一元二次方程高中教案
發(fā)表時間:2021-04-08九年級數(shù)學重要復習資料:實際問題與一元二次方程。
九年級數(shù)學重要復習資料:實際問題與一元二次方程
一、選一選(請將唯一正確答案的代號填入題后的括號內(nèi))
1.用22cm的鐵絲,折成一個面積為30cm2的矩形,則這個矩形的兩邊長為().
(A)5cm和6cm(B)6cm和7cm(C)4cm和7cm(D)4cm和5cm
2.一個多邊形的對角線有9條,則這個多邊形的邊數(shù)是().
(A)6(B)7(C)8(D)9
3.某超市一月份的營業(yè)額為100萬元,一、二、三月份的營業(yè)額共500萬元,若平均每月的增長率為x,則依題意列方程為().
(A)(B)
(C)(D)
4.某商品按標價的八折出售,可獲利20%;若按標價的七折出售,則().
(A)可獲利10%(B)可獲利5%(C)虧損10%(D)虧損5%
5.元旦期間,一個小組有若干人,新年互送賀卡一張,已知全組共送賀卡132張,則這個小組共有()人
(A)11(B)12(C)13(D)14
6.從一塊長30cm,寬12cm的長方形薄鐵片的四個角上,截去四個相同的小正方形,余下部分的面積為296cm2,則截去小正方形的邊長為().
(A)1cm(B)2cm(C)3cm(D)4cm
7.某公司向銀行貸款20萬元,約定兩年到期時一次性還本付息,利息為本金的12%,
該公司用這筆貸款經(jīng)營,兩年到期時除還清貸款的本金、利息外,還盈利6.4萬元,若經(jīng)營期間的資金增長率的百分數(shù)相同,則這個百分數(shù)是().
(A)22%(B)10%(C)20%(D)15%
8.2005年《武漢市政府工作報告》預計今年我市農(nóng)民人均純收入將比上年增長6%;又
據(jù)武漢統(tǒng)計信息網(wǎng)資料表明2004年我市農(nóng)民人均純收入為3955元,比上年增長13.1%.則下列說法:①2003年我市農(nóng)民人均純收入為元;②預計2005年我市農(nóng)民人均純收入將達到3955×(1+6%)元;③預計2005年我市農(nóng)民人均純收入比2003年增長19.1%.其中正確的是().【W(wǎng)WW.YjS21.Com 幼兒教師教育網(wǎng)】
(A)①②③(B)①②(C)①③(D)②③
二、填一填
9.兩個數(shù)的和為15,積為56,則這兩個數(shù)是.
10.直角三角形的周長為,斜邊上的中線長為1,則它的面積為.
11.某市政府為了申辦2010年冬奧會,決定改善城市容貌,綠化環(huán)境,計劃兩年時間綠地面積增加44%,這兩年平均綠地面積的增長率為.
12.小明的父親到銀行存入20000元人民幣,存期1年,年利率為1.98%,到期后應繳納所得利息的20%的利息稅,則小明父親的存款到期交利息稅后共得款.
三、做一做
13.一輛汽車從靜止開始啟動到達到最大速度20m/s時,汽車前行了25米.
(1)汽車從靜止開始啟動到達到最大速度時用了多少時間?
(2)汽車從靜止開始啟動到達到最大速度時平均每秒車速增加多少?
(3)汽車前行了15米時用了多少時間?
14.有一種電子工件上有一些焊接點,要在每兩個焊接點間連上漆包線,一共用了45條漆包線,問共有多少個焊接點?
15.某玩具廠計劃生產(chǎn)一種玩具熊貓,每日最高產(chǎn)量為40只,且每日產(chǎn)出的產(chǎn)品全部售出,已知生產(chǎn)只熊貓的成本為R(元),售價每只為P(元),且R、P與的關(guān)系式分別為,.
⑴當日產(chǎn)量為多少時,每日獲得的利潤為1750元?
⑵若可獲得的最大利潤為1950元,問日產(chǎn)量應為多少?
參考答案:
一、1.A2.A3.D4.B5.B6.D7.C8.B
二、9.7和8;10.111.20%12.20316.8元
三、13.(1)2.5秒;(2)8(m/s);(3)s.14.10個
15.(1)解:依據(jù)題意有:解之得
即日產(chǎn)量為25只時,每月獲得的利潤為1750元.
(2)同理有解之得,即日產(chǎn)量為35只時,每月獲得的利潤為1950元.
延伸閱讀
用一元二次方程解決實際問題
一般給學生們上課之前,老師就早早地準備好了教案課件,大家靜下心來寫教案課件了。必須要寫好了教案課件計劃,未來的工作就會做得更好!你們會寫一段優(yōu)秀的教案課件嗎?考慮到您的需要,小編特地編輯了“用一元二次方程解決實際問題”,相信能對大家有所幫助。
28.3用一元二次方程解決實際問題
教學目的知識技能使學生會用列一元二次方程的方法解決有關(guān)面積、體積方面和經(jīng)濟方面的問題.
數(shù)學思考提高將實際問題轉(zhuǎn)化為數(shù)學問題的能力以及用數(shù)學的意識,滲透轉(zhuǎn)化的思想、方程的思想及數(shù)形結(jié)合的思想.
解決問題通過列一元二次方程的方法解決日常生活及生產(chǎn)實際中遇到的有關(guān)面積、體積方面和經(jīng)濟方面的問題.
情感態(tài)度通過探究性學習,抓住問題的關(guān)鍵,揭示它的規(guī)律性,展示解題的簡潔性的數(shù)學美.
教學難點審題,從文字語言中挖掘有價值的信息.
知識重點會用列一元二次方程的方法解有關(guān)面積、體積方面和經(jīng)濟方面的問題.
教學過程設計意圖
教
學
過
程
問題一:列方程解應用題的一般步驟?
師生共同回憶
列方程解應用題的步驟:
(1)審題;(2)設未知數(shù);
(3)列方程;(4)求解;
(5)檢驗;(6)答.
問題二:矩形的周長和面積?長方體的體積?
問題三:如圖,某小區(qū)內(nèi)有一塊長、寬比為1:2的矩形空地,計劃在該空地上修筑兩條寬均為2m的互相垂直的小路,余下的四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312m2,請求出原來大矩形空地的長和寬.
教師活動:引導學生讀題,找到題目中的關(guān)鍵語句.
學生活動:在關(guān)鍵語句中找到反映相等關(guān)系的語句,探究解決辦法.
教師活動:用多媒體演示分析,解題方法.
做一做
如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的小正方形的邊長.
課堂練習:將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的,求這個正方形的邊長.
問題四:某商場銷售一種服裝,平均每天可售出20件,每件贏利40元.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件服裝降價1元,平均每天能多售出2件.在國慶節(jié)期間,商場決定采取降價促銷的措施,以達到減少庫存、擴大銷售量的目的.如果銷售這種服裝每天贏利1200元,那么每件服裝應降價多少元?
學生活動:在眾多的文字中,找到關(guān)鍵語句,分析相等關(guān)系.
教師活動:用多媒體幫助學生分析試題.提示學生檢驗解的合理性.
課堂練習:1.經(jīng)銷商以每雙21元的價格從廠家購進一批運動鞋,如果每雙鞋售價為a元,那么可以賣出這種運動鞋(350-10a)雙.物價局限定每雙鞋的售價不得超過進價的120%.如果商店要賺400元,每雙鞋的售價應定為多少元?需要賣出多少雙鞋?
2.某商店從廠家以每件18元的價格購進一批商品,該商店可以自行定價.據(jù)市場調(diào)查,該商品的售價與銷售量的關(guān)系是:若每件售價a元,則可賣出(320-10a)件,但物價部門限定每件商品加價不能超過進貨價25%的.如果商店計劃要獲利400元,則每件商品的售價應定為多少元?需要賣出這種商品多少件?(每件商品的利潤=售價進貨價)
復習列方程解應用題的一般步驟.
本題為后面解決有關(guān)面積、體積方面問題做鋪墊.
提高學生的審題能力.使學生會解決有關(guān)面積的問題.
解決體積問題的問題
培養(yǎng)學生用數(shù)學的意識以及滲透轉(zhuǎn)化和方程的思想方法.
強調(diào)對方程的解進行雙重檢驗.
小結(jié)與作業(yè)
課堂
小結(jié)利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養(yǎng).
本課
作業(yè)課本第43頁習題2
課后隨筆(課堂設計理念,實際教學效果及改進設想)
九年級上冊《實際問題與一元二次方程》教案新人教版
九年級上冊《實際問題與一元二次方程》教案新人教版
一、出示學習目標:
1.繼續(xù)感受用一元二次方程解決實際問題的過程;
2.通過自學探究掌握裁邊分割問題。
二、自學指導:(閱讀課本P47頁,思考下列問題)
1.閱讀探究3并進行填空;
2.完成P48的思考并掌握裁邊分割問題的特點;
3.在理解的基礎上完成P48-49第8、9題(不精確,只留根號即可)。
探究3:要設計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應如何設計四周邊襯的寬度(精確到0.1cm)?
分析:封面的長寬之比為27﹕21=9﹕7,中央矩形的長寬之比也應是9﹕7,則上下邊襯與左右邊襯的寬度之比是。9﹕7
設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
由中下層學生口答書中填空,老師再給予補充。
思考:如果換一種設法,是否可以更簡單?
設正中央的長方形長為9acm,寬為7acm,依題意得
9a·7a=(可讓上層學生在自學時,先上來板演)
2.P48-49第8、9題中下層學生在自學完之后先板演
效果檢測時,由同座的同學給予點評與糾正
9.如圖,要設計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應怎樣設計彩條的寬帶?(討論用多種方法列方程比較)
注意點:要善于利用圖形的平移把問題簡單化!
四、當堂訓練:
1.如圖,在一幅長90cm,寬40cm的風景畫四周鑲上一條寬度相同的金色紙邊,制成一幅掛畫.如果要求風景畫的面積是整個掛畫面積的72%,那么金邊的寬應是多少?
(只要求設元、列方程)
2.要設計一個等腰梯形的花壇,上底長100m,下底長180m。上下底相距80m,在兩腰中點連線出有一橫向甬道,上下兩底之見有兩條縱向的甬道,各甬道寬度相等,甬道的面積是梯形面積的六分之一,甬道的寬應是多少
(二)探索新知
列方程解應用題:
一個小組若干人,新年互送賀卡,若全組共送賀卡72張,則這個小組共多少人?
分析:設這個小組有x人,那么每個人要送給除了他自己以外的人,共送張賀卡,由此可列方程:
二、學習過程
列方程解應用題:
有一人患了流感,經(jīng)過兩輪傳染后,有121人患了流感,每輪傳染中平均一個人傳染了幾個人?
分析:設每輪傳染中平均一個人傳染了x個人,則第一輪傳染后有人患了流感,第二輪傳染后有人患了流感.
于是可列方程:
思考:如果按這樣的傳播速度,三輪傳染后有多少人患了流感?
三、達標鞏固
1.生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互贈了182
件,如果全組有x名同學,那么根據(jù)題意列出的方程是()
A.x(x+1)=182B.x(x-1)=182
C.2x(x+1)=182D.x(1-x)=182×2
2.參加足球聯(lián)賽的每兩隊之間都進行了兩次比賽(雙循環(huán)比賽),共要比賽90場,共有多少個隊參加了比賽?
五、課時訓練
1.一個多邊形有70條對角線,則這個多邊形有________條邊.
2.九年級(3)班文學小組在舉行的圖書共享儀式上互贈圖書,每個同學都把自己的圖書向
本組其他成員贈送一本,全組共互贈了240本圖書,如果設全組共有x名同學,依題意,可
列出的方程是()
A.x(x+1)=240B.x(x-1)=240
C.2x(x+1)=240D.x(x+1)=240
3.有一人患了流感,經(jīng)過兩輪傳染后共有100人患了流感,那么每輪傳染中平均一個人傳
染的人數(shù)
三、達標鞏固1.如圖所示,李萍要在一幅長90cm、寬40cm的風景畫的四周外圍,鑲上一條寬度相同的金
色紙邊,制成一幅掛圖,使風景畫的面積占整個掛圖面積的54%,設金色紙邊的寬為xcm,
根據(jù)題意可列方程()
A.(90+x)(40+x)×54%=90×40
B.(90+2x)(40+2x)×54%=90×40
C.(90+x)(40+2x)×54%=90×40
D.(90+2x)(40+x)×54%=90×40
2.張大叔從市場上買回一塊矩形鐵皮,他將此矩形鐵皮的四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好能圍成一個容積為15立方米的無蓋長方體運輸箱,且此長方體運輸箱底面的長比寬多2米,現(xiàn)已知購買這種鐵皮每平方米需20元錢,問張大叔買這張矩形鐵皮共花了多少錢?
五、課時訓練
基礎過關(guān)
1.三角形一邊的長是該邊上高的2倍,且面積是32,則該邊的長是()
A.8B.4C.4D.82.將一塊正方形鐵皮的四個角各剪去一個邊長為4cm的小正方形,做成一個無蓋的盒子,
盒子的容積是400cm3,求原鐵皮的邊長.
3.如圖所示,要用防護網(wǎng)圍成長方形花壇,其中一面利用現(xiàn)有的一段墻,且在與墻平行的
一邊開一個2米寬的門,現(xiàn)有防護網(wǎng)的長度為91米,花壇的面積需要1080平方米,若墻長
50米,求花壇的長和寬.(1)一變:若墻長46米,求花壇的長和寬.
(2)二變:若墻長40米,求花壇的長和寬.
(3)通過對上面三題的討論,你覺得墻長對題目有何影響?
4.一條長64cm的鐵絲被剪成兩段,每段均折成正方形,若兩個正方形的面積和等于160cm2,求兩個正方形的邊長
八年級數(shù)學重要復習資料:二次函數(shù)與一元二次方程
八年級數(shù)學重要復習資料:二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。
當h0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h0時,則向左平行移動|h|個單位得到.
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x-x|
當△=0.圖象與x軸只有一個交點;
當△0.圖象與x軸沒有交點.當a0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y0.
5.拋物線y=ax^2+bx+c的最值:如果a0(a0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).
二次函數(shù)
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II.二次函數(shù)的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a0時,拋物線向上開口;當a0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab0),對稱軸在y軸左;
當a與b異號時(即ab0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b^2-4ac0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
當h0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h0時,則向左平行移動|h|個單位得到.
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x-x|
當△=0.圖象與x軸只有一個交點;
當△0.圖象與x軸沒有交點.當a0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y0.
5.拋物線y=ax^2+bx+c的最值:如果a0(a0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).
7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).