高中三角函數(shù)教案
發(fā)表時(shí)間:2020-09-22高一數(shù)學(xué)上冊(cè)《三角函數(shù)》知識(shí)點(diǎn)總結(jié)北師大版。
高一數(shù)學(xué)上冊(cè)《三角函數(shù)》知識(shí)點(diǎn)總結(jié)北師大版
高一數(shù)學(xué)學(xué)習(xí)對(duì)大家來說很重要,想要取得好成績必須要掌握好課本上的知識(shí)點(diǎn),為了幫助大家掌握高一數(shù)學(xué)知識(shí)點(diǎn),下面為大家?guī)肀睅煷蟀娓咭粩?shù)學(xué)上學(xué)期三角函數(shù)知識(shí)要點(diǎn),希望對(duì)大家掌握數(shù)學(xué)知識(shí)有所幫助。
這一部分的重點(diǎn)是一定要從初中銳角三角函數(shù)的定義中跳出來。在教學(xué)中,我注意到有些學(xué)生仍然在遇到三角函數(shù)題目的時(shí)候畫直角三角形協(xié)助理解,這是十分危險(xiǎn)的,也是我們所不提倡的。三角函數(shù)的定義在引入了實(shí)數(shù)角和弧度制之后,已經(jīng)發(fā)生了革命性的變化,sinA中的A不一定是一個(gè)銳角,也不一定是一個(gè)鈍角,而是一個(gè)實(shí)數(shù)——弧度制的角。有了這樣一個(gè)思維上的飛躍,三角函數(shù)就不再是三角形的一個(gè)附屬產(chǎn)品(初中三角函數(shù)很多時(shí)候依附于相似三角形),而是一個(gè)具有獨(dú)立意義的函數(shù)表現(xiàn)形式。
既然三角函數(shù)作為一種函數(shù)意義的理解,那么,它的知識(shí)結(jié)構(gòu)就可以完全和函數(shù)一章聯(lián)系起來,函數(shù)的精髓,就在于圖象,有了圖象,就有了所有的性質(zhì)。對(duì)于三角函數(shù),除了圖象,單位圓作為輔助手段,也是非常有效——就好像配方在二次函數(shù)中應(yīng)用廣泛是一個(gè)道理。
三角恒等變形部分,并無太多訣竅,從教學(xué)中可以看出,學(xué)生聽懂公式都不難,應(yīng)用起來比較熟練的都是那些做題比較多的同學(xué)。題目做到一定程度,其實(shí)很容易發(fā)現(xiàn),高一考察的三角恒等只有不多的幾種題型,在課程與復(fù)習(xí)中,我們也會(huì)注重給學(xué)生總結(jié)三角恒等變形的“統(tǒng)一論”,把握住降次,輔助角和萬能公式這些關(guān)鍵方法,一般的三角恒等迎刃而解。關(guān)鍵是,一定要多做題。
相關(guān)推薦
高一數(shù)學(xué)上冊(cè)函數(shù)必背知識(shí)點(diǎn)梳理(北師大版)
高一數(shù)學(xué)上冊(cè)函數(shù)必背知識(shí)點(diǎn)梳理(北師大版)
1、函數(shù)定義域、值域求法綜合
2.、函數(shù)奇偶性與單調(diào)性問題的解題策略
3、恒成立問題的求解策略
4、反函數(shù)的幾種題型及方法
5、二次函數(shù)根的問題——一題多解
指數(shù)函數(shù)y=a^x
a^a*a^b=a^a+b(a0,a、b屬于Q)
(a^a)^b=a^ab(a0,a、b屬于Q)
(ab)^a=a^a*b^a(a0,a、b屬于Q)
指數(shù)函數(shù)對(duì)稱規(guī)律:
1、函數(shù)y=a^x與y=a^-x關(guān)于y軸對(duì)稱
2、函數(shù)y=a^x與y=-a^x關(guān)于x軸對(duì)稱
3、函數(shù)y=a^x與y=-a^-x關(guān)于坐標(biāo)原點(diǎn)對(duì)稱
冪函數(shù)y=x^a(a屬于R)
1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(diǎn)(1,1);
(2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;
(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸.
方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。
即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
1(代數(shù)法)求方程的實(shí)數(shù)根;
2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
(1)△0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
(2)△=0,方程有兩相等實(shí)根,二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
(3)△0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).
高一數(shù)學(xué)上冊(cè)《平面向量》知識(shí)點(diǎn)總結(jié)北師大版
高一數(shù)學(xué)上冊(cè)《平面向量》知識(shí)點(diǎn)總結(jié)北師大版
向量:既有大小,又有方向的量.
數(shù)量:只有大小,沒有方向的量.
有向線段的三要素:起點(diǎn)、方向、長度.
零向量:長度為的向量.
單位向量:長度等于個(gè)單位的向量.
相等向量:長度相等且方向相同的向量
向量的運(yùn)算
加法運(yùn)算
AB+BC=AC,這種計(jì)算法則叫做向量加法的三角形法則。
已知兩個(gè)從同一點(diǎn)O出發(fā)的兩個(gè)向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點(diǎn)的對(duì)角線OC就是向量OA、OB的和,這種計(jì)算法則叫做向量加法的平行四邊形法則。
對(duì)于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運(yùn)算定律。
減法運(yùn)算
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數(shù)乘運(yùn)算
實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當(dāng)λ0時(shí),λa的方向和a的方向相同,當(dāng)λ0時(shí),λa的方向和a的方向相反,當(dāng)λ=0時(shí),λa=0。
設(shè)λ、μ是實(shí)數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。
向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱線性運(yùn)算。
向量的數(shù)量積
已知兩個(gè)非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。
a.b的幾何意義:數(shù)量積a.b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。
兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和。
高一數(shù)學(xué)上冊(cè)《奇偶性》知識(shí)點(diǎn)總結(jié)北師大版
一名優(yōu)秀的教師就要對(duì)每一課堂負(fù)責(zé),高中教師要準(zhǔn)備好教案為之后的教學(xué)做準(zhǔn)備。教案可以讓學(xué)生們充分體會(huì)到學(xué)習(xí)的快樂,使高中教師有一個(gè)簡單易懂的教學(xué)思路。關(guān)于好的高中教案要怎么樣去寫呢?為此,小編從網(wǎng)絡(luò)上為大家精心整理了《高一數(shù)學(xué)上冊(cè)《奇偶性》知識(shí)點(diǎn)總結(jié)北師大版》,歡迎您參考,希望對(duì)您有所助益!
高一數(shù)學(xué)上冊(cè)《奇偶性》知識(shí)點(diǎn)總結(jié)北師大版
1.定義
一般地,對(duì)于函數(shù)f(x)
(1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
(2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
(3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
(4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
說明:①奇、偶性是函數(shù)的整體性質(zhì),對(duì)整個(gè)定義域而言
②奇、偶函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱,如果一個(gè)函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則這個(gè)函數(shù)一定不是奇(或偶)函數(shù)。
(分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)
③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義
2.奇偶函數(shù)圖像的特征:
定理奇函數(shù)的圖像關(guān)于原點(diǎn)成中心對(duì)稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對(duì)稱圖形。
f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點(diǎn)對(duì)稱
點(diǎn)(x,y)→(-x,-y)
奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上也是單調(diào)遞增。
偶函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上單調(diào)遞減。
3.奇偶函數(shù)運(yùn)算
(1).兩個(gè)偶函數(shù)相加所得的和為偶函數(shù).
(2).兩個(gè)奇函數(shù)相加所得的和為奇函數(shù).
(3).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).
(4).兩個(gè)偶函數(shù)相乘所得的積為偶函數(shù).
(5).兩個(gè)奇函數(shù)相乘所得的積為偶函數(shù).
(6).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相乘所得的積為奇函數(shù).
高一數(shù)學(xué)三角函數(shù)求導(dǎo)公式
高一數(shù)學(xué)三角函數(shù)求導(dǎo)公式
(sinx)=cosx
(cosx)=-sinx
(tanx)=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)=tanxmiddot;secx
(cscx)=-cotxmiddot;cscx
(arcsinx)=1/(1-x^2)^1/2
(arccosx)=-1/(1-x^2)^1/2
(arctanx)=1/(1+x^2)
(arccotx)=-1/(1+x^2)
(arcsecx)=1/(|x|(x^2-1)^1/2)
(arccscx)=-1/(|x|(x^2-1)^1/2)
④(sinhx)=coshx
(coshx)=sinhx
(tanhx)=1/(coshx)^2=(sechx)^2
(coth)=-1/(sinhx)^2=-(cschx)^2
(sechx)=-tanhxmiddot;sechx
(cschx)=-cothxmiddot;cschx
(arsinhx)=1/(x^2+1)^1/2
(arcoshx)=1/(x^2-1)^1/2
(artanhx)=1/(x^2-1)(|x|1)
(arcothx)=1/(x^2-1)(|x|1)
(arsechx)=1/(x(1-x^2)^1/2)
(arcschx)=1/(x(1+x^2)^1/2)