一元二次方程高中教案
發(fā)表時間:2020-05-21第三章《一元一次方程》知識點匯總。
每個老師需要在上課前弄好自己的教案課件,大家在用心的考慮自己的教案課件。教案課件工作計劃寫好了之后,這樣接下來工作才會更上一層樓!有沒有好的范文是適合教案課件?小編特地為大家精心收集和整理了“第三章《一元一次方程》知識點匯總”,僅供您在工作和學習中參考。
第三章《一元一次方程》知識點匯總
1.等式:用“=”號連接而成的式子叫等式.2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)(或式子),結果仍相等;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),結果仍相等.
3.方程:含未知數(shù)的等式,叫方程(方程是含有未知數(shù)的等式,但等式不一定是方程).4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”。5.移項:把等式一邊的某項變號后移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1(移項變號).
6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.
7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程解法的一般步驟:化簡方程----------分數(shù)基本性質(zhì)
去分母----------同乘(不漏乘)最簡公分母去括號----------注意符號變化移項----------變號(留下靠前)
合并同類項--------合并后符號系數(shù)化為1---------除前面10.列一元一次方程解應用題:
(1)讀題分析法:????多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程.(2)畫圖分析法:????多用于“行程問題”
利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎.11.列方程解應用題的常用公式:
(1)行程問題:路程=速度·時間速度?
路程路程
時間?;時間速度
工作量工作量
工時?;工時工效
(2)工程問題:工作量=工作效率·工作時間工效?
工程問題常用等量關系:先做的+后做的=完成量(3)順水逆水問題:
順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;順水逆水問題常用等量關系:順水路程=逆水路程(4)商品利潤問題:售價=定價
幾折售價?成本
?100%;,利潤率?
成本10
利潤問題常用等量關系:售價-進價=利潤(5)配套問題:(6)分配問題
第四章圖形初步認識
(一)多姿多彩的圖形
立體圖形:棱柱、棱錐、圓柱、圓錐、球等.
1、幾何圖形?
?
?平面圖形:三角形、四邊形、圓、多邊形等.
主視圖---------從正面看?2、幾何體的三視圖左視圖---------從左邊看?
?俯視圖---------從上面看
(1)會判斷簡單物體(棱柱、圓柱、圓錐、球)的三視圖.(2)能根據(jù)三視圖描述基本幾何體或?qū)嵨镌?3、立體圖形的平面展開圖
(1)同一個立體圖形按不同的方式展開,得到的平現(xiàn)圖形不一樣的.
(2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據(jù)展開圖判斷和制作立體模型.4、點、線、面、體(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形最基本的圖形.線:面和面相交的地方是線,分為直線和曲線.面:包圍著體的是面,分為平面和曲面.體:幾何體也簡稱體.
(2)點動成線,線動成面,面動成體.(二)直線、射線、線段1
2經(jīng)過兩點有一條直線,并且只有一條直線.簡單地:兩點確定一條直線.3、畫一條線段等于已知線段(1)度量法
(2)用尺規(guī)作圖法4、線段的長短比較方法(1)度量法(2)疊合法(3)圓規(guī)截取法
5、線段的中點(二等分點)、三等分點、四等分點等定義:把一條線段平均分成兩條相等線段的點.圖形:
AMB
符號:若點M是線段AB的中點,則AM=BM=6、線段的性質(zhì)
1
AB,AB=2AM=2BM.2
兩點的所有連線中,線段最短.簡單地:兩點之間,線;7、兩點的距離;連接兩點的線段的長度叫做兩點的距離(距離是線段的;8、點與直線的位置關系;(1)點在直線上(或者直線經(jīng)過點)(2)點在直線;(三)角;1、角:有公共端點的兩條射線所組成的圖形叫做角.;1?=60?=3600?,1?=60?;1?=(;111)?,1?=()?=()?60603600;(1)度量
兩點的所有連線中,線段最短.簡單地:兩點之間,線段最短.
7、兩點的距離
連接兩點的線段的長度叫做兩點的距離(距離是線段的長度,而不是線段本身).
8、點與直線的位置關系
(1)點在直線上(或者直線經(jīng)過點)(2)點在直線外(或者直線不經(jīng)過點).
(三)角
1、角:有公共端點的兩條射線所組成的圖形叫做角.
1?=60?=3600?,1?=60?;1?=(
111)?,1?=()?=()?60603600
(1)度量法
(2)疊合法
6、角的四則運算
角的和、差、倍、分及其近似值
7、畫一個角等于已知角
(1)借助三角尺能畫出15°的倍數(shù)的角,在0~180°之間共能畫出11個角.
(2)借助量角器能畫出給定度數(shù)的角.
(3)用尺規(guī)作圖法.
8、角的平分線
定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做角的平分線(若OB是?AOC的平分線,則?AOB=?BOC=1?AOC,?AOC=2?AOB=2?BOC).2
9、互余、互補
(1)若∠1+∠2=90°,則∠1與∠2互為余角.其中∠1是∠2的余角,∠2是∠1的余角.
(2)若∠1+∠2=180°,則∠1與∠2互為補角.其中∠1是∠2的補角,∠2是∠1的補角.
(3)∠1的余角可以用90°-∠1表示;∠1的補角可以用180°-∠1表示.
(4)余角的性質(zhì):同角(等角)的余角相等;北西北東北補角的性質(zhì):同角(等角)的補角相等.
10、方向角北偏西(1)正方向
(2)南或北寫在前面,東或西寫在后面東西(北偏東、北偏西、南偏東、南偏西)
西南
南
擴展閱讀
解一元一次方程
老師職責的一部分是要弄自己的教案課件,大家在著手準備教案課件了。是時候?qū)ψ约航贪刚n件工作做個新的規(guī)劃了,未來工作才會更有干勁!有多少經(jīng)典范文是適合教案課件呢?為滿足您的需求,小編特地編輯了“解一元一次方程”,僅供參考,希望能為您提供參考!
課題3.3解一元一次方程—去括號與去分母課時本學期
第課時日期
課型新授主備人復備人審核人
學習
目標知識與能力:進一步掌握列一元一次方程解應用題的方法步驟.
過程與方法:通過分析行程問題中順流速度、逆流速度、水流速度、靜水中的速度的關系,以及零件配套問題中的等量關系,進一步經(jīng)歷運用方程解決實際問題的過程,體會方程模型的作用.
情感態(tài)度與價值觀:培養(yǎng)學生自主探究和合作交流意識和能力,體會數(shù)學的應用價值.
重點
難點重點:分析問題中的數(shù)量關系,找出能夠表示問題全部含義的相等關系,列出一元一次方程,并會解方程.
難點:找出能夠表示問題全部含義的相等關系,列出方程.
關鍵:找出能夠表示問題全部含義的相等關系.
教學流程師生活動時間復備標注
一、復習引入:1.解方程:5X+2(3X-3)=11-(X+5)
2.行程問題中的基本數(shù)量關系是什么?
路程=速度×時間,可變形為:速度=.
3.相遇問題或追及問題中所走路程的關系?
相遇問題:雙方所走的路程之和=全部路程+原來兩者間的距離.(原來兩者間的距離)
追及問題:快速行進路程=慢速行進路程+原來兩者間的距離;或快速行進路程-慢速行進路程=原路程(原來兩者間的距離)
二、新授:
例2:一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流行駛,用了2.5小時,已知水流的速度是3千米/時,求船在靜水中的平均速度.
分析:(1)順流行駛的速度、逆流行駛的速度、水流速度,船在靜水中的速度之間的關系如何?
順流行駛速度=船在靜水中的速度+水流速度
逆流行駛速度=船在靜水中的速度-水流速度
(2)設船在靜水中的平均速度為x千米/時,由此填空(課本第97頁).
(3)問題中的相等關系是什么?
解:一般情況下,船返回是按原路線行駛的,因此可以認為這船的往返路程相等,由此,列方程:
2(x+3)=2.5(x-3)
去括號,得2x+6=2.5x-7.5
移項及合并,得-0.5x=-13.5
系數(shù)化為1,得x=27
答:船在靜水中的平均速度為27千米/時.
說明:課本中,移項及合并,得0.5x=13.5是把含x的項移到方程右邊,常數(shù)項移到左邊后合并,得13.5=0.5x,再根據(jù)a=b就是b=a,即把方程兩邊同時對調(diào),這不是移項.
例3:某車間22名工人生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個或螺母2000個,一個螺釘要配兩個螺母,為了使每天的產(chǎn)品剛好配套,應該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?
分析:
已知條件:(1)分配生產(chǎn)螺釘和生產(chǎn)螺母人數(shù)共22名.
(2)每人每天平均生產(chǎn)螺釘1200個,或螺母2000個.
(3)一個螺釘要配兩個螺母.(4)為使每天的產(chǎn)品剛好配套,應使生產(chǎn)的螺母數(shù)量與螺釘數(shù)量之間有什么樣關系?
螺母的數(shù)量應是螺釘數(shù)量的兩倍,這正是相等關系.
解:設分配x人生產(chǎn)螺釘,則(22-x)人生產(chǎn)螺母,由已知條件(2)得,每天共生產(chǎn)螺釘1200x個,生產(chǎn)螺母2000(22-x)個,由相等關系,列方程
2×1200x=2000(22-x)
去括號,得2400x=44000-2000x
移項,合并,得4400x=44000
x=10
所以生產(chǎn)螺母的人數(shù)為22-x=12
答:應分配10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母.
本題的關鍵是要使每天生產(chǎn)的螺釘、螺母配套,弄清螺釘與螺母之間的數(shù)量關系.
三、鞏固練習課本第102頁第7題.
解法1:本題求兩個問題,若設無風時飛機的航速為x千米/時,那么與例1類似,可得順風飛行的速度為(x+24)千米/時,逆風飛行的速度為(x-24)千米/時,根據(jù)順風飛行路程=逆風飛行路程,列方程:
2(x+24)=3(x-24)
去括號,得x+68=3x-72
移項,合并,得-x=-140
系數(shù)化為1,得x=840
兩城之間的航程為3(x-24)=2448
答:無風時飛機的航速為840千米/時,兩城間的航程為2448千米.
解法2:如果設兩城之間的航程為x千米,你會列方程嗎?這時相等關系是什么?
分析:由兩城間的航程x千米和順風飛行需2小時,逆風飛行需要3小時,可得順風飛行的速度為千米/時,逆風飛行的速度為千米/時.
在這個問題中,飛機在無風時的速度是不變的,即飛機在順風飛行和逆風飛行中,無風時的速度相等,根據(jù)這個相等關系,列方程:
-24=+24
化簡,得x-24=+24
移項,合并,得x=48
系數(shù)化為1,得x=2448即兩城之間航程為2448千米.無風時飛機的速度為=840(千米/時)
比較兩種方法,第一種方法容易列方程,所以正確設元也很關鍵.
四、課堂達標練習
1.名校課堂59頁3、4、7、
五、課堂小結:通過以上問題的討論,我們進一步體會到列方程解決實際問題的關鍵是正確地建立方程中的等量關系.另外在求出x值后,一定要檢驗它是否合理,雖然不必寫出檢驗過程,但這一步絕不是可有可無的.
六、作業(yè):課本第102頁習題3.3第5、題.
課件出示問題1:
教師引導,啟發(fā)學生找出相等關系并列出相應代數(shù)式,從而得出方程
教師點撥進一步對此題進行鞏固,培養(yǎng)學生歸納概括的能力
解答過程按課本,可由學生口述,教師板書.
求解一元一次方程
每個老師在上課前需要規(guī)劃好教案課件,大家在細心籌備教案課件中。只有寫好教案課件計劃,才能促進我們的工作進一步發(fā)展!你們到底知道多少優(yōu)秀的教案課件呢?以下是小編為大家收集的“求解一元一次方程”但愿對您的學習工作帶來幫助。
2求解一元一次方程
1.移項法則
(1)定義
把原方程中的某些項改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.
例如:
(2)移項的依據(jù):等式的基本性質(zhì)1.
辨誤區(qū)移項時的注意事項
①移項是將方程中某一項從方程的一邊移到另一邊,不是左邊或右邊某些項的交換;②移項時要變號,不能出現(xiàn)不變號就移項的情況.
【例1】下列方程中,移項正確的是().
A.方程10-x=4變形為-x=10-4
B.方程6x-2=4x+4變形為6x-4x=4+2
C.方程10=2x+4-x變形為10=2x-x+4
D.方程3-4x=x+8變形為x-4x=8-3
解析:選項A中應變形為-x=4-10;選項C中不是移項,只是交換了兩項的位置,正確的移項是-2x+x=4-10;選項D中應變形為-4x-x=8-3,只有選項B是正確的.
答案:B
2.解一元一次方程的一般步驟
(1)解一元一次方程的步驟
去分母→去括號→移項→合并同類項→未知數(shù)的系數(shù)化為1.
上述步驟中,都是一元一次方程的變形方法,經(jīng)過這些變形,方程變得簡單易解,而方程的解并未改變.
(2)解一元一次方程的具體做法
變形
名稱具體做法變形依據(jù)注意事項
去分母兩邊同時乘各分母的最小公倍數(shù)等式的基本性質(zhì)2不要漏乘不含分母的項
去括號先去小括號,再去中括號,最后去大括號去括號法則、乘法分配律不要漏乘括號內(nèi)的每一項,注意符號
移項含有未知數(shù)的項移到方程的一邊,常數(shù)項移到另一邊等式的基本性質(zhì)1移項要變號,不要漏項
合并
同類
項把方程化成ax=b(a≠0)的形式合并同類項法則系數(shù)相加,字母及指數(shù)不變
系數(shù)
化為1兩邊都除以未知數(shù)的系數(shù)等式的基本性質(zhì)2分子、分母不要顛倒
【例2-1】解方程:4x+5=-3+2x.
分析:按以下步驟解方程:
解:移項,得4x-2x=-3-5.
合并同類項,得2x=-8.
系數(shù)化為1,得x=-4.
【例2-2】解方程65100(y-1)=37100(y+1)+0.1.
分析:方程中既含有分母,又含有括號,根據(jù)方程的形式特點,還是先去分母比較簡便.
解:去分母,得65(y-1)=37(y+1)+10.
去括號,得65y-65=37y+37+10.
移項,得65y-37y=37+10+65.
合并同類項,得28y=112.
系數(shù)化為1,得y=4.
點評:解一元一次方程,要注意根據(jù)方程的特點靈活運用解一元一次方程的一般步驟,不一定非按這個“一般步驟”的順序,適合先去分母的要先去分母,適合先去括號的要先去括號,去分母、去括號時,注意不要出現(xiàn)漏乘,尤其是注意不要漏乘常數(shù)項,移項時要注意變號.
3.分子、分母中含有小數(shù)的一元一次方程的解法
當分子、分母中含有小數(shù)時,一般是先根據(jù)分數(shù)的基本性質(zhì),將分數(shù)的分子、分母同乘以一個適當?shù)恼麛?shù),將其中的小數(shù)化為整數(shù)再解方程.需要注意的是這一步變形根據(jù)的是分數(shù)的基本性質(zhì),而不是等式的基本性質(zhì);變形時是分數(shù)的分子、分母同乘以一個適當?shù)恼麛?shù),而不是在方程的兩邊同乘以一個整數(shù).
【例3】解方程0.4x+0.90.5-0.03+0.02x0.03=1.
分析:原方程的分子、分母中都含有小數(shù),利用分數(shù)的基本性質(zhì),方程中0.4x+0.90.5的分子、分母都乘以10,0.03+0.02x0.03的分子、分母都乘以100,就能將方程中的所有小數(shù)化為整數(shù).
解:原方程可化為4x+95-3+2x3=1.
去分母,得3(4x+9)-5(3+2x)=15.
去括號,得12x+27-15-10x=15.
移項、合并同類項,得2x=3.
系數(shù)化為1,得x=32.
4.帶多層括號的一元一次方程的解法
一元一次方程,除個別題外,一般都有幾層括號,一般方法是按照“由內(nèi)到外”的順序去括號,即先去小括號,再去中括號,最后去大括號.每去一層括號合并同類項一次,以簡化運算.
有時可根據(jù)方程的特征,靈活選擇去括號的順序,從而達到快速解題的目的.
在解具體的某個方程時,要仔細觀察方程的特點,根據(jù)方程的特點靈活選擇解法.
【例4】233212(x-1)-3-3=3.
分析:若先去小括號,再去中括號,再去大括號,然后再運算比較麻煩.注意到32×23=1,因而可先去大括號,在去大括號的同時也去掉了中括號,這樣既簡化了解題過程,又能避開一些常見解題錯誤的發(fā)生.
解:去大括號,得12(x-1)-3-2=3.
去小括號,得12x-12-3-2=3.
移項,得12x=12+3+2+3.
合并同類項,得12x=172.
系數(shù)化為1,得x=17.
5.含有字母系數(shù)的一元一次方程的解法
含有字母系數(shù)的一元一次方程的解法與一般一元一次方程的解法步驟完全相同:去分母→去括號→移項→合并同類項→系數(shù)化為1.要特別注意的是系數(shù)化為1時,當未知數(shù)的系數(shù)是字母時,要分情況討論.
關于x的方程ax=b的解的情況:
①當a≠0時,方程有唯一的解x=ba;②當a=0,且b=0時,方程有無數(shù)解;③當a=0,且b≠0時,方程無解.
【例5】解關于x的方程3x-2=mx.
分析:本題中未知數(shù)是x,m是已知數(shù),先通過移項、合并同類項把方程變形為ax=b的形式,再討論.
解:移項,得3x-mx=2,
即(3-m)x=2.
當3-m≠0時,兩邊都除以3-m,
得x=23-m.
當3-m=0時,則有0x=2,此時,方程無解.
點評:解含有字母系數(shù)的方程要不要討論,關鍵是看解方程的最后一步,在系數(shù)化為1的時候,當未知數(shù)的系數(shù)是數(shù)字時,不用討論,當未知數(shù)的系數(shù)含有字母時,必須分情況討論.
《一元一次方程》知識點整理
《一元一次方程》知識點整理
一、方程的有關概念
1.方程:含有未知數(shù)的等式就叫做方程.
2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.
注:⑴方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程.⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論.
二、等式的性質(zhì)
等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結果仍相等.用式子形式表示為:如果a=b,那么a±c=b±c
(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc
三、移項法則
:把等式一邊的某項變號后移到另一邊,叫做移項.
四、去括號法則
1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應各項的符號相同.
2.括號外的因數(shù)是負數(shù),去括號后各項的符號與原括號內(nèi)相應各項的符號改變.
五、解方程的一般步驟
1、去分母(方程兩邊同乘各分母的最小公倍數(shù))
2、去括號(按去括號法則和分配律)
3、移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4、合并(把方程化成ax=b(a≠0)形式)
5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba).
六、用方程思想解決實際問題的一般步驟
1、審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關系.
2、設:設未知數(shù)(可分直接設法,間接設法)
3、列:根據(jù)題意列方程.
4、解:解出所列方程.
5、檢:檢驗所求的解是否符合題意.
6、答:寫出答案(有單位要注明答案)
七、有關常用應用類型題及各量之間的關系
1、和、差、倍、分問題:
(1)倍數(shù)關系:通過關鍵詞語是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……來體現(xiàn).
(2)多少關系:通過關鍵詞語多、少、和、差、不足、剩余……來體現(xiàn).
2、等積變形問題:等積變形是以形狀改變而體積不變?yōu)榍疤?常用等量關系為:
①形狀面積變了,周長沒變;
②原料體積=成品體積.
3、勞力調(diào)配問題:這類問題要搞清人數(shù)的變化,常見題型有:
(1)既有調(diào)入又有調(diào)出;
(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變;
(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變
4、數(shù)字問題
(1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且1≤a≤9,0≤b≤9,0≤c≤9)則這個三位數(shù)表示為:100a+10b+c.
(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n-2表示;奇數(shù)用2n+1或2n-1表示.
5、工程問題:工程問題中的三個量及其關系為:工作總量=工作效率×工作時間
6、行程問題:
(1)行程問題中的三個基本量及其關系:路程=速度×時間.
(2)基本類型有
①相遇問題;
②追及問題;常見的還有:相背而行;行船問題;環(huán)形跑道問題.
7、商品銷售問題
有關關系式:商品利潤=商品售價-商品進價=商品標價×折扣率-商品進價;商品利潤率=商品利潤/商品進價;商品售價=商品標價×折扣率
8、儲蓄問題
⑴顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率.利息的20%付利息稅
⑵利息=本金×利率×期數(shù)
本息和=本金+利息
利息稅=利息×稅率(20%)