圖象上凸;
(3)時,冪函數的圖象在區(qū)間上是減函數.在第一象限內,當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.
第四章函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。
即:方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
○1(代數法)求方程的實數根;
○2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程有兩相等實根,二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.
5.函數的模型
相關閱讀
高一數學《集合》知識點總結
學生們有一個生動有趣的課堂,離不開老師辛苦準備的教案,大家在認真寫教案課件了。將教案課件的工作計劃制定好,就可以在接下來的工作有一個明確目標!適合教案課件的范文有多少呢?請您閱讀小編輯為您編輯整理的《高一數學《集合》知識點總結》,歡迎閱讀,希望您能夠喜歡并分享!
高一數學《集合》知識點總結
一.知識歸納:
1.集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N*
2.子集、交集、并集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={xx∈A且x∈B}
4)并集:A∪B={xx∈A或x∈B}
5)補集:CUA={xxA但x∈U}
注意:①?A,若A≠?,則?A;
②若,,則;
③若且,則A=B(等集)
3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。
4.有關子集的幾個等價關系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集運算的性質
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二.例題講解:
【例1】已知集合M={xx=m+,m∈Z},N={xx=,n∈Z},P={xx=,p∈Z},則M,N,P滿足關系
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{xx=,m∈Z};對于集合N:{xx=,n∈Z}
對于集合P:{xx=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數,而6m+1表示被6除余1的數,所以MN=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。
=∈N,∈N,∴MN,又=M,∴MN,
=P,∴NP又∈N,∴PN,故P=N,所以選B。
點評:由于思路二只是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合,,則(B)
A.M=NB.MNC.NMD.
解:
當時,2k+1是奇數,k+2是整數,選B
【例2】定義集合A*B={xx∈A且xB},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為
A)1B)2C)3D)4
分析:確定集合A*B子集的個數,首先要確定元素的個數,然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵A*B={xx∈A且xB},∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。
變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數為
A)5個B)6個C)7個D)8個
變式2:已知{a,b}A{a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有個.
【例3】已知集合A={xx2+px+q=0},B={xx2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。
解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.
∴B={xx2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A
∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,
∴∴
變式:已知集合A={xx2+bx+c=0},B={xx2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值.
解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5
∴B={xx2-5x+6=0}={2,3}∵A∪B=B∴
又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x(x-1)(x+1)(x+2)0},集合B滿足:A∪B={xx-2},且A∩B={x1p=
分析:先化簡集合A,然后由A∪B和A∩B分別確定數軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x-2-1或x1}。由A∩B={x1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。-1或x
-1或x
綜合以上各式有B={x-1≤x≤5}
變式1:若A={xx3+2x2-8x0},B={xx2+ax+b≤0},已知A∪B={xx-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。
變式2:設M={xx2-2x-3=0},N={xax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3},∵M∩N=N,∴NM
①當時,ax-1=0無解,∴a=0②
綜①②得:所求集合為{-1,0,}
【例5】已知集合,函數y=log2(ax2-2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。
分析:先將原問題轉化為不等式ax2-2x+20在有解,再利用參數分離求解。
解答:(1)若,在內有有解
令當時,
所以a-4,所以a的取值范圍是
變式:若關于x的方程有實根,求實數a的取值范圍。
解答:
點評:解決含參數問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。
三.隨堂演練
選擇題
1.下列八個關系式①{0}=②=0③{}④{}⑤{0}
⑥0⑦{0}⑧{}其中正確的個數
(A)4(B)5(C)6(D)7
2.集合{1,2,3}的真子集共有
(A)5個(B)6個(C)7個(D)8個
3.集合A={x}B={}C={}又則有
(A)(a+b)A(B)(a+b)B(C)(a+b)C(D)(a+b)A、B、C任一個
4.設A、B是全集U的兩個子集,且AB,則下列式子成立的是
(A)CUACUB(B)CUACUB=U
(C)ACUB=(D)CUAB=
5.已知集合A={},B={}則A=
(A)R(B){}
(C){}(D){}
6.下列語句:(1)0與{0}表示同一個集合;(2)由1,2,3組成的集合可表示為
{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示為{1,1,2};(4)集合{}是有限集,正確的是
(A)只有(1)和(4)(B)只有(2)和(3)
(C)只有(2)(D)以上語句都不對
7.設S、T是兩個非空集合,且ST,TS,令X=S那么S∪X=
(A)X(B)T(C)Φ(D)S
8設一元二次方程ax2+bx+c=0(a0)的根的判別式,則不等式ax2+bx+c0的解集為
(A)R(B)(C){}(D){}
填空題
9.在直角坐標系中,坐標軸上的點的集合可表示為
10.若A={1,4,x},B={1,x2}且AB=B,則x=
11.若A={x}B={x},全集U=R,則A=
12.若方程8x2+(k+1)x+k-7=0有兩個負根,則k的取值范圍是
13設集合A={},B={x},且AB,則實數k的取值范圍是。
14.設全集U={x為小于20的非負奇數},若A(CUB)={3,7,15},(CUA)B={13,17,19},又(CUA)(CUB)=,則AB=
解答題
15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若AB={-3},求實數a。
16(12分)設A=,B=,
其中xR,如果AB=B,求實數a的取值范圍。
四.習題答案
選擇題
12345678
CCBCBCDD
填空題
9.{(x,y)}10.0,11.{x,或x3}12.{}13.{}14.{1,5,9,11}
解答題
15.a=-1
16.提示:A={0,-4},又AB=B,所以BA
(Ⅰ)B=時,4(a+1)2-4(a2-1)0,得a-1
(Ⅱ)B={0}或B={-4}時,0得a=-1
(Ⅲ)B={0,-4},解得a=1
綜上所述實數a=1或a-1
高一數學必修二知識點總結:多面體
高一數學必修二知識點總結:多面體
1、棱柱
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質
(1)側棱都相等,側面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質:
(1)側棱交于一點。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質:
(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
2020高一數學必修1第三章知識點總結
老師工作中的一部分是寫教案課件,大家在仔細設想教案課件了。寫好教案課件工作計劃,我們的工作會變得更加順利!你們知道適合教案課件的范文有哪些呢?下面是由小編為大家整理的“2020高一數學必修1第三章知識點總結”,歡迎大家與身邊的朋友分享吧!
2020高一數學必修1第三章知識點總結
第三章函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。
即:方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
1(代數法)求方程的實數根;
2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程有兩相等實根,二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.
5.函數的模型
檢驗
收集數據
畫散點圖
選擇函數模型
求函數模型
用函數模型解釋實際問題
符合實際
高一數學知識點難點總結
作為優(yōu)秀的教學工作者,在教學時能夠胸有成竹,作為高中教師就要早早地準備好適合的教案課件。教案可以讓學生能夠在教學期間跟著互動起來,幫助高中教師有計劃有步驟有質量的完成教學任務。關于好的高中教案要怎么樣去寫呢?為此,小編從網絡上為大家精心整理了《高一數學知識點難點總結》,僅供參考,大家一起來看看吧。
高一數學知識點難點總結
立體幾何初步
NO.1柱、錐、臺、球的結構特征
棱柱
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
棱臺
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點
圓柱
定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
圓錐
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。
圓臺
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。
球體
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
NO.2空間幾何體的三視圖
定義三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。
NO.3空間幾何體的直觀圖——斜二測畫法
斜二測畫法
斜二測畫法特點
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
直線與方程
直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α180°
直線的斜率
定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
過兩點的直線的斜率公式:
(注意下面四點)
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
冪函數
定義
形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。
定義域和值域
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域
性質
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x0,則a可以是任意實數;
排除了為0這種可能,即對于x0和x0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
指數函數
指數函數
(1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數函數的值域為大于0的實數集合。
(3)函數圖形都是下凹的。
(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。
(5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數總是在某一個方向上無限趨向于X軸,永不相交。
(7)函數總是通過(0,1)這點。
(8)顯然指數函數無界。
奇偶性
定義
一般地,對于函數f(x)
(1)如果對于函數定義域內的任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。
(2)如果對于函數定義域內的任意一個x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。
(3)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。
(4)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。