一元二次方程高中教案
發(fā)表時間:2020-11-19§7.2解二元一次方程組。
作為老師的任務(wù)寫教案課件是少不了的,大家應(yīng)該在準備教案課件了。只有規(guī)劃好新的教案課件工作,這對我們接下來發(fā)展有著重要的意義!有沒有出色的范文是關(guān)于教案課件的?下面是小編為大家整理的“§7.2解二元一次方程組”,大家不妨來參考。希望您能喜歡!
§7.2解二元一次方程組
一.教學(xué)目標
(一)教學(xué)知識點
1.代入消元法解二元一次方程組.
2.解二元一次方程組時的“消元”思想,“化未知為已知”的化歸思想.
(二)能力訓(xùn)練要求
1.會用代入消元法解二元一次方程組.
2.了解解二元一次方程組的“消元”思想,初步體會數(shù)學(xué)研究中“化未知為已知”的化歸思想.
(三)情感與價值觀要求
1.在學(xué)生了解二元一次方程組的“消元”思想,從而初步理解化“未知”為“已知”和化復(fù)雜問題為簡單問題的化歸思想中,享受學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的信心.
2.培養(yǎng)學(xué)生合作交流,自主探索的良好習(xí)慣.
二.教學(xué)重點
1.會用代入消元法解二元一次方程組.
2.了解解二元一次方程組的“消元”思想,初步體現(xiàn)數(shù)學(xué)研究中“化未知為已知”的化歸思想.
三.教學(xué)難點
1.“消元”的思想.
2.“化未知為已知”的化歸思想.
四.教學(xué)方法
啟發(fā)——自主探索相結(jié)合.
教師引導(dǎo)學(xué)生回憶一元一次方程解決實際問題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程.二元一次方程便可獲解,從而通過學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟.
五.教具準備
投影片兩張:
第一張:例題(記作§7.2A);
第二張:問題串(記作§7.2B).
六.教學(xué)過程
Ⅰ.提出疑問,引入新課
[師生共憶]上節(jié)課我們討論過一個“希望工程”義演的問題;沒去觀看義演的成人有x個,兒童有y個,我們得到了方程組成人和兒童到底去了多少人呢?
[生]在上一節(jié)課的“做一做”中,我們通過檢驗是不是方程x+y=8和方程5x+3y=34,得知這個解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出是方程組的解.所以成人和兒童分別去了5個人和3個人.
[師]但是,這個解是試出來的.我們知道二元一次方程的解有無數(shù)個.難道我們每個方程組的解都去這樣試?
[生]太麻煩啦.
[生]不可能.
[師]這就需要我們學(xué)習(xí)二元一次方程組的解法.
Ⅱ.講授新課
[師]在七年級第一學(xué)期我們學(xué)過一元一次方程,也曾碰到過“希望工程”義演問題,當時是如何解的呢?
[生]解:設(shè)成人去了x個,兒童去了(8-x)個,根據(jù)題意,得:
5x+3(8-x)=34
解得x=5
將x=5代入8-x=8-5=3
答:成人去了5個,兒童去了3個.
[師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對你解二元一次方程組有何啟示?
[生]列二元一次方程組設(shè)出有兩個未知數(shù)成人去了x個,兒童去了y個.列一元一次方程設(shè)成人去了x個,兒童去了(8-x)個.y應(yīng)該等于(8-x).而由二元一次方程組的一個方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x.
[生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個方程5x+3y=34相比較,把5x+3y=34中的“y”用“8-x”代替就轉(zhuǎn)化成了一元一次方程.
[師]太好了.我們發(fā)現(xiàn)了新舊知識之間的聯(lián)系,便可尋求到解決新問題的方法——即將新知識轉(zhuǎn)化為舊知識便可.如何轉(zhuǎn)化呢?
[生]上一節(jié)課我們就已知道方程組的兩個未知數(shù)所包含的意義是相同的.所以將中的①變形,得y=8-x③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34.“二元”化成“一元”.
[師]這位同學(xué)很善于思考.他用了我們在數(shù)學(xué)研究中“化未知為已知”的化歸思想,從而使問題得到解決.下面我們完整地解一下這個二元一次方程組.
解:
由①得y=8-x③
將③代入②得
5x+3(8-x)=34
解得x=5
把x=5代入③得y=3.
所以原方程組的解為
下面我們試著用這種方法來解答上一節(jié)的“誰的包裹多”的問題.
[師生共析]解二元一次方程組:
分析:我們解二元一次方程組的第一步需將其中的一個方程變形用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù),把表示了的未知數(shù)代入未變形的方程中,從而將二元一次方程組轉(zhuǎn)化為一元一次方程.
解:由①得x=2+y③
將③代入②得(2+y)+1=2(y-1)
解得y=5
把y=5代入③,得
x=7.
所以原方程組的解為即老牛馱了7個包裹,小馬馱了5個包裹.
[師]在解上面兩個二元一次方程組時,我們都是將其中的一個方程變形,即用其中一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后代入第二個未變形的方程,從而由“二元”轉(zhuǎn)化為“一元”而得到消元的目的.我們將這種方法叫代入消元法.這種解二元一次方程組的思想為消元思想.我們再來看兩個例子.
出示投影片(§7.2A)
[例題]解方程組
(1)
(2)
(由學(xué)生自己完成,兩個同學(xué)板演).
解:(1)將②代入①,得
3×+2y=8
3y+9+4y=16
7y=7
y=1
將y=1代入②,得
x=2
所以原方程組的解是
(2)由②,得x=13-4y③
將③代入①,得
2(13-4y)+3y=16
-5y=-10
y=2
將y=2代入③,得
x=5
所以原方程組的解是
[師]下面我們來討論幾個問題:
出示投影片(§7.2B)
(1)上面解方程組的基本思路是什么?
(2)主要步驟有哪些?
(3)我們觀察例1和例2的解法會發(fā)現(xiàn),我們在解方程組之前,首先要觀察方程組中未知數(shù)的特點,盡可能地選擇變形后的方程較簡單和代入后化簡比較容易的方程變形,這是關(guān)鍵的一步.你認為選擇未知數(shù)有何特點的方程變形好呢?
(由學(xué)生分組討論,教師深入?yún)⑴c到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探索、討論過程中的獨特想法)
[生]我來回答第一問:解二元一次方程組的基本思路是消元,把“二元”變?yōu)椤耙辉?
[生]我們組總結(jié)了一下解上述方程組的步驟:第一步:在已知方程組的兩個方程中選擇一個適當?shù)姆匠?,把它變形為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù).
第二步:把表示另一個未知數(shù)的代數(shù)式代入沒有變形的另一個方程,可得一個一元一次方程.
第三步:解這個一元一次方程,得到一個未知數(shù)的值.
第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個方程或變形后的方程(一般代入變形后的方程),求得另一個未知數(shù)的值.
第五步:用“{”把原方程組的解表示出來.
第六步:檢驗(口算或筆算在草稿紙上進行)把求得的解代入每一個方程看是否成立.
[師]這個組的同學(xué)總結(jié)的步驟真棒,甚至連我們平時容易忽略的檢驗問題也提了出來,很值得提倡.在我們數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該養(yǎng)成反思自己解答過程,檢驗自己答案正確與否的習(xí)慣.
[生]老師,我代表我們組來回答第三個問題.我們認為用代入消元法解二元一次方程組時,盡量選取一個未知數(shù)的分數(shù)是1的方程進行變形;若未知數(shù)的系數(shù)都不是1,則選取系數(shù)的絕對值較小的方程變形.但我們也有一個問題要問:在例2中,我們選擇②變形這是無可厚非的,把②變形后代入①中消元得到的是一元一次方程系數(shù)都為整數(shù)也較簡便.可例1中,雖然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不簡便,有沒有更簡捷的方法呢?
[師]這個問題提的太好了.下面同學(xué)們分組討論一下.如果你發(fā)現(xiàn)了更好的解法,請把你的解答過程寫到黑板上來.
[生]解:由②得2x=y+3③
③兩邊同時乘以2,得
4x=2y+6④
由④得2y=4x-6
把⑤代入①得
3x+(4x-6)=8
解得7x=14,x=2
把x=2代入③得y=1.
所以原方程組的解為
[師]真了不起,能把我們所學(xué)的知識靈活應(yīng)用,而且不拘一格,將“2y”整體上看作一個未知數(shù)代入方程①,這是一個“科學(xué)的發(fā)明”.
Ⅲ.隨堂練習(xí)
課本P192
1.用代入消元法解下列方程組
解:(1)
將①代入②,得
x+2x=12
x=4.
把x=4代入①,得
y=8
所以原方程組的解為
(2)
將①代入②,得
4x+3(2x+5)=65
解得x=5
把x=5代入①得
y=15
所以原方程組的解為
(3)
由①,得x=11-y③
把③代入②,得
11-y-y=7
y=2
把y=2代入③,得
x=9
所以原方程組的解為
(4)
由②,得x=3-2y③
把③代入①,得
3(3-2y)-2y=9
得y=0
把y=0代入③,得x=3
所以原方程組的解為
注:在隨堂練習(xí)中,可以鼓勵學(xué)生通過自主探索與交流,各個學(xué)生消元的具體方法可能不同,不必強調(diào)解答過程統(tǒng)一.
Ⅳ.課時小結(jié)
這節(jié)課我們介紹了二元一次方程組的第一種解法——代入消元法.了解到了解二元一次方程組的基本思路是“消元”即把“二元”變?yōu)椤耙辉?主要步驟是:將其中的一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程.解這個一元一次方程,便可得到一個未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對未知數(shù)的值.即求得了方程的解.
Ⅴ.課后作業(yè)
1.課本習(xí)題7.2
2.解答習(xí)題7.2第3題
Ⅵ.活動與探究
已知代數(shù)式x2+px+q,當x=-1時,它的值是-5;當x=-2時,它的值是4,求p、q的值.
過程:根據(jù)代數(shù)式值的意義,可得兩個未知數(shù)都是p、q的方程,即
當x=-1時,代數(shù)式的值是-5,得
(-1)2+(-1)p+q=-5①
當x=-2時,代數(shù)式的值是4,得
(-2)2+(-2)p+q=4②
將①、②兩個方程整理,并組成方程組
解方程組,便可解決.
結(jié)果:由④得q=2p
把q=2p代入③,得
-p+2p=-6
解得p=-6
把p=-6代入q=2p=-12
所以p、q的值分別為-6、-12.
七.板書設(shè)計
§7.2解二元一次方程組(一)
一、“希望工程”義演
二、“誰的包裹多”問題
三、例題
四、解方程組的基本思路:消元即二元—→一元
五、解二元一次方程組的基本步驟
擴展閱讀
10.3解二元一次方程組(二)
教案課件是每個老師工作中上課需要準備的東西,準備教案課件的時刻到來了。只有寫好教案課件計劃,才能規(guī)范的完成工作!你們會寫適合教案課件的范文嗎?下面是小編為大家整理的“10.3解二元一次方程組(二)”,歡迎閱讀,希望您能閱讀并收藏。
10.3解二元一次方程組(二)
教學(xué)目標:
1.會用加減消元法解二元一次方程組.
2.能根據(jù)方程組的特點,適當選用代入消元法和加減消元法解二元一次方程組.
3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.
教學(xué)重點:
加減消元法的理解與掌握
教學(xué)難點:
加減消元法的靈活運用
教學(xué)方法:
引導(dǎo)探索法,學(xué)生討論交流
教學(xué)過程:
一、情境創(chuàng)設(shè)
買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價各是多少?
設(shè)蘋果汁、橙汁單價為x元,y元.
我們可以列出方程3x+2y=23
5x+2y=33
問:如何解這個方程組?
二、探索活動
活動一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?
2、這些方法與代入消元法有何異同?
3、這個方程組有何特點?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解這個方程得:y=4
把y=4代入③式
則
所以原方程組的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解這個方程得:x=5
把x=5代入①式,
3×5+2y=23
解這個方程得y=4
所以原方程組的解是x=5
y=4
把方程組的兩個方程(或先作適當變形)相加或相減,消去其中一個未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(eliminationbyadditionorsubtraction),簡稱加減法.
三、例題教學(xué):
例1.解方程組x+2y=1①
3x-2y=5②
解:①+②得,4x=6
將代入①,得
解這個方程得:
所以原方程組的解是
鞏固練習(xí)(一):練一練1.(1)
例2.解方程組5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解這個方程得x=2
將x=2代入①,得
5×2-2y=4
解這個方程得:y=3
所以原方程組的解是x=2
y=3
鞏固練習(xí)(二):練一練1.(2)(3)(4)2.
四、思維拓展:
解方程組:
五、小結(jié):
1、掌握加減消元法解二元一次方程組
2、靈活選用代入消元法和加減消元法解二元一次方程組
六、作業(yè)
習(xí)題10.31.(3)(4)2.
解二元一次方程組學(xué)案
一般給學(xué)生們上課之前,老師就早早地準備好了教案課件,到寫教案課件的時候了。我們制定教案課件工作計劃,才能更好地安排接下來的工作!你們清楚教案課件的范文有哪些呢?下面是小編精心為您整理的“解二元一次方程組學(xué)案”,僅供參考,歡迎大家閱讀。
10.3解二元一次方程組(1)
主備:審核:初一數(shù)學(xué)備課組
班級姓名。
學(xué)習(xí)目標:
1會用代入消元法解二元一次方程組。
2通過解決問題,了解解二元一次方程組的必要性。
3體會轉(zhuǎn)化的思想。
一.課前準備
1把方程寫成用x表示y的形式,結(jié)果是y=。
2把代入方程,消去y,得關(guān)于x的方程。(不必化簡)。
3用代入法解方程組:
二.探索新知
問題探索:籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝一場得2分.負一場得1分,某隊賽了12場贏了x場,輸了y場,得到20分,我們可以列出方程組:
,如何解這個二元一次方程組?
三.知識應(yīng)用
例1解方程組。你還有不同解法過程嗎?寫寫看。
試一試:解方程組
代入消元法:
。
代入法的基本思想是。
代入消元法的步驟是:
例2把下列各方程變形為用一個未和數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
(1)4x-y=-1;(2)5x-10y+15=0.
四.當堂反饋
1用代入法解下列方程組:
2長方形的長是寬的3倍,如果長減少3cm,寬增加4cm,這個長方形就變成了一個正方形.求這個長方形的長和寬.
3一個兩位數(shù)加上45恰好等于把這個兩位數(shù)的個位數(shù)字與十位數(shù)字對調(diào)后組成的新兩位數(shù),這個兩位數(shù)的十位數(shù)字和個位數(shù)字的和是7,你能知道這個兩位數(shù)嗎?
五.課后鞏固
(一)填空題
1.已知:=0是二元一次方程,則的值為
2.解方程組:由①用表示,得=③,將③代入②,得,解得=,方程組的解為。
3.若,則
4.若和是同類項,則,。
(二)解下列方程組:
注意:對于一般形式的二元一次方程用代入法求解,關(guān)鍵是選擇哪一個方程變形,消什么元,選取的恰當往往會使計算簡單且不易出錯,選取的原則是:
1.選擇未知數(shù)的系數(shù)是1或-l的方程;
2.若未知數(shù)的系數(shù)都不是1或-1,選系數(shù)的絕對值較小的方程,將要消的元用含另一個未知數(shù)的代數(shù)式表示,再把它代入沒有變形的方程中去。這樣就把二元一次方程組轉(zhuǎn)化為一元一次方程了。
3.對運算的結(jié)果養(yǎng)成檢驗的習(xí)慣。
六、拓展提升
1.已知方程組的解互為相反數(shù),求的值。
2已知方程組與有相同的解,求的值。
3.若方程組的解也是方程的解,求的值。
4.已知方程組的解的和是-12,求的值。
解二元一次方程組2
第七章二元一次方程組
2.二元一次方程組的解法(二)
一、學(xué)生起點分析
在學(xué)習(xí)本節(jié)之前,學(xué)生已經(jīng)掌握了有理數(shù)、整式的運算、一元一次方程等知識,了解了二元一次方程、二元一次方程組等基本概念,具備了進一步學(xué)習(xí)二元一次方程組的解法的基本能力.
二、教學(xué)任務(wù)分析
《二元一次方程組的解法》是義務(wù)教育課程標準北師大版實驗教科書八年級(上)第七章《二元一次方程組》的第二節(jié)(兩課時).第1課時,讓學(xué)生學(xué)習(xí)了二元一次方程組的解法——代入消元法.本節(jié)課為第2課時,學(xué)習(xí)二元一次方程組的另一解法——加減消元法.
加減消元法也是解二元一次方程組的基本方法之一,它要求兩個方程中必須有某一個未知數(shù)的系數(shù)的絕對值相等(或利用等式的基本性質(zhì)在方程兩邊同時乘以一個適當?shù)牟粸?的數(shù),使兩個方程中某一個未知數(shù)的系數(shù)的絕對值相等),然后利用等式的基本性質(zhì)在方程兩邊同時相加或相減消元.
三、教學(xué)目標分析
1.教學(xué)目標
1.會用加減消元法解二元一次方程組.
2.讓學(xué)生在自主探索和合作交流中,進一步理解二元一次方程組的“消元”思想,初步體會數(shù)學(xué)研究中“化未知為已知”的化歸思想.
3.通過對具體的二元一次方程組的觀察、分析,選擇恰當?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析能力.
4.通過學(xué)生比較兩種解法的差別與聯(lián)系,體會透過現(xiàn)象抓住事物的本質(zhì)這一認識方法.
2.教學(xué)重點
用加減消元法解二元一次方程組.
3.教學(xué)難點
在解題過程中進一步體會“消元”思想和“化未知為已知”的化歸思想.
四、教學(xué)過程設(shè)計
本節(jié)課設(shè)計了五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):情境引入;第二環(huán)節(jié):講授新知;第三環(huán)節(jié):鞏固新知;第四環(huán)節(jié):課堂小結(jié);第五環(huán)節(jié):布置作業(yè).
第一環(huán)節(jié):情境引入
內(nèi)容:鞏固練習(xí),在練習(xí)中發(fā)現(xiàn)新的解決方法
怎樣解下面的二元一次方程組呢?(學(xué)生在練習(xí)本上做,教師巡視、引導(dǎo)、解疑,注意發(fā)現(xiàn)學(xué)生在解答過程中出現(xiàn)的新的想法,可以讓用不同方法解題的學(xué)生將他們的方法板演在黑板上,完后進行評析,并為加減消元法的出現(xiàn)鋪路.)
學(xué)生可能的解答方案1:
解1:把②變形,得:,③
把③代入①,得:,
解得:.
把代入②,得:.
所以方程組的解為.
學(xué)生可能的解答方案2:
解2:由②得,③
把當做整體將③代入①,得:,
解得:.
把代入③,得:.
所以方程組的解為.
(此種解法體現(xiàn)了整體的思想)
學(xué)生可能的解答方案3:
解3:根據(jù)等式的基本性質(zhì)
方程①+方程②得:,
解得:,
把代入①,解得:,
所以方程組的解為.
通過上面的練習(xí)發(fā)現(xiàn),同學(xué)們對代入消元法都掌握得很好了,基本上都能夠按要求解出二元一次方程組的解(如方案1),可是也有同學(xué)發(fā)現(xiàn)(方案2)的解法比(方案1)的解法簡單,他是將5y作為一個整體代入消元,依然體現(xiàn)了代入法的核心是代入“消元”,通過“消元”,使“二元”轉(zhuǎn)化為“一元”,從而使問題得以解決,那么(方案3)的解法又如何?它達到“消元”的目的了嗎?
(留些時間給學(xué)生觀察,注意引導(dǎo)學(xué)生觀察方程中某一未知數(shù)的系數(shù),如x的系數(shù)或y的系數(shù))
引導(dǎo)學(xué)生發(fā)現(xiàn)方程①和②中的5y和-5y互為相反數(shù),根據(jù)相反數(shù)的和為零(方案3)將方程①和②的左右兩邊相加,然后根據(jù)等式的基本性質(zhì)消去了未知數(shù)y,得到了一個關(guān)于x的一元一次方程,從而實現(xiàn)了化“二元”為“一元”的目的.
這就是我們這節(jié)課要學(xué)習(xí)的二元一次方程組的解法中的第二種方法——加減消元法.
意圖:在練習(xí)的過程中學(xué)會思考、分析,通過思考自然地得出我們要研究和解決的問題.
效果:通過學(xué)生練習(xí)、對比、討論,既鞏固了已學(xué)的用代入法解二元一次方程組的知識,又在此過程中發(fā)現(xiàn)了新的解二元一次方程組的方法——加減消元法.
說明:如果班機學(xué)生不能發(fā)現(xiàn)方法3,教師可以適當引導(dǎo),如在方法二中,我們直接解出5y,代入另一式子從而消去一個未知數(shù),是否可以不解出直接消去這個未知數(shù)呢,兩個式子中y的系數(shù)有什么關(guān)系?能否通過等式加減直接消去這個未知數(shù)呢?
第二環(huán)節(jié):講授新知
內(nèi)容1:
(教師板書課題)
下面我們就用剛才的方法解下面的二元一次方程組.(教師規(guī)范表達解答過程,為學(xué)生作出示范)
例解下列二元一次方程組
分析:觀察到方程①、②中未知數(shù)x的系數(shù)相等,可以利用兩個方程相減消去未知數(shù)x.
解:②-①,得:,
解得:,
把代入①,得:,
解得:,
所以方程組的解為.
(解答完本題后,口算檢驗,讓學(xué)生養(yǎng)成進行檢驗的習(xí)慣,同時教師需強調(diào)以下兩點
(1)注意解此題的易錯點是②-①時是(2x+3y)-(2x-5y)=-1-7,方程左邊去括號時注意符號.另外解題時,①-②或②-①都可以消去未知數(shù)x,不過在①-②得到的方程中,y的系數(shù)是負數(shù),所以在上面的解法中選擇②-①;
(2)把y=-1代入①或②,最后結(jié)果是一樣的,但我們通常的作法是將所求出的一個未知數(shù)的值代入系數(shù)較簡單的方程中求出另一個未知數(shù)的值.
師生一起分析上面的解答過程,歸納出下面的一些規(guī)律:
在方程組的兩個方程中,若某個未知數(shù)的系數(shù)是相反數(shù),則可直接把這兩個方程的兩邊分別相加,消去這個未知數(shù);若某個未知數(shù)的系數(shù)相等,可直接把這兩個方程的兩邊分別相減,消去這個未知數(shù)得到一個一元一次方程,從而求出它的解,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法)
內(nèi)容2:鞏固練習(xí)
[師生共析]
(先留一定的時間讓學(xué)生觀察此方程組,讓學(xué)生說明自己觀察到方程有什么特點,能不能自己解決此方程組,用什么方法解決?如學(xué)生提出用代入消元法,可以讓學(xué)生先按此法完成,然后再問能不能用剛學(xué)過的加減消元法解決?讓學(xué)生討論嘗試,學(xué)生可能得到的結(jié)論如下)
1.對于用加減消元法解,x、y的系數(shù)既不相同也不是相反數(shù),沒有辦法用加減消元法.
2.是不是可以這樣想,將方程組中的方程用等式的基本性質(zhì)將這個方程組中的x或y的系數(shù)化成相等(或互為相反數(shù))的情形,再用加減消元法,達到消元的目的.
3.只要在方程①和方程②的兩邊分別除以2和3,x的系數(shù)不就變成“1”了嗎?這樣就可以用加減消元法了.
4.不同意3的做法.如果這樣做,是可以解決這一問題,但y的系數(shù)和常數(shù)項都變成了分數(shù),這樣解是不是變麻煩了嗎?那還不如用代入消元法了.不如找x的系數(shù)2和3的最小公倍數(shù)6,在方程①兩邊同乘以3,得③,在方程②兩邊同乘以2,得④,然后③-④,就可以將x消去,得,把代入①得,.所以方程組的解為
(在引導(dǎo)的過程中,肯定學(xué)生的好的想法.)其實在我們學(xué)習(xí)數(shù)學(xué)的過程中,二元一次方程組中未知數(shù)的系數(shù)不一定剛好是1或-1,或同一個未知數(shù)的系數(shù)剛好相同或相反.我們遇到的往往就是這樣的方程組,我們要想比較簡捷地把它解出來,就需要轉(zhuǎn)化為同一個未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達到消元的目的.請大家把解答過程寫出來.
解:①×3,得:,③
②×2,得:,④
③-④,得:.
將代入①,得:.
所以原方程組的解是.
內(nèi)容3:議一議
根據(jù)上面幾個方程組的解法,請同學(xué)們思考下面兩個問題:
(1)加減消元法解二元一次方程組的基本思路是什么?
(2)用加減消元法解二元一次方程組的主要步驟有哪些?
(由學(xué)生分組討論、總結(jié)并請學(xué)生代表發(fā)言)
[師生共析]
(1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.
(2)用加減法解二元一次方程組的一般步驟是:
①變形----找出兩個方程中同一個未知數(shù)系數(shù)的絕對值的最小公倍數(shù),然后分別在兩個方程的兩邊乘以適當?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).
②加減消元,得到一個一元一次方程.
③解一元一次方程.
④把求出的未知數(shù)的解代入原方程組中的任一方程,求出另一個未知數(shù)的值,從而得方程組的解.
注意:對于較復(fù)雜的二元一次方程組,應(yīng)先化簡(去分母,去括號,合并同類項等).通常要把每個方程整理成含未知數(shù)的項在方程的左邊,常數(shù)項在方程右邊的形式,再作如上加減消元的考慮.
意圖:使學(xué)生明確使用加減法的條件,體會在某些條件下使用加減法的優(yōu)越性.
效果:通過本環(huán)節(jié)的學(xué)習(xí),加深和鞏固了學(xué)生對加減消元法的認識.
第三環(huán)節(jié):鞏固新知
內(nèi)容:
⑴回憶上一節(jié)的練習(xí)和習(xí)題,看哪些題用代入消元法解起來比較簡單?哪些題我們用加減消元法簡單?我們分組討論,并派一個代表闡述自己的意見,試說明兩種解方程組的方法的共同特點和各自的優(yōu)勢.
1.關(guān)于二元一次方程組的兩種解法:代入消元法和加減消元法,通過比較,我們發(fā)現(xiàn)其實質(zhì)都是消元,即通過消去一個未知數(shù),化“二元”為“一元”.
2.只有當方程組的某一方程中某一未知數(shù)的系數(shù)的絕對值是1時,用代入消元法較簡單,其他的用加減消元法較簡單.
⑵完成課本隨堂練習(xí)
⑶補充練習(xí):
①選擇:二元一次方程組的解是().
A.B.C.D.
②,求x,y的值.
意圖:通過練習(xí),使學(xué)生熟練地用加減法解二元一次方程組并能在練習(xí)中摸索運算技巧,培養(yǎng)能力.
效果:通過本環(huán)節(jié)的練習(xí),學(xué)生能夠較熟練地運用加減法解二元一次方程組.
第四環(huán)節(jié):課堂小結(jié)
內(nèi)容:
1.關(guān)于二元一次方程組的兩種解法:代入消元法和加減消元法.比較這兩種解法我們發(fā)現(xiàn)其實質(zhì)都是消元,即通過消去一個未知數(shù),化“二元”為“一元”.
2.用加減消元法解方程組的條件:某一未知數(shù)的系數(shù)的絕對值相等.
3.用加減法解二元一次方程組的步驟:
①變形,使某個未知數(shù)的系數(shù)絕對值相等.
②加減消元.
③解一元一次方程.
④求另一個未知數(shù)的值,得方程組的解.
意圖:鞏固和加深對化歸思想的理解和運用.
效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進一步鞏固了所學(xué)知識.
第五環(huán)節(jié):布置作業(yè)
1.課本習(xí)題7.3
2.閱讀讀一讀你知道計算機是如何解方程組嗎.
五、教學(xué)設(shè)計反思
本節(jié)課是讓學(xué)生學(xué)習(xí)二元一次方程組的加減消元解法.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會其本質(zhì)思想——消元,體會“化未知為已知”的化歸思想.因而在教學(xué)過程中教師應(yīng)通過問題情境的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)興趣,并通過精心設(shè)計的問題,引導(dǎo)學(xué)生在已有知識的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固議練活動中,加深學(xué)生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。