高中必修一函數(shù)教案
發(fā)表時(shí)間:2020-07-25人教版高一數(shù)學(xué)《函數(shù)奇偶性》教案。
人教版高一數(shù)學(xué)《函數(shù)奇偶性》教案
指對(duì)數(shù)的運(yùn)算
一、反思數(shù)學(xué)符號(hào):“”“”出現(xiàn)的背景
1.數(shù)學(xué)總是在不斷的發(fā)明創(chuàng)造中去解決所遇到的問(wèn)題。
2.方程的根是多少?;
①.這樣的數(shù)存在卻無(wú)法寫(xiě)出來(lái)?怎么辦呢?你怎樣向別人介紹一個(gè)人?描述出來(lái)。
②..那么這個(gè)寫(xiě)不出來(lái)的數(shù)是一個(gè)什么樣的數(shù)呢?怎樣描述呢?
①我們發(fā)明了新的公認(rèn)符號(hào)“”作為這樣數(shù)的“標(biāo)志”的形式.即是一個(gè)平方等于三的數(shù).
②推廣:則.
③后又常用另一種形式分?jǐn)?shù)指數(shù)冪形式
3.方程的根又是多少?①也存在卻無(wú)法寫(xiě)出來(lái)??同樣也發(fā)明了新的公認(rèn)符號(hào)“”專門(mén)作為這樣數(shù)的標(biāo)志,的形式.
即是一個(gè)2為底結(jié)果等于3的數(shù).
②推廣:則.
二、指對(duì)數(shù)運(yùn)算法則及性質(zhì):
1.冪的有關(guān)概念:
(1)正整數(shù)指數(shù)冪:=().(2)零指數(shù)冪:).
(3)負(fù)整數(shù)指數(shù)冪:(4)正分?jǐn)?shù)指數(shù)冪:
(5)負(fù)分?jǐn)?shù)指數(shù)冪:(6)0的正分?jǐn)?shù)指數(shù)冪等于0,負(fù)分指數(shù)冪沒(méi)意義.
2.根式:
(1)如果一個(gè)數(shù)的n次方等于a,那么這個(gè)數(shù)叫做a的n次方根.如果,那么x叫做a的次方根,則x=(2)0的任何次方根都是0,記作.(3)式子叫做根式,n叫做根指數(shù),a叫做被開(kāi)方數(shù).
(4).(5)當(dāng)n為奇數(shù)時(shí),=.(6)當(dāng)n為偶數(shù)時(shí),==.
3.指數(shù)冪的運(yùn)算法則:
(1)=.(2)=.3)=.4)=.
二.對(duì)數(shù)
1.對(duì)數(shù)的定義:如果,那么數(shù)b叫做以a為底N的對(duì)數(shù),記作,其中a叫做,叫做真數(shù).
2.特殊對(duì)數(shù):
(1)=;(2)=.(其中
3.對(duì)數(shù)的換底公式及對(duì)數(shù)恒等式
(1)=(對(duì)數(shù)恒等式).(2);(3);(4).
(5)=(6)=.(7)=.(8)=;(9)=
(10)
三、經(jīng)典體驗(yàn):
1.化簡(jiǎn)根式:;;;
2.解方程:;;;;
3.化簡(jiǎn)求值:
;
4.【徐州六縣一區(qū)09-10高一期中】16.求函數(shù)的定義域。
四、經(jīng)典例題
例:1畫(huà)出函數(shù)草圖:.
練習(xí):1.“等式log3x2=2成立”是“等式log3x=1成立”的▲.必要不充分條件
例:2.若則▲.
練習(xí):1.已知函數(shù)求的值▲..
例3:函數(shù)f(x)=lg()是(奇、偶)函數(shù)。
點(diǎn)撥:
為奇函數(shù)。
練習(xí):已知?jiǎng)t.
練習(xí):已知?jiǎng)t的值等于.
練習(xí):已知定義域?yàn)镽的函數(shù)在是增函數(shù),滿足且,求不等式的解集。
例:4解方程.
解:設(shè),則,代入原方程,解得,或(舍去).由,得.經(jīng)檢驗(yàn)知,為原方程的解.
練習(xí):解方程.
練習(xí):解方程.
練習(xí):解方程:.
練習(xí):設(shè),求實(shí)數(shù)、的值。
解:原方程等價(jià)于,顯然,我們考慮函數(shù),顯然,即是原方程的根.又和都是減函數(shù),故也是減函數(shù).
當(dāng)時(shí),;當(dāng)時(shí),,因此,原方程只有一個(gè)解.分析:注意到,,故倒數(shù)換元可求解.
解:原方程兩邊同除以,得.設(shè),原方程化為,化簡(jiǎn)整理,得.,,即..
解析:令,則,∴原方程變形為,解得,。由得,∴,
即,∴,∴。由得,∴,∵,∴此方程無(wú)實(shí)根。故原方程的解為。評(píng)注:將指數(shù)方程轉(zhuǎn)化為基本型求解,是解決該類問(wèn)題的關(guān)鍵。
解析:由題意可得,,,原方程可化為,即。
∴,∴。
∴由非負(fù)數(shù)的性質(zhì)得,且,∴,。
評(píng)注:通過(guò)拆項(xiàng)配方,使問(wèn)題巧妙獲解。
例5:已知關(guān)于的方程有實(shí)數(shù)解,求的取值范圍。
已知關(guān)于的方程的實(shí)數(shù)解在區(qū)間,求的取值范圍。
反思提煉:1.常見(jiàn)的四種指數(shù)方程的一般解法
(1)方程的解法:
(2)方程的解法:
(3)方程的解法:
(4)方程的解法:
2.常見(jiàn)的三種對(duì)數(shù)方程的一般解法
(1)方程的解法:
(2)方程的解法:
(3)方程的解法:
3.方程與函數(shù)之間的轉(zhuǎn)化。
4.通過(guò)數(shù)形結(jié)合解決方程有無(wú)根的問(wèn)題。
課后作業(yè):
1.對(duì)正整數(shù)n,設(shè)曲線在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為,則數(shù)列的前n項(xiàng)和的公式是
[答案]2n+1-2
[解析]∵y=xn(1-x),∴y′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.
f′(2)=-n2n-1-2n=(-n-2)2n-1.
在點(diǎn)x=2處點(diǎn)的縱坐標(biāo)為y=-2n.
∴切線方程為y+2n=(-n-2)2n-1(x-2).
令x=0得,y=(n+1)2n,
∴an=(n+1)2n,
∴數(shù)列ann+1的前n項(xiàng)和為2(2n-1)2-1=2n+1-2.
2.在平面直角坐標(biāo)系中,已知點(diǎn)P是函數(shù)的圖象上的動(dòng)點(diǎn),該圖象在P處的切線交y軸于點(diǎn)M,過(guò)點(diǎn)P作的垂線交y軸于點(diǎn)N,設(shè)線段MN的中點(diǎn)的縱坐標(biāo)為t,則t的最大值是_____________
解析:設(shè)則,過(guò)點(diǎn)P作的垂線
,所以,t在上單調(diào)增,在單調(diào)減,。
相關(guān)知識(shí)
高一數(shù)學(xué)函數(shù)的奇偶性38
第十節(jié)函數(shù)的奇偶性
一.教學(xué)目標(biāo):1.知識(shí)與技能:理解函數(shù)的奇偶性及其幾何意義;學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);學(xué)會(huì)判斷函數(shù)的奇偶性;
2.過(guò)程與方法:通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生觀察、歸納、抽象的能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想.
3.情態(tài)與價(jià)值:通過(guò)函數(shù)的奇偶性教學(xué),培養(yǎng)學(xué)生從特殊到一般的概括歸納問(wèn)題的能力。
二.教學(xué)重點(diǎn)和難點(diǎn):教學(xué)重點(diǎn):函數(shù)的奇偶性及其幾何意義。
教學(xué)難點(diǎn):判斷函數(shù)的奇偶性的方法與格式
三.學(xué)法與教學(xué)方法
學(xué)法:學(xué)生通過(guò)自己動(dòng)手計(jì)算,獨(dú)立地去經(jīng)歷發(fā)現(xiàn),猜想與證明的全過(guò)程,從而建立奇偶函數(shù)的概念.
教學(xué)方法:探究交流法
四.教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
“對(duì)稱”是大自然的一種美,這種“對(duì)稱美”在數(shù)學(xué)中也有大量的反映,讓我們看看下列各函數(shù)有什么共性?
觀察下列函數(shù)的圖象,總結(jié)各函數(shù)之間的共性.
-10
-1
通過(guò)討論歸納:函數(shù)是定義域?yàn)槿w實(shí)數(shù)的拋物線;函數(shù)是定義域?yàn)槿w實(shí)數(shù)的折線;函數(shù)是定義域?yàn)榉橇銓?shí)數(shù)的兩支曲線,各函數(shù)之間的共性為圖象關(guān)于軸對(duì)稱.觀察一對(duì)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)有什么關(guān)系?
歸納:若點(diǎn)在函數(shù)圖象上,則相應(yīng)的點(diǎn)也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.
(二)研探新知
函數(shù)的奇偶性定義:
1.偶函數(shù)
一般地,對(duì)于函數(shù)的定義域內(nèi)的任意一個(gè),都有,那么就叫做偶函數(shù).(學(xué)生活動(dòng))依照偶函數(shù)的定義給出奇函數(shù)的定義.
2.奇函數(shù)
一般地,對(duì)于函數(shù)的定義域的任意一個(gè),都有,那么就叫做奇函數(shù).
注意:
①函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
②由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè),則也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).
3.具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維.
例1.判斷下列函數(shù)是否是偶函數(shù).
(1)(2)
解:函數(shù)不是偶函數(shù),因?yàn)樗亩x域關(guān)于原點(diǎn)不對(duì)稱.
函數(shù)也不是偶函數(shù),因?yàn)樗亩x域?yàn)椋⒉魂P(guān)于原點(diǎn)對(duì)稱.
例2.判斷下列函數(shù)的奇偶性
(1)(2)(3)(4)
解:(略)
小結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:①首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;②確定;
③作出相應(yīng)結(jié)論:若;
若.
例3.判斷下列函數(shù)的奇偶性:
①
②
分析:先驗(yàn)證函數(shù)定義域的對(duì)稱性,再考察.
解:(1)>0且>=<<,它具有對(duì)稱性.因?yàn)?,所以是偶函?shù),不是奇函數(shù).
(2)當(dāng)>0時(shí),-<0,于是
當(dāng)<0時(shí),->0,于是
綜上可知,在R-∪R+上,是奇函數(shù).
例4.利用函數(shù)的奇偶性補(bǔ)全函數(shù)的圖象.
教材P41思考題:
規(guī)律:偶函數(shù)的圖象關(guān)于軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
說(shuō)明:這也可以作為判斷函數(shù)奇偶性的依據(jù).
例5.已知是奇函數(shù),在(0,+∞)上是增函數(shù).
證明:在(-∞,0)上也是增函數(shù).
證明:(略)
小結(jié):偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反;奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性一致.
(四)鞏固深化,反饋矯正.
(1)課本P42練習(xí)1.2P46B組題的1.2.3
(2)判斷下列函數(shù)的奇偶性,并說(shuō)明理由.
①②
③④
(五)歸納小結(jié),整體認(rèn)識(shí).
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì).
(六)設(shè)置問(wèn)題,留下懸念.
1.書(shū)面作業(yè):課本P46習(xí)題A組1.3.9.10題
2.設(shè)>0時(shí),
試問(wèn):當(dāng)<0時(shí),的表達(dá)式是什么?
解:當(dāng)<0時(shí),->0,所以,又因?yàn)槭瞧婧瘮?shù),所以
.
五、課后反思:
高一數(shù)學(xué)知識(shí)點(diǎn):指數(shù)函數(shù)函數(shù)奇偶性
高一數(shù)學(xué)知識(shí)點(diǎn):指數(shù)函數(shù)函數(shù)奇偶性
指數(shù)函數(shù)的一般形式為,從上面我們對(duì)于冪函數(shù)的討論就可以知道,要想使得x能夠取整個(gè)實(shí)數(shù)集合為定義域,則只有使得
如圖所示為a的不同大小影響函數(shù)圖形的情況,考試技巧。
可以看到:
(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無(wú)窮大的過(guò)程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過(guò)渡位置。
(6)函數(shù)總是在某一個(gè)方向上無(wú)限趨向于X軸,永不相交。
(7)函數(shù)總是通過(guò)(0,1)這點(diǎn)。
(8)顯然指數(shù)函數(shù)無(wú)界。
高一數(shù)學(xué)教案:《函數(shù)單調(diào)性與奇偶性》教學(xué)設(shè)計(jì)
高一數(shù)學(xué)教案:《函數(shù)單調(diào)性與奇偶性》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.
2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點(diǎn)難點(diǎn)分析
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
三、教法建議
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以 的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值 開(kāi)始,逐漸讓x在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式 時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如 )說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
函數(shù)的奇偶性教學(xué)設(shè)計(jì)方案
教學(xué)目標(biāo)
1.使學(xué)生了解奇偶性的概念,回 會(huì)利用定義判斷簡(jiǎn)單函數(shù)的奇偶性.
2.在奇偶性概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時(shí)滲透數(shù)形結(jié)合和特殊到一般的思想方法.
3.在學(xué)生感受數(shù)學(xué)美的同時(shí),激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂(lè)于求索的精神.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是奇偶性概念的形成與函數(shù)奇偶性的判斷
難點(diǎn)是對(duì)概念的認(rèn)識(shí)
教學(xué)用具
投影儀,計(jì)算機(jī)
教學(xué)方法
引導(dǎo)發(fā)現(xiàn)法
教學(xué)過(guò)程
一. 引入新課
前面我們已經(jīng)研究了函數(shù)的單調(diào)性
它是反映函數(shù)在某一個(gè)區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個(gè)性質(zhì).從什么角度呢?將從對(duì)稱的角度來(lái)研究函數(shù)的性質(zhì).
對(duì)稱我們大家都很熟悉,在生活中有很多對(duì)稱,在數(shù)學(xué)中也能發(fā)現(xiàn)很多對(duì)稱的問(wèn)題,大家回憶一下在我們所學(xué)的內(nèi)容中,特別是函數(shù)中有沒(méi)有對(duì)稱問(wèn)題呢?
(學(xué)生可能會(huì)舉出一些數(shù)值上的對(duì)稱問(wèn)題, 等,也可能會(huì)舉出一些圖象的對(duì)稱問(wèn)題,此時(shí)教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如 和 等.)
結(jié)合圖象提出這些對(duì)稱是我們?cè)诔踔醒芯康年P(guān)于 軸對(duì)稱和關(guān)于原點(diǎn)對(duì)稱問(wèn)題,而我們還曾研究過(guò)關(guān)于 軸對(duì)稱的問(wèn)題,你們舉的例子中還沒(méi)有這樣的,能舉出一個(gè)函數(shù)圖象關(guān)于 軸對(duì)稱的嗎?
學(xué)生經(jīng)過(guò)思考,能找出原因,由于函數(shù)是映射,一個(gè) 只能對(duì)一個(gè) ,而不能有兩個(gè)不同的,故函數(shù)的圖象不可能關(guān)于 軸對(duì)稱.最終提出我們今天將重點(diǎn)研究圖象關(guān)于 軸對(duì)稱和關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,從形的特征中找出它們?cè)跀?shù)值上的規(guī)律.
二. 講解新課
它是反映函數(shù)在某一個(gè)區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個(gè)性質(zhì).從什么角度呢?將從對(duì)稱的角度來(lái)研究函數(shù)的性質(zhì).
對(duì)稱我們大家都很熟悉,在生活中有很多對(duì)稱,在數(shù)學(xué)中也能發(fā)現(xiàn)很多對(duì)稱的問(wèn)題,大家回憶一下在我們所學(xué)的內(nèi)容中,特別是函數(shù)中有沒(méi)有對(duì)稱問(wèn)題呢?
再提出定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的什么條件?
可以用(6)輔助說(shuō)明充分性不成立,用(5)說(shuō)明必要性成立,得出結(jié)論.
(3) 定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要但不充分條件.(板書(shū))
由學(xué)生小結(jié)判斷奇偶性的步驟之后,教師再提出新的問(wèn)題:在剛才的幾個(gè)函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒(méi)有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說(shuō)明.
《函數(shù)的奇偶性》教案
一名優(yōu)秀的教師就要對(duì)每一課堂負(fù)責(zé),作為高中教師就要早早地準(zhǔn)備好適合的教案課件。教案可以讓學(xué)生們有一個(gè)良好的課堂環(huán)境,幫助高中教師緩解教學(xué)的壓力,提高教學(xué)質(zhì)量。高中教案的內(nèi)容具體要怎樣寫(xiě)呢?下面是由小編為大家整理的“《函數(shù)的奇偶性》教案”,歡迎閱讀,希望您能閱讀并收藏。
《函數(shù)的奇偶性》教案
一、教學(xué)目標(biāo)
【知識(shí)與技能】
理解函數(shù)的奇偶性及其幾何意義.
【過(guò)程與方法】
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來(lái)解決問(wèn)題.
【情感態(tài)度與價(jià)值觀】
體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
二、教學(xué)重難點(diǎn)
【重點(diǎn)】
函數(shù)的奇偶性及其幾何意義
【難點(diǎn)】
判斷函數(shù)的奇偶性的方法與格式.
三、教學(xué)過(guò)程
(一)導(dǎo)入新課
取一張紙,在其上畫(huà)出平面直角坐標(biāo)系,并在第一象限任畫(huà)一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問(wèn)題:
1以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫(huà)出第一象限內(nèi)圖形的痕跡,然后將紙展開(kāi),觀察坐標(biāo)系中的圖形;
問(wèn)題:將第一象限和第二象限的圖形看成一個(gè)整體,則這個(gè)圖形可否作為某個(gè)函數(shù)y=f(x)的圖象,若能請(qǐng)說(shuō)出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特殊的關(guān)系?
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;
(2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.
(二)新課教學(xué)
1.函數(shù)的奇偶性定義
像上面實(shí)踐操作1中的圖象關(guān)于y軸對(duì)稱的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點(diǎn)對(duì)稱的函數(shù)即是奇函數(shù).
(1)偶函數(shù)(evenfunction)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義
(2)奇函數(shù)(oddfunction)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).
2.具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
3.典型例題
(1)判斷函數(shù)的奇偶性
例1.(教材P36例3)應(yīng)用函數(shù)奇偶性定義說(shuō)明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)
解:(略)
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;
2確定f(-x)與f(x)的關(guān)系;
3作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
(三)鞏固提高
1.教材P46習(xí)題1.3B組每1題
解:(略)
說(shuō)明:函數(shù)具有奇偶性的一個(gè)必要條件是,定義域關(guān)于原點(diǎn)對(duì)稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).
2.利用函數(shù)的奇偶性補(bǔ)全函數(shù)的圖象
(教材P41思考題)
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
說(shuō)明:這也可以作為判斷函數(shù)奇偶性的依據(jù).
(四)小結(jié)作業(yè)
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱.單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì).
課本P46習(xí)題1.3(A組)第9、10題,B組第2題.
四、板書(shū)設(shè)計(jì)
函數(shù)的奇偶性
一、偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
二、奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.