小學(xué)三角形教案
發(fā)表時(shí)間:2021-01-25解直角三角形教學(xué)案。
南沙初中初三數(shù)學(xué)教學(xué)案
教學(xué)內(nèi)容:7.5解直角三角形
課型:新授課學(xué)生姓名:________
學(xué)習(xí)目標(biāo):
1、了解解直角三角形的概念,
2、能運(yùn)用直角三角形的角與角(兩銳角互余),邊與邊(勾股定理)、邊與角關(guān)系解直角三角形。
教學(xué)過程:
一、情境
如圖所示,一棵大樹在一次強(qiáng)烈的臺(tái)風(fēng)中于地面10米處折斷
倒下,樹頂落在離數(shù)根24米處。問大樹在折斷之前高多少米?
顯然,我們可以利用勾股定理求出折斷倒下的部分的長(zhǎng)度
為=,+10=36所以,大樹在
折斷之前的高為36米。
二、探索活動(dòng)
1、定義教學(xué):
任何一個(gè)三角形都有六個(gè)元素,______條邊、_____個(gè)角,在直角三角形中,已知有一個(gè)角是_________,我們把利用已知的元素求出末知元素的過程,叫做解直角三角形。
像上述的就是由兩條直角邊這兩個(gè)元素,利用勾股定理求出斜邊的長(zhǎng)度,我們還可以利用直角三角形的邊角關(guān)系求出兩個(gè)銳角,像這樣的過程,就是解直角三角形。
思考:要解出直角三角形,至少需要除直角外的_____個(gè)元素,其中至少有一個(gè)是_____。
2.解直角三角形的所需的工具:
如圖,在Rt△ABC中,∠ACB=90°,
其余5個(gè)元素之間有以下關(guān)系:
(1)兩銳角互余:∠A+∠B=;
(2)三邊滿足勾股定理:a2+b2=;
(3)邊與角關(guān)系:sinA=cosB=,cosA=sinB=;tanA=;tanB=。
3.例題講解
例1:(1)在Rt△ABC中,∠C=90°,∠A=30°,a=5,解這個(gè)直角三角形。
(2)Rt△ABC中,∠C=90°,a=,b=,解這個(gè)直角三角形。
例2、Rt△ABC中,∠C=90°,∠A=60°,a+b=+3,解這個(gè)直角三角形。
例3、如圖,圓O半徑為10,求圓O的內(nèi)接正五邊形ABCDE的邊長(zhǎng)(精確到0.1)
(其中選用:sin36°=0.5878,cos36°=0.8090,tan36°=0.7265)
三、板演練習(xí):
1、已知:在Rt△ABC中,∠C=90°,b=2,c=4,解這個(gè)直角三角形。
2、已知:在Rt△ABC中,∠C=90°,∠A=60°,a=5,解這個(gè)直角三角形。
3、求半徑為12的圓的內(nèi)接正八角形的邊長(zhǎng)和面積。
四、小結(jié)
五、課堂作業(yè)(見作業(yè)紙56)
南沙初中初三數(shù)學(xué)課堂作業(yè)(56)
(命題,校對(duì):王猛)
班級(jí)__________姓名___________學(xué)號(hào)_________得分_________
1、在Rt△ABC中,∠C=90°,若tanB=2,a=1,則b=________。
2、在Rt△ABC中,∠C=90°,若∠A=30°,b=2,則∠B=______,c=________。
3、在Rt△ABC中,∠C=90°,a=2,b=2,則c=________,tanB=______。
4、在Rt△ABC中,∠C=90°,=AB,則sinA=________,tanA=________.
5、在Rt△ABC中,∠C=90°,AB=2,BC=,則tan=________.
6、小華用一張直徑為20cm的圓形紙片,剪出一個(gè)面積最大的正六邊形,這個(gè)六邊形的面積是_______cm2.
7、在Rt△ABC中,∠C=90°,AC=,AB=,解這個(gè)直角三角形。
8、在Rt△ABC中,∠C=90°,∠A=30°,a=2,解這個(gè)直角三角形。
9、在Rt△ABC中,∠C=90°,sinA=,AC+BA=+,求BC及tanA。
10、(09山西太原)如圖,從熱氣球上測(cè)得兩建筑物.底部的俯角分別為30°和.如果這時(shí)氣球的高度為90米.且點(diǎn)..在同一直線上,求建筑物.間的距離.
精選閱讀
解直角三角形導(dǎo)學(xué)案(新湘教版)
湘教版九年級(jí)上冊(cè)數(shù)學(xué)導(dǎo)學(xué)案
4.3解直角三角形
【學(xué)習(xí)目標(biāo)】
1.理解解直角三角形的概念,會(huì)運(yùn)用勾股定理,直角三角形的兩個(gè)銳角互余和銳角三角函數(shù)解直角三角形.
2.知道直角三角形中五個(gè)元素的關(guān)系.
3.通過解直角三角形,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合分析能力,提高其解決問題的能力.
重點(diǎn)難點(diǎn)
重點(diǎn):用銳角三角函數(shù)的知識(shí)解直角三角形.
難點(diǎn):根據(jù)已知元素和所要求的末知元素,選擇恰當(dāng)?shù)姆椒ㄇ蠼?
【預(yù)習(xí)導(dǎo)學(xué)】
自主預(yù)習(xí)教材P121—122完成下列問題:
1、如圖,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊分別記作a、b、c。
(1)直角三角形三條邊的關(guān)系是:。
(2)直角三角形兩個(gè)銳角的關(guān)系是:。
(3)直角三角形邊和銳角的關(guān)系有:
、
2、如上圖,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊分別記作a、b、c。
(1)若∠A=40°,b=3cm,則∠B=,a=,c=;
(2)若∠A=40°,a=3cm,則∠B=,b=,c=;
(3)若∠A=40°,c=3cm,則∠B=,a=,b=;
(4)若a=3cm,c=4cm,則b=,∠A==,∠B=;
【探究展示】
(一)合作探究
1.議一議:在一個(gè)直角三角形中,除直角外有5個(gè)元素(3條邊、2個(gè)銳角),只要知道其中的幾個(gè)元素就可以求出其余的元素?
(1)給你一條邊你能把剩余的元素都求出來(lái)嗎?為什么?
(2)給你一個(gè)銳角你能把剩余的元素都求出來(lái)嗎?為什么?
(3)給你兩個(gè)角你能把剩余的元素都求出來(lái)嗎?為什么?
(4)給你兩條邊你能把剩余的元素都求出來(lái)嗎?怎樣求?請(qǐng)畫出圖形分類說明.
(5)給你一條邊和一個(gè)銳角你能把剩余的元素都求出來(lái)嗎?怎樣求?請(qǐng)畫出圖形分類說明,關(guān)鍵在哪里?
通過上面的分析總結(jié)得出:
在直角三角形中,除直角以外的5個(gè)元素(條邊和個(gè)銳角),只要知道其中的2個(gè)元素(至少有一個(gè)是),利用上述關(guān)系式,就可以求出其余的3個(gè)未知元素.
2.如圖,在Rt△ABC中,∠C=90°,∠A=30°,a=5,求∠B,b,c.
(1)題目中已知哪些條件?還要求那些元素?
(2)學(xué)生獨(dú)立思考,自己解決.
(3)小組討論一下各自的解題思路.
解:∠B=90°-=90°-=
又∵tanB=∴b===
∵sinA=∴c===
總結(jié):像這樣,把在直角三角形中利用已知元素求其余未知元素的過程叫作.
(二)展示提升
1.在Rt△ABC中,∠C=90°,a=6cm,c=10cm,求b,∠A,∠B.
2.如圖,在Rt△ABC中,∠C=90°,cosA=,BC=5,試求AB的長(zhǎng).
【知識(shí)梳理】
1.什么叫解直角三角形?它的依據(jù)是什么?
2.解直角三角形有哪幾種種情況?
【當(dāng)堂檢測(cè)】
1.在Rt△ABC中,∠C=90°,∠B=45°,b=3cm,求a,c的長(zhǎng)度.
2.如圖,在菱形ABCD中,DE⊥AB,cosA=,BE=2,求tan∠DBE的值.
3.如圖,在△ABC中,已知∠C=90°,sinA=,D為AC上一點(diǎn),∠BDC=45°,DC=6,求AB的長(zhǎng).
4.如圖,在△ABC中,∠ACB=90,∠A=60,斜邊上的高CD=,求∠B、AC、AB、BC。
【學(xué)后反思】
通過本節(jié)課的學(xué)習(xí),
1.你學(xué)到了什么?
2.你還有什么樣的困惑?
3.你對(duì)自己本節(jié)課的表現(xiàn)滿意的地方在哪兒?哪些地方還需改進(jìn)?
中考數(shù)學(xué)解直角三角形復(fù)習(xí)
每個(gè)老師需要在上課前弄好自己的教案課件,大家在用心的考慮自己的教案課件。教案課件工作計(jì)劃寫好了之后,這樣接下來(lái)工作才會(huì)更上一層樓!有沒有好的范文是適合教案課件?小編特地為大家精心收集和整理了“中考數(shù)學(xué)解直角三角形復(fù)習(xí)”,僅供您在工作和學(xué)習(xí)中參考。
初三第一輪復(fù)習(xí)第34課時(shí):解直角三角形
【知識(shí)梳理】
1.解直角三角形的依據(jù)(1)角的關(guān)系:兩個(gè)銳角互余;(2)邊的關(guān)系:勾股定理;(3)邊角關(guān)系:銳角三角函數(shù)
2.解直角三角形的基本類型及解法:(1)已知斜邊和一個(gè)銳角解直角三角形;(2)已知一條直角邊和一個(gè)銳角解直角三角形;(3)已知兩邊解直角三角形.
3.解直角三角形的應(yīng)用:關(guān)鍵是把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題來(lái)解決
【課前預(yù)習(xí)】
1、在Rt△ABC中,∠C=90°,根據(jù)已知量,填出下列表中的未知量:
abc∠A∠B
630°
1045°
2、如圖所示,在△ABC中,∠A=30°,,AC=,則AB=.
變式:若已知AB,如何求AC?
3、在離大樓15m的地面上看大樓頂部仰角65°,則大樓高約m.
(精確到1m,)
4、如圖,鐵路路基橫斷面為一個(gè)等腰梯形,若腰的坡度為1:,頂寬為3米,路基高為4米,
則坡角=°,腰AD=,路基的下底CD=.
5、如圖所示,王英同學(xué)從A地沿北偏西60°方向走100m到B地,再?gòu)腂地向正南方向走200m到C地,此時(shí)王英同學(xué)離A地m.
【解題指導(dǎo)】
例1如圖所示,在Rt△ABC中,∠C=90°,AD=2AC=2BD,且DE⊥AB.
(1)求tanB;(2)若DE=1,求CE的長(zhǎng).
例2如圖34-4所示,某居民小區(qū)有一朝向?yàn)檎戏较虻木用駱牵摼用駱堑囊粯鞘歉?m的小區(qū)超市,超市以上是居民住房,在該樓的前面15m處要蓋一棟高20m的新樓.當(dāng)冬季正午的陽(yáng)光與水平線的夾角為32°時(shí).
(1)問超市以上的居民住房采光是否有影響,為什么?
(2)若新樓的影子剛好部落在居民樓上,則兩樓應(yīng)相距多少米?
(結(jié)果保留整數(shù),參考數(shù)據(jù):)
例3某校初三課外活動(dòng)小組,在測(cè)量樹高的一次活動(dòng)中,如圖34-6所示,測(cè)得樹底部中心A到斜坡底C的水平距離為8.8m.在陽(yáng)光下某一時(shí)刻測(cè)得1m的標(biāo)桿影長(zhǎng)為0.8m,樹影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡比,求樹高AB.(結(jié)果保留整數(shù),參考數(shù)據(jù))
例4一副直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,試求CD的長(zhǎng).
【鞏固練習(xí)】
1、某坡面的坡度為1:,則坡角是_______度.
2、已知一斜坡的坡度為1:4,水平距離為20m,則該斜坡的垂直高度為.
3、河堤的橫斷面如圖1所示,堤高BC是5m,迎水斜坡AB長(zhǎng)13m,那么斜坡AB的坡度等于.
4、菱形在平面直角坐標(biāo)系中的位置如圖2所示,,則點(diǎn)的坐標(biāo)為.
5、如圖3,先鋒村準(zhǔn)備在坡角為的山坡上栽樹,要求相鄰兩樹之間的水平距離為5米,那么這兩樹在坡面上的距離AB為.
6、如圖,一巡邏艇航行至海面處時(shí),得知其正北方向上處一漁船發(fā)生故障.已知港口處在處的北偏西方向上,距處20海里;處在A處的北偏東方向上,求之間的距離(結(jié)果精確到0.1海里)
【課后作業(yè)】班級(jí)姓名
一、必做題:
1、如圖4,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC邊上的中線BD的長(zhǎng)為cm.
2、某人沿著有一定坡度的坡面前進(jìn)了10米,此時(shí)他與水平地面的垂直距離為米,則這個(gè)坡面的坡度為__________.
3、已知如圖5,在△ABC中,∠A=30°,tanB=,BC=,則AB的長(zhǎng)為_____.
4、如圖6,將以A為直角頂點(diǎn)的等腰直角三角形ABC沿直線BC平移得到△,使點(diǎn)與C重合,連結(jié),則的值為.
5、如圖7所示,在一次夏令營(yíng)活動(dòng)中,小亮從位于A點(diǎn)的營(yíng)地出發(fā),沿北偏東60°方向走了5km到達(dá)B地,然后再沿北偏西30°方向走了若干千米到達(dá)C地,測(cè)得A地在C地南偏西30°方向,則A、C兩地的距離為()
(A)(B)(C)(D)
6、如圖8,小明要測(cè)量河內(nèi)島B到河邊公路l的距離,在A測(cè)得,在C測(cè)得,米,則島B到公路l的距離為()米.
(A)25(B)(C)(D)
7、如圖9所示,一艘輪船由海平面上A地出發(fā)向南偏西40°的方向行駛40海里到達(dá)B地,再由B地向北偏西10°的方向行駛40海里到達(dá)C地,則A、C兩地相距().
(A)30海里(B)40海里(C)50海里(D)60海里
8、如圖10,是一水庫(kù)大壩橫斷面的一部分,壩高h(yuǎn)=6m,迎水斜坡AB=10m,斜坡的坡角為α,則tanα的值為()
(A)(B)(C)(D)
9、如圖11,A,B是公路l(l為東西走向)兩旁的兩個(gè)村莊,A村到公路l的距離AC=1km,B村到公路l的距離BD=2km,B村在A村的南偏東45°方向上.
(1)求出A,B兩村之間的距離;
(2)為方便村民出行,計(jì)劃在公路邊新建一個(gè)公共汽車站P,要求該站到兩村的距離相等,請(qǐng)用尺規(guī)在圖中作出點(diǎn)P的位置(保留清晰的作圖痕跡,并簡(jiǎn)要寫明作法).
10、如圖是一個(gè)半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且CD=24m,OE⊥CD于點(diǎn)E.已測(cè)得sin∠DOE=.(1)求半徑OD;(2)根據(jù)需要,水面要以每小時(shí)0.5m的速度下降,則經(jīng)過多長(zhǎng)時(shí)間才能將水排干?
11、如圖所示,A、B兩城市相距100km.現(xiàn)計(jì)劃在這兩座城市間修筑一條高速公路(即線段AB),經(jīng)測(cè)量,森林保護(hù)中心P在A城市的北偏東30°和B城市的北偏西45°的方向上.已知森林保護(hù)區(qū)的范圍在以P點(diǎn)為圓心,50km為半徑的圓形區(qū)域內(nèi).請(qǐng)問:計(jì)劃修筑的這條高速公路會(huì)不會(huì)穿越保護(hù)區(qū)?為什么?(參考數(shù)據(jù):,)
12、如圖,斜坡AC的坡度(坡比)為1:,AC=10米.坡頂有一旗桿BC,旗桿頂端B點(diǎn)與A點(diǎn)有一條彩帶AB相連,AB=14米.試求旗桿BC的高度.
二、選做題:
13、如圖,某貨船以每小時(shí)20海里的速度將一批重要物資由A處運(yùn)往正西方向的B處,經(jīng)過16小時(shí)的航行到達(dá).此時(shí),接到氣象部門的通知,一臺(tái)風(fēng)中心正以40海里每小時(shí)的速度由A向北偏西60o方向移動(dòng),距臺(tái)風(fēng)中心200海里的圓形區(qū)域(包括邊界)均會(huì)受到影響.⑴B處是否會(huì)受到臺(tái)風(fēng)的影響?請(qǐng)說明理由.⑵為避免受到臺(tái)風(fēng)的影響,該船應(yīng)在到達(dá)后多少小時(shí)內(nèi)卸完貨物?
14、如圖所示,在Rt△ABC中,∠ACB=90°,半徑為1的圓A與邊AB相交于點(diǎn)D,與邊AC相交于點(diǎn)E,連接DE并延長(zhǎng),與線段BC的延長(zhǎng)線交于點(diǎn)P.
(1)當(dāng)∠B=30°時(shí),連接AP,若△AEP與△BDP相似,求CE的長(zhǎng);
(2)若CE=2,BD=BC,求∠BPD的正切值;
(3)若tan∠BPD=,設(shè)CE=x,△ABC的周長(zhǎng)為y,求y關(guān)于x的函數(shù)關(guān)系式.
直角三角形
每個(gè)老師上課需要準(zhǔn)備的東西是教案課件,規(guī)劃教案課件的時(shí)刻悄悄來(lái)臨了。是時(shí)候?qū)ψ约航贪刚n件工作做個(gè)新的規(guī)劃了,接下來(lái)的工作才會(huì)更順利!你們了解多少教案課件范文呢?考慮到您的需要,小編特地編輯了“直角三角形”,希望對(duì)您的工作和生活有所幫助。
§1、2直角三角形(2)
教學(xué)目標(biāo):1、進(jìn)一步掌握推理證明的方法,發(fā)展演繹推理能力。
2、能夠證明直角三角形全等的“HL”判定定理既解決實(shí)際問題。
重點(diǎn):能夠證明直角三角形全等的“HL”判定定理。并且用紙解決問題。
難點(diǎn):證明“HL”定理的思路的探究和分析。-
教學(xué)過程:
一、復(fù)習(xí)提問
1、判斷兩個(gè)三角形全等的方法有哪幾種?
2、有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎?如果其中一個(gè)角是直角呢?請(qǐng)證明你的結(jié)論。
(思考交流引導(dǎo)學(xué)生分析證明思路,寫出證明過程)
二、探究
兩邊及其一個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎?如果相等說明理由。如果不相等,應(yīng)如何改變條件?用自己的語(yǔ)言清楚地說明,并寫出證明過程。
問題1,此定理適用于什么樣的三角形?(適用于直角三角形)
2、判定直角三角形的方法有哪些,分別說出?(HL,SAS,ASA,AAS,SSS.先考慮HL,在考慮另外四種方法。)
三、做一做
如圖利用刻度尺和三角板,能否
做出這個(gè)角的角平分線?并證明。
(設(shè)計(jì)做一做的目的為了讓學(xué)生體會(huì)數(shù)學(xué)
結(jié)論在實(shí)際中的應(yīng)用,教學(xué)中就要求學(xué)生能用數(shù)學(xué)的語(yǔ)言清楚地表達(dá)自己的想法,并能按要求將推理證明過程寫出來(lái)。)
四、練習(xí)隨堂練習(xí)P23--1
判斷命題的真假,并說明理由
1、銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
2、斜邊及一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
3、兩條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
4、一條直角邊和另一條直角邊上的中線隊(duì)以相等的兩個(gè)直角三角形全等。
(對(duì)于假的命題要舉出反例,真命題要說明理由。教師分析講解。)
五、議一議
如圖:已知∠ACB=∠BDA=90。
要使⊿ACB≌⊿BDA,還需要什么條件?
把他們寫出來(lái),并說明理由。
(教學(xué)中給予學(xué)生時(shí)間和空間,
鼓勵(lì)學(xué)生積極思考,并在獨(dú)立思考的基礎(chǔ)上,
通過交流,獲得不同的答案,并將一種方法寫出證明過程。)
六、小結(jié):
1、本節(jié)課學(xué)習(xí)了哪些知識(shí)?
2、還有那一些方面的收獲?
七、作業(yè):
1、基礎(chǔ)作業(yè):P23頁(yè)習(xí)題1.51、2。
2、拓展作業(yè):《目標(biāo)檢測(cè)》
3、預(yù)習(xí)作業(yè):預(yù)習(xí):線段的垂直平分線。
板書設(shè)計(jì):