小學(xué)古詩及教案
發(fā)表時(shí)間:2020-04-03指數(shù)擴(kuò)充及運(yùn)算性質(zhì)。
俗話說,凡事預(yù)則立,不預(yù)則廢。高中教師在教學(xué)前就要準(zhǔn)備好教案,做好充分的準(zhǔn)備。教案可以讓學(xué)生能夠聽懂教師所講的內(nèi)容,幫助高中教師更好的完成實(shí)現(xiàn)教學(xué)目標(biāo)。我們要如何寫好一份值得稱贊的高中教案呢?以下是小編收集整理的“指數(shù)擴(kuò)充及運(yùn)算性質(zhì)”,大家不妨來參考。希望您能喜歡!
【必修1】第三章指數(shù)函數(shù)和對數(shù)函數(shù)
第二節(jié)指數(shù)擴(kuò)充及運(yùn)算性質(zhì)
學(xué)時(shí):1學(xué)時(shí)
【學(xué)習(xí)引導(dǎo)】
一、自主學(xué)習(xí)
1.閱讀課本.
2.回答問題
(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)分?jǐn)?shù)指數(shù)冪的意義是什么?實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)有哪些?
3.,練習(xí)
4.小結(jié).
二、方法指導(dǎo)
1.閱讀本節(jié)內(nèi)容時(shí),同學(xué)們應(yīng)先回憶初中所學(xué)的整數(shù)指數(shù)冪的運(yùn)算法則,從而將整數(shù)指數(shù)冪擴(kuò)充到分?jǐn)?shù)指數(shù)冪,得到分?jǐn)?shù)指數(shù)冪的運(yùn)算法則.
2.閱讀本節(jié)內(nèi)容時(shí),同學(xué)們應(yīng)注意分?jǐn)?shù)指數(shù)冪與根式指數(shù)冪只是形式不同,二者可以互化.
【思考引導(dǎo)】
一、提問題
1.在上節(jié)中,臭氧含量Q與時(shí)間存在指數(shù)關(guān)系,而課本只討論了指數(shù)為正整數(shù)的情況,如果當(dāng)時(shí)間是半年或5年零3個(gè)月,即指數(shù)是分?jǐn)?shù)時(shí)情況又怎么樣?
1.你能說說正分?jǐn)?shù)指數(shù)冪和負(fù)分?jǐn)?shù)指數(shù)冪之間如何聯(lián)系嗎,負(fù)分?jǐn)?shù)指數(shù)冪又如何化成根式指數(shù)冪的形式呢?
2.試說說的結(jié)果是什么?
二、變題目
1.求值(1)(2)
(3)(4)
2.設(shè),則
3.設(shè),化簡式子的結(jié)果是().
A.B.C.D.
4.當(dāng)1x3時(shí),化簡的結(jié)果是
5.已知求的值.
【總結(jié)引導(dǎo)】
1.實(shí)數(shù)指數(shù)冪的3條運(yùn)算性質(zhì):
2.分?jǐn)?shù)指數(shù)冪與根式指數(shù)冪互化的步驟:
【拓展引導(dǎo)】
1.課外作業(yè):習(xí)題3-2A組3,4B組2,4
2.課外思考:
1.化簡
2.若=25,則
參考答案
【思考引導(dǎo)】
二、變題目
1.(1)4(2)(3)(4);
2.8;
3.A;
4.2;
5.
【拓展引導(dǎo)】
1.
2.
(工作計(jì)劃之家 WwW.fz76.CoM)
延伸閱讀
指數(shù)概念的擴(kuò)充
3.2.1指數(shù)概念的擴(kuò)充
【自學(xué)目標(biāo)】
1.掌握正整數(shù)指數(shù)冪的概念和性質(zhì);
2.理解n次方根和n次根式的概念,能正確地運(yùn)用根式表示一個(gè)正實(shí)數(shù)的算術(shù)根;
3.能熟練運(yùn)用n次根式的概念和性質(zhì)進(jìn)行根式的化簡與運(yùn)算。
【知識要點(diǎn)】
1.方根的概念
若,則稱x是a的平方根;若,則稱x是a的立方根。
一般地,若一個(gè)實(shí)數(shù)x滿足,則稱x為a的n次實(shí)數(shù)方根。
當(dāng)n是奇數(shù)時(shí),正數(shù)的n次實(shí)數(shù)方根是一個(gè)正數(shù),負(fù)數(shù)n次實(shí)數(shù)方根是一個(gè)負(fù)數(shù),這時(shí)a的n的次實(shí)數(shù)方根只有一個(gè),記作;
當(dāng)n是偶數(shù)時(shí),正數(shù)的n次實(shí)數(shù)方根有二個(gè),它們是相反數(shù)。這時(shí)a的正的n次實(shí)數(shù)方根用符號。
注意:0的n次實(shí)數(shù)方根等于0。
2.根式的概念
式子叫做根式,其中n叫做根指數(shù),a叫做被開方數(shù)。
求a的n次實(shí)數(shù)方根的運(yùn)算叫做開方運(yùn)算。
3.方根的性質(zhì)
(1);
(2)當(dāng)n是奇數(shù)時(shí),,當(dāng)n是偶數(shù)時(shí),
【預(yù)習(xí)自測】
例1.試根據(jù)n次方根的定義分別寫出下列各數(shù)的n次方根。
⑴25的平方根;⑵27的三次方根;
⑶-32的五次方根;⑷的三次方根.
例2.求下列各式的值:
⑴;⑵;
例3.化簡下列各式:
⑴;⑵;
⑶;
例4.化簡下列各式:
⑴;
⑵。
【課堂練習(xí)】
1.填空:
⑴0的七次方根;⑵的四次方根。
2.化簡:
⑴;⑵;
⑶;⑷。
3.計(jì)算:
【歸納反思】
1.在化簡時(shí),不僅要注意n是奇數(shù)還是偶數(shù),還要注意a的正負(fù);
2.配方和分母有理化是解決根式的求值和化簡等問題常用的方法和技巧,而分類討論則是不可忽視的數(shù)學(xué)思想。
【鞏固提高】
1.的值為()
A.B.C.D.
2.下列結(jié)論中,正確的命題的個(gè)數(shù)是()
①當(dāng)a0時(shí),;②;
③函數(shù)的定義域?yàn)椋虎苋襞c相同。
A.0B.1C.2D.3
3.化簡的結(jié)果是()
A.1B.2a-1C.1或2a-1D.0
4.如果a,b都是實(shí)數(shù),則下列實(shí)數(shù)一定成立的是()
A.B.C.D.
5.當(dāng)8x10時(shí),。
6.若,則=。
7.若有意義,則x∈
8.計(jì)算的值
9.若,用a表示
10.求使等式成立的實(shí)數(shù)a的取值范圍。
指數(shù)函數(shù)的圖像及性質(zhì)
指數(shù)函數(shù)的圖像及性質(zhì)
一內(nèi)容及其解析
(一)內(nèi)容:指數(shù)函數(shù)的圖像及性質(zhì)
(二)解析:函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個(gè)高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運(yùn)算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),它一方面可以進(jìn)一步深化學(xué)生對函數(shù)概念的理解與認(rèn)識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,同時(shí)也為今后進(jìn)一步熟悉函數(shù)的性質(zhì)和作用,研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
二目標(biāo)及其解析
(一)目標(biāo):掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用;
(二)解析:回顧函數(shù)性質(zhì)的一般研究方式,通過以前學(xué)過的對于函數(shù)圖像的基本做法,作出指數(shù)函數(shù)的大致圖像,使學(xué)生從函數(shù)圖像的直觀感受上觀察、分析、歸納指數(shù)函數(shù)的基本性質(zhì),體會數(shù)形結(jié)合和分類討論思想以及從特殊到一般等學(xué)習(xí)數(shù)學(xué)的方法,增強(qiáng)識圖用圖的能力
三問題診斷分析
根據(jù)這一節(jié)課的內(nèi)容特點(diǎn)以及學(xué)生對指數(shù)冪的掌握情況,指數(shù)函數(shù)的圖像形成過程是學(xué)生缺乏感性認(rèn)識的最重要的問題,因此,為解決這一問題,從最初始的函數(shù)圖像做法(五點(diǎn)作圖)入手,使學(xué)生對于圖像的形成有一個(gè)很清楚的認(rèn)識,在此基礎(chǔ)上來分析、總結(jié)指數(shù)函數(shù)的簡單性質(zhì),解決指數(shù)函數(shù)中值的分布問題以及由此來小結(jié)指數(shù)函數(shù)的圖像和性質(zhì)及指數(shù)函數(shù)圖像與底的關(guān)系,并能夠在基本問題的處理中回扣指數(shù)函數(shù)模型,利用性質(zhì)解決基本問題。
四教學(xué)支持條件
五教學(xué)過程
問題一:指數(shù)函數(shù)有什么樣的性質(zhì)?
設(shè)計(jì)意圖:明確本節(jié)課的學(xué)習(xí)目標(biāo),并且借此回顧函數(shù)的基本性質(zhì)
師生活動:由學(xué)生回憶總結(jié)
問題二:對于函數(shù)性質(zhì)的研究,一般方式是什么?
設(shè)計(jì)意圖:將學(xué)生的思維由函數(shù)解析式上轉(zhuǎn)變到函數(shù)圖像上來
師生活動:由學(xué)生自己思考、提出函數(shù)圖像的基本作法
問題三:指數(shù)函數(shù)的圖像
設(shè)計(jì)意圖:鞏固函數(shù)圖像的基本做法
師生活動:通過學(xué)生自己取點(diǎn)、在坐標(biāo)系中描點(diǎn)、連線的過程中,讓學(xué)生進(jìn)一步體會函數(shù)圖像的形成過程,讓學(xué)生自己進(jìn)行總結(jié)
1、指數(shù)函數(shù)的函數(shù)圖像
列表
……-2-1012……
…124…
2、作出的函數(shù)圖像
列表
……210-1-2……
…124…
3、通過上述實(shí)例,你能畫出函數(shù)與的大致圖像嗎?
問題四:指數(shù)函數(shù)的性質(zhì)
設(shè)計(jì)意圖:在函數(shù)的基本圖像的基礎(chǔ)上,讓學(xué)生觀察、分析、歸納函數(shù)的基本性質(zhì)
師生活動:從學(xué)生的回答中把握認(rèn)識程度,從中進(jìn)行引導(dǎo):
1由此回顧函數(shù)的基本概念,函數(shù)學(xué)習(xí)過哪些基本性質(zhì)?進(jìn)一步鞏固函數(shù)性質(zhì)的概念、判斷、和理解
2通過函數(shù)的圖像觀察函數(shù)的定義域及值域,加強(qiáng)識圖,用圖的能力
3通過函數(shù)的圖像,認(rèn)識指數(shù)函數(shù)中值的分布,體會數(shù)形結(jié)合和分類討論的思想,加深函數(shù)定義域和值域之間的依存關(guān)系
4通過函數(shù)的圖像,認(rèn)識底數(shù)與圖像之間的變換關(guān)系
小問題串
函數(shù)
圖
象
性
質(zhì)定義域
值域
定點(diǎn)
單調(diào)性在上是減函數(shù)
在上是增函數(shù)
取值若,則若,則
若,則若,則
對稱性函數(shù)與的圖象關(guān)于軸對稱
問題五:例題及變式
變式訓(xùn)練1:
變式訓(xùn)練2::函數(shù),,,的圖像如圖所示,則的大小關(guān)系為;
變式訓(xùn)練:
六目標(biāo)檢測:
1已知按大小順序排列.
七課堂小結(jié)
1、指數(shù)函數(shù)的圖像及性質(zhì)
2、指數(shù)函數(shù)圖像和底的關(guān)系
3、指數(shù)冪大小比較過程中中間量的引入
八目標(biāo)檢測
A組
教材P597、8.
B組
1.函數(shù)與的圖象關(guān)于下列那種圖形對稱()
A.軸B.軸C.直線D.原點(diǎn)中心對稱
2.函數(shù)(a0,且a≠1)的圖像恒過定點(diǎn)的坐標(biāo)是什么?
C組
已知函數(shù)(x∈R),a為實(shí)數(shù)
1試證明對任意實(shí)數(shù)a,f(x)為增函數(shù)
2試確定a的值,使f(x)為奇函數(shù)
指數(shù)與指數(shù)冪的運(yùn)算
教案課件是老師上課做的提前準(zhǔn)備,大家開始動筆寫自己的教案課件了。只有制定教案課件工作計(jì)劃,接下來的工作才會更順利!適合教案課件的范文有多少呢?以下是小編收集整理的“指數(shù)與指數(shù)冪的運(yùn)算”,供大家借鑒和使用,希望大家分享!
§2.1.1指數(shù)與指數(shù)冪的運(yùn)算(練習(xí))
學(xué)習(xí)目標(biāo)
1.掌握n次方根的求解;
2.會用分?jǐn)?shù)指數(shù)冪表示根式;
3.掌握根式與分?jǐn)?shù)指數(shù)冪的運(yùn)算.
學(xué)習(xí)過程
一、課前準(zhǔn)備
(復(fù)習(xí)教材P48~P53,找出疑惑之處)
復(fù)習(xí)1:什么叫做根式?運(yùn)算性質(zhì)?
像的式子就叫做,具有性質(zhì):
=;=;=.
復(fù)習(xí)2:分?jǐn)?shù)指數(shù)冪如何定義?運(yùn)算性質(zhì)?
①;.
其中
②;;
.
復(fù)習(xí)3:填空.
①n為時(shí),.
②求下列各式的值:
=;=;=;
=;=;
=;=.
二、新課導(dǎo)學(xué)
※典型例題
例1已知=3,求下列各式的值:
(1);(2);(3).
補(bǔ)充:立方和差公式.
小結(jié):①平方法;②乘法公式;
③根式的基本性質(zhì)(a≥0)等.
注意,a≥0十分重要,無此條件則公式不成立.例如,.
變式:已知,求:
(1);(2).
例2從盛滿1升純酒精的容器中倒出升,然后用水填滿,再倒出升,又用水填滿,這樣進(jìn)行5次,則容器中剩下的純酒精的升數(shù)為多少?
變式:n次后?
小結(jié):①方法:摘要→審題;探究→結(jié)論;
②解應(yīng)用問題四步曲:審題→建?!獯稹鞔?
※動手試試
練1.化簡:.
練2.已知x+x-1=3,求下列各式的值.
(1);(2).
練3.已知,試求的值.
三、總結(jié)提升
※學(xué)習(xí)小結(jié)
1.根式與分?jǐn)?shù)指數(shù)冪的運(yùn)算;
2.乘法公式的運(yùn)用.
※知識拓展
1.立方和差公式:
;
.
2.完全立方公式:
;
.
學(xué)習(xí)評價(jià)
※自我評價(jià)你完成本節(jié)導(dǎo)學(xué)案的情況為().
A.很好B.較好C.一般D.較差
※當(dāng)堂檢測(時(shí)量:5分鐘滿分:10分)計(jì)分:
1.的值為().
A.B.C.3D.729
2.(a0)的值是().
A.1B.aC.D.
3.下列各式中成立的是().
A.B.
C.D.
4.化簡=.
5.化簡=.
課后作業(yè)
1.已知,求的值.
2.探究:時(shí),實(shí)數(shù)和整數(shù)所應(yīng)滿足的條件.
指數(shù)與指數(shù)冪的運(yùn)算教學(xué)設(shè)計(jì)
作為杰出的教學(xué)工作者,能夠保證教課的順利開展,高中教師要準(zhǔn)備好教案為之后的教學(xué)做準(zhǔn)備。教案可以讓講的知識能夠輕松被學(xué)生吸收,幫助高中教師緩解教學(xué)的壓力,提高教學(xué)質(zhì)量。所以你在寫高中教案時(shí)要注意些什么呢?以下是小編收集整理的“指數(shù)與指數(shù)冪的運(yùn)算教學(xué)設(shè)計(jì)”,歡迎您參考,希望對您有所助益!
教學(xué)設(shè)計(jì)
2.1.1指數(shù)與指數(shù)冪的運(yùn)算
整體設(shè)計(jì)
教學(xué)分析
我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì).從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù).進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪.
教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個(gè)具體例子:GDP的增長問題和碳14的衰減問題.前一個(gè)問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價(jià)值.后一個(gè)問題讓學(xué)生體會其中的函數(shù)模型的同時(shí),激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學(xué)習(xí)作了鋪墊.
本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時(shí),充分關(guān)注與實(shí)際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值.
根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計(jì)算器和計(jì)算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.
三維目標(biāo)
1.通過與初中所學(xué)的知識進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì).掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì).培養(yǎng)學(xué)生觀察分析、抽象類比的能力.
2.掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想.通過運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理.
3.能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計(jì)算能力.
4.通過訓(xùn)練及點(diǎn)評,讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì).展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡潔美和統(tǒng)一美.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
(1)分?jǐn)?shù)指數(shù)冪和根式概念的理解.
(2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì).
(3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值.
教學(xué)難點(diǎn)
(1)分?jǐn)?shù)指數(shù)冪及根式概念的理解.
(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用.
課時(shí)安排
3課時(shí)
教學(xué)過程
第1課時(shí)
作者:路致芳
導(dǎo)入新課
思路1.同學(xué)們在預(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個(gè)問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測生物所處的年代的.教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算.
思路2.同學(xué)們,我們在初中學(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算.
推進(jìn)新課
新知探究
提出問題
(1)什么是平方根?什么是立方根?一個(gè)數(shù)的平方根有幾個(gè),立方根呢?
(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?
(3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?
(4)可否用一個(gè)式子表達(dá)呢?
活動:教師提示,引導(dǎo)學(xué)生回憶初中的時(shí)候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時(shí)啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評價(jià)學(xué)生的思維.
討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個(gè),它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個(gè)數(shù)的立方根只有一個(gè),如:-8的立方根為-2.
(2)類比平方根、立方根的定義,一個(gè)數(shù)的四次方等于a,則這個(gè)數(shù)叫a的四次方根.一個(gè)數(shù)的五次方等于a,則這個(gè)數(shù)叫a的五次方根.一個(gè)數(shù)的六次方等于a,則這個(gè)數(shù)叫a的六次方根.
(3)類比(2)得到一個(gè)數(shù)的n次方等于a,則這個(gè)數(shù)叫a的n次方根.
(4)用一個(gè)式子表達(dá)是,若xn=a,則x叫a的n次方根.
教師板書n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(nthroot),其中n>1且n∈N*.
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例.
提出問題
(1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目).
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.
(2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì)的數(shù),有什么特點(diǎn)?
(3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個(gè)的,也有兩個(gè)的,你能否總結(jié)一般規(guī)律呢?
(4)任何一個(gè)數(shù)a的偶次方根是否存在呢?
活動:教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個(gè)數(shù)a的n次方根,就是求出的那個(gè)數(shù)的n次方等于a,及時(shí)點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的特點(diǎn),對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學(xué)生及時(shí)表揚(yáng),對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路.
討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
(2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù).總的來看,這些數(shù)包括正數(shù),負(fù)數(shù)和零.
(3)一個(gè)數(shù)a的奇次方根只有一個(gè),一個(gè)正數(shù)a的偶次方根有兩個(gè),是互為相反數(shù).0的任何次方根都是0.
(4)任何一個(gè)數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆]有一個(gè)數(shù)的偶次方是一個(gè)負(fù)數(shù).
類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):
①當(dāng)n為偶數(shù)時(shí),正數(shù)a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0).
②n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號na表示.
③負(fù)數(shù)沒有偶次方根;0的任何次方根都是零.
上面的文字語言可用下面的式子表示:
a為正數(shù):n為奇數(shù),a的n次方根有一個(gè)為na,n為偶數(shù),a的n次方根有兩個(gè)為±na.
a為負(fù)數(shù):n為奇數(shù),a的n次方根只有一個(gè)為na,n為偶數(shù),a的n次方根不存在.
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例.
思考
根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?
活動:教師提示學(xué)生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時(shí)巡視學(xué)生,隨機(jī)給出一個(gè)數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時(shí)糾正學(xué)生在舉例過程中的問題.
解:答案不唯一,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等.其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個(gè)名稱——根式.
根式的概念:
式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù).
如3-27中,3叫根指數(shù),-27叫被開方數(shù).
思考
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動:教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號,充分讓學(xué)生多舉實(shí)例,分組討論.教師點(diǎn)撥,注意歸納整理.
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕.
解答:根據(jù)n次方根的意義,可得:(na)n=a.
通過探究得到:n為奇數(shù),nan=a.
n為偶數(shù),nan=|a|=a,-a,a≥0,a0.
因此我們得到n次方根的運(yùn)算性質(zhì):
①(na)n=a.先開方,再乘方(同次),結(jié)果為被開方數(shù).
②n為奇數(shù),nan=a.先奇次乘方,再開方(同次),結(jié)果為被開方數(shù).
n為偶數(shù),nan=|a|=a,-a,a≥0,a0.先偶次乘方,再開方(同次),結(jié)果為被開方數(shù)的絕對值.
應(yīng)用示例
思路1
例求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).
活動:求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個(gè)題目仔細(xì)分析.觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對癥下藥.求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來解,首先要搞清楚運(yùn)算順序,目的是把被開方數(shù)的符號定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù).
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b).
點(diǎn)評:不注意n的奇偶性對式子nan的值的影響,是導(dǎo)致問題出現(xiàn)的一個(gè)重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會用,活用.
變式訓(xùn)練
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
點(diǎn)評:本題易錯(cuò)的是第(3)題,往往忽視a與1大小的討論,造成錯(cuò)解.
思路2
例1下列各式中正確的是()
A.4a4=a
B.6(-2)2=3-2
C.a(chǎn)0=1
D.10(2-1)5=2-1
活動:教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯(cuò),再回答.
解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時(shí),應(yīng)先寫nan=|a|,故A項(xiàng)錯(cuò).
(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項(xiàng)錯(cuò).
(3)a0=1是有條件的,即a≠0,故C項(xiàng)也錯(cuò).
(4)D項(xiàng)是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項(xiàng)正確.所以答案選D.
答案:D
點(diǎn)評:本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時(shí)極易選錯(cuò),選四個(gè)答案的情況都會有,因此解題時(shí)千萬要細(xì)心.
例23+22+3-22=__________.
活動:讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號下面的式子化成一個(gè)完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式.正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路.
解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
點(diǎn)評:不難看出3-22與3+22形式上有些特點(diǎn),即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個(gè)完全平方式.
思考
上面的例2還有別的解法嗎?
活動:教師引導(dǎo),去根號常常利用完全平方公式,有時(shí)平方差公式也可,同學(xué)們觀察兩個(gè)式子的特點(diǎn),具有對稱性,再考慮并交流討論,一個(gè)是“+”,一個(gè)是“-”,去掉一層根號后,相加正好抵消.同時(shí)借助平方差,又可去掉根號,因此把兩個(gè)式子的和看成一個(gè)整體,兩邊平方即可,探討得另一種解法.
另解:利用整體思想,x=3+22+3-22,
兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點(diǎn)評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個(gè)完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個(gè)整體利用完全平方公式和平方差公式去解.
變式訓(xùn)練
若a2-2a+1=a-1,求a的取值范圍.
解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
點(diǎn)評:利用方根的運(yùn)算性質(zhì)轉(zhuǎn)化為去絕對值符號,是解題的關(guān)鍵.
知能訓(xùn)練
(教師用多媒體顯示在屏幕上)
1.以下說法正確的是()
A.正數(shù)的n次方根是一個(gè)正數(shù)
B.負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù)
C.0的n次方根是零
D.a(chǎn)的n次方根用na表示(以上n>1且n∈N*)
答案:C
2.化簡下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|.
3.計(jì)算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+252+(2)2+(5)2-252+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
問題:nan=a與(na)n=a(n>1,n∈N)哪一個(gè)是恒等式,為什么?請舉例說明.
活動:組織學(xué)生結(jié)合前面的例題及其解答,進(jìn)行分析討論,解決這一問題要緊扣n次方根的定義.
通過歸納,得出問題結(jié)果,對a是正數(shù)和零,n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下.再對a是負(fù)數(shù),n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下,就可得到相應(yīng)的結(jié)論.
解:(1)(na)n=a(n>1,n∈N).
如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=na一定是它的一個(gè)n次方根,所以(na)n=a恒成立.
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,當(dāng)n為奇數(shù),當(dāng)n為偶數(shù).
當(dāng)n為奇數(shù)時(shí),a∈R,nan=a恒成立.
例如:525=2,5(-2)5=-2.
當(dāng)n為偶數(shù)時(shí),a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的.
點(diǎn)評:實(shí)質(zhì)上是對n次方根的概念、性質(zhì)以及運(yùn)算性質(zhì)的深刻理解.
課堂小結(jié)
學(xué)生仔細(xì)交流討論后,在筆記上寫出本節(jié)課的學(xué)習(xí)收獲,教師用多媒體顯示在屏幕上.
1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈N*.用式子na表示,式子na叫根式,其中a叫被開方數(shù),n叫根指數(shù).
(1)當(dāng)n為偶數(shù)時(shí),a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0).
(2)n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號na表示.
(3)負(fù)數(shù)沒有偶次方根.0的任何次方根都是零.
2.掌握兩個(gè)公式:n為奇數(shù)時(shí),(na)n=a,n為偶數(shù)時(shí),nan=|a|=a,-a,a≥0,a0.
作業(yè)
課本習(xí)題2.1A組1.
補(bǔ)充作業(yè):
1.化簡下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|b2)2=3|a|b2.
2.若5<a<8,則式子(a-5)2-(a-8)2的值為__________.
解析:因?yàn)?<a<8,所以(a-5)2-(a-8)2=a-5-8+a=2a-13.
答案:2a-13
3.5+26+5-26=__________.
解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,
不難看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
設(shè)計(jì)感想
學(xué)生已經(jīng)學(xué)習(xí)了數(shù)的平方根和立方根,根式的內(nèi)容是這些內(nèi)容的推廣,本節(jié)課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時(shí),要結(jié)合已學(xué)內(nèi)容,列舉具體實(shí)例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來進(jìn)行,每種情況又分a>0,a<0,a=0三種情況,并結(jié)合具體例子講解,因此設(shè)計(jì)了大量的類比和練習(xí)題目,要靈活處理這些題目,幫助學(xué)生加以理解,所以需要用多媒體信息技術(shù)服務(wù)教學(xué).
第2課時(shí)
作者:郝云靜
導(dǎo)入新課
思路1.碳14測年法.原來宇宙射線在大氣層中能夠產(chǎn)生放射性碳14,并與氧結(jié)合成二氧化碳后進(jìn)入所有活組織,先為植物吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機(jī)體內(nèi)保持一定的水平.而當(dāng)有機(jī)體死亡后,即會停止吸收碳14,其組織內(nèi)的碳14便以約5730年的半衰期開始衰變并消失.對于任何含碳物質(zhì)只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經(jīng)過一定的時(shí)間,變?yōu)樵瓉淼囊话?.引出本節(jié)課題:指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪.
思路2.同學(xué)們,我們在初中學(xué)習(xí)了整數(shù)指數(shù)冪及其運(yùn)算性質(zhì),那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的.這就是本節(jié)的主講內(nèi)容,教師板書本節(jié)課題——指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪.
推進(jìn)新課
新知探究
提出問題
(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是什么?
(2)觀察以下式子,并總結(jié)出規(guī)律:a>0,
①;
②a8=(a4)2=a4=,;
③4a12=4(a3)4=a3=;
④2a10=2(a5)2=a5=.
(3)利用(2)的規(guī)律,你能表示下列式子嗎?
,,,(x0,m,n∈N*,且n1).
(4)你能用方根的意義來解釋(3)的式子嗎?
(5)你能推廣到一般的情形嗎?
活動:學(xué)生回顧初中學(xué)習(xí)的整數(shù)指數(shù)冪及運(yùn)算性質(zhì),仔細(xì)觀察,特別是每題的開始和最后兩步的指數(shù)之間的關(guān)系,教師引導(dǎo)學(xué)生體會方根的意義,用方根的意義加以解釋,指點(diǎn)啟發(fā)學(xué)生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學(xué)及時(shí)表揚(yáng),其他學(xué)生鼓勵(lì)提示.
討論結(jié)果:(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):an=aaa…a,a0=1(a≠0);00無意義;
a-n=1an(a≠0);aman=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.實(shí)質(zhì)上①5a10=,②a8=,③4a12=,④2a10=結(jié)果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質(zhì)沒變.
根據(jù)4個(gè)式子的最后結(jié)果可以總結(jié):當(dāng)根式的被開方數(shù)的指數(shù)能被根指數(shù)整除時(shí),根式可以寫成分?jǐn)?shù)作為指數(shù)的形式(分?jǐn)?shù)指數(shù)冪形式).
(3)利用(2)的規(guī)律,453=,375=,5a7=,nxm=.
(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是.
結(jié)果表明方根的結(jié)果和分?jǐn)?shù)指數(shù)冪是相通的.
(5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈N*,n>1).
綜上所述,我們得到正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義,教師板書:
規(guī)定:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈N*,n>1).
提出問題
(1)負(fù)整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?
(2)你能得出負(fù)分?jǐn)?shù)指數(shù)冪的意義嗎?
(3)你認(rèn)為應(yīng)怎樣規(guī)定零的分?jǐn)?shù)指數(shù)冪的意義?
(4)綜合上述,如何規(guī)定分?jǐn)?shù)指數(shù)冪的意義?
(5)分?jǐn)?shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個(gè)規(guī)定會產(chǎn)生什么樣的后果?
(6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?
活動:學(xué)生回想初中學(xué)習(xí)的情形,結(jié)合自己的學(xué)習(xí)體會回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負(fù)整數(shù)指數(shù)冪的意義來類比,把正分?jǐn)?shù)指數(shù)冪的意義與負(fù)分?jǐn)?shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運(yùn)算性質(zhì)類比可得有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師在黑板上板書,學(xué)生合作交流,以具體的實(shí)例說明a>0的必要性,教師及時(shí)作出評價(jià).
討論結(jié)果:(1)負(fù)整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N*.
(2)既然負(fù)整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義可得正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義.
規(guī)定:正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是==1nam(a>0,m,n∈N*,n>1).
(3)規(guī)定:零的分?jǐn)?shù)指數(shù)冪的意義是:零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義.
(4)教師板書分?jǐn)?shù)指數(shù)冪的意義.分?jǐn)?shù)指數(shù)冪的意義就是:
正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈N*,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是==1nam(a>0,m,n∈N*,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義.
(5)若沒有a>0這個(gè)條件會怎樣呢?
如=3-1=-1,=6(-1)2=1具有同樣意義的兩個(gè)式子出現(xiàn)了截然不同的結(jié)果,這只說明分?jǐn)?shù)指數(shù)冪在底數(shù)小于零時(shí)是無意義的.因此在把根式化成分?jǐn)?shù)指數(shù)時(shí),切記要使底數(shù)大于零,如無a>0的條件,比如式子3a2=,同時(shí)負(fù)數(shù)開奇次方是有意義的,負(fù)數(shù)開奇次方時(shí),應(yīng)把負(fù)號移到根式的外邊,然后再按規(guī)定化成分?jǐn)?shù)指數(shù)冪,也就是說,負(fù)分?jǐn)?shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負(fù)數(shù),負(fù)數(shù)只是出現(xiàn)在指數(shù)上.
(6)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù).
有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):
①aras=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(ab)r=arbr(a>0,b>0,r∈Q).
我們利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以解決一些問題,來看下面的例題.
應(yīng)用示例
例1求值:(1);(2);(3)12-5;(4).
活動:教師引導(dǎo)學(xué)生考慮解題的方法,利用冪的運(yùn)算性質(zhì)計(jì)算出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運(yùn)算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來.
解:(1)=22=4;
(2)=5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4)=23-3=278.
點(diǎn)評:本例主要考查冪值運(yùn)算,要按規(guī)定來解.在進(jìn)行冪值運(yùn)算時(shí),要首先考慮轉(zhuǎn)化為指數(shù)運(yùn)算,而不是首先轉(zhuǎn)化為熟悉的根式運(yùn)算,如=382=364=4.
例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式.
a3a;a23a2;a3a(a>0).
活動:學(xué)生觀察、思考,根據(jù)解題的順序,把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算,根式化為分?jǐn)?shù)指數(shù)冪時(shí),要由里往外依次進(jìn)行,把握好運(yùn)算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評價(jià)學(xué)生的解題情況,鼓勵(lì)學(xué)生注意總結(jié).
解:a3a=a3=;
a23a2=a2=;
a3a=.
點(diǎn)評:利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行根式運(yùn)算時(shí),其順序是先把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算.對于計(jì)算的結(jié)果,不強(qiáng)求統(tǒng)一用什么形式來表示,沒有特別要求,就用分?jǐn)?shù)指數(shù)冪的形式來表示,但結(jié)果不能既有分?jǐn)?shù)指數(shù)又有根式,也不能既有分母又有負(fù)指數(shù).
例3計(jì)算下列各式(式中字母都是正數(shù)).
(1);
(2).
活動:先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,四則運(yùn)算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內(nèi)的,整數(shù)冪的運(yùn)算性質(zhì)及運(yùn)算規(guī)律擴(kuò)充到分?jǐn)?shù)指數(shù)冪后,其運(yùn)算順序仍符合我們以前的四則運(yùn)算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項(xiàng)式的乘除運(yùn)算,可以用單項(xiàng)式的乘除法運(yùn)算順序進(jìn)行,要注意符號,第(2)小題是乘方運(yùn)算,可先按積的乘方計(jì)算,再按冪的乘方進(jìn)行計(jì)算,熟悉后可以簡化步驟.
解:(1)原式=[2×(-6)÷(-3)]=4ab0=4a;
(2)=m2n-3=m2n3.
點(diǎn)評:分?jǐn)?shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法.有了分?jǐn)?shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分?jǐn)?shù)指數(shù)冪的形式,用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則進(jìn)行運(yùn)算了.
本例主要是指數(shù)冪的運(yùn)算法則的綜合考查和應(yīng)用.
變式訓(xùn)練
求值:(1)333363;
(2)627m3125n64.
解:(1)333363==32=9;
(2)627m3125n64==9m225n4=925m2n-4.
例4計(jì)算下列各式:
(1)(325-125)÷425;
(2)a2a3a2(a>0).
活動:先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,化為同底.利用分?jǐn)?shù)指數(shù)冪計(jì)算,在第(1)小題中,只含有根式,且不是同次根式,比較難計(jì)算,但把根式先化為分?jǐn)?shù)指數(shù)冪再計(jì)算,這樣就簡便多了,第(2)小題也是先把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪后再由運(yùn)算法則計(jì)算,最后寫出解答.
解:(1)原式=
==65-5;
(2)a2a3a2==6a5.
知能訓(xùn)練
課本本節(jié)練習(xí)1,2,3
【補(bǔ)充練習(xí)】
教師用實(shí)物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對做得好的同學(xué)給予表揚(yáng)鼓勵(lì).
1.(1)下列運(yùn)算中,正確的是()
A.a(chǎn)2a3=a6B.(-a2)3=(-a3)2
C.(a-1)0=0D.(-a2)3=-a6
(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()
A.①②B.①③C.①②③④D.①③④
(3)(34a6)2(43a6)2等于()
A.a(chǎn)B.a(chǎn)2C.a(chǎn)3D.a(chǎn)4
(4)把根式-25(a-b)-2改寫成分?jǐn)?shù)指數(shù)冪的形式為()
A.B.
C.D.
(5)化簡的結(jié)果是()
A.6aB.-aC.-9aD.9a
2.計(jì)算:(1)--17-2+-3-1+(2-1)0=__________.
(2)設(shè)5x=4,5y=2,則52x-y=__________.
3.已知x+y=12,xy=9且x<y,求的值.
答案:1.(1)D(2)B(3)B(4)A(5)C2.(1)19(2)8
3.解:.
因?yàn)閤+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.
又因?yàn)閤<y,所以x-y=-2×33=-63.
所以原式==12-6-63=-33.
拓展提升
1.化簡:.
活動:學(xué)生觀察式子特點(diǎn),考慮x的指數(shù)之間的關(guān)系可以得到解題思路,應(yīng)對原式進(jìn)行因式分解,根據(jù)本題的特點(diǎn),注意到:
x-1=-13=;
x+1=+13=;
.
構(gòu)建解題思路教師適時(shí)啟發(fā)提示.
解:
=
=
=
=.
點(diǎn)撥:解這類題目,要注意運(yùn)用以下公式,
=a-b,
=a±+b,
=a±b.
2.已知,探究下列各式的值的求法.
(1)a+a-1;(2)a2+a-2;(3).
解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7;
(2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+a-2=47;
(3)由于,
所以有=a+a-1+1=8.
點(diǎn)撥:對“條件求值”問題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值.
課堂小結(jié)
活動:教師,本節(jié)課同學(xué)們有哪些收獲?請把你的學(xué)習(xí)收獲記錄在你的筆記本上,同學(xué)們之間相互交流.同時(shí)教師用投影儀顯示本堂課的知識要點(diǎn):
(1)分?jǐn)?shù)指數(shù)冪的意義就是:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈N*,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是==1nam(a>0,m,n∈N*,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義.
(2)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù).
(3)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):
①aras=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(ab)r=arbr(a>0,b>0,r∈Q).
(4)說明兩點(diǎn):
①分?jǐn)?shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關(guān)系.
②整數(shù)指數(shù)冪的運(yùn)算性質(zhì)對任意的有理數(shù)指數(shù)冪也同樣適用.因而分?jǐn)?shù)指數(shù)冪與根式可以互化,也可以利用=am來計(jì)算.
作業(yè)
課本習(xí)題2.1A組2,4.
設(shè)計(jì)感想
本節(jié)課是分?jǐn)?shù)指數(shù)冪的意義的引出及應(yīng)用,分?jǐn)?shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,要讓學(xué)生反復(fù)理解分?jǐn)?shù)指數(shù)冪的意義,教學(xué)中可以通過根式與分?jǐn)?shù)指數(shù)冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習(xí),強(qiáng)化訓(xùn)練,鞏固知識,要輔助以信息技術(shù)的手段來完成大容量的課堂教學(xué)任務(wù).
第3課時(shí)
作者:鄭芳鳴
導(dǎo)入新課
思路1.同學(xué)們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分?jǐn)?shù)到負(fù)分?jǐn)?shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴(kuò)充過程,自然數(shù)到整數(shù),整數(shù)到分?jǐn)?shù)(有理數(shù)),有理數(shù)到實(shí)數(shù).并且知道,在有理數(shù)到實(shí)數(shù)的擴(kuò)充過程中,增添的數(shù)是無理數(shù).對無理數(shù)指數(shù)冪,也是這樣擴(kuò)充而來.既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運(yùn)算(3)〕之無理數(shù)指數(shù)冪.
思路2.同學(xué)們,在初中我們學(xué)習(xí)了函數(shù)的知識,對函數(shù)有了一個(gè)初步的了解,到了高中,我們又對函數(shù)的概念進(jìn)行了進(jìn)一步的學(xué)習(xí),有了更深的理解,我們僅僅學(xué)了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠(yuǎn)遠(yuǎn)不能滿足我們的需要,隨著科學(xué)的發(fā)展,社會的進(jìn)步,我們還要學(xué)習(xí)許多函數(shù),其中就有指數(shù)函數(shù),為了學(xué)習(xí)指數(shù)函數(shù)的知識,我們必須學(xué)習(xí)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪,因此我們本節(jié)課學(xué)習(xí):指數(shù)與指數(shù)冪的運(yùn)算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題.
推進(jìn)新課
新知探究
提出問題
(1)我們知道2=1.41421356…,那么1.41,1.414,1.4142,1.41421,…,是2的什么近似值?而1.42,1.415,1.4143,1.41422,…,是2的什么近似值?
(2)多媒體顯示以下圖表:同學(xué)們從上面的兩個(gè)表中,能發(fā)現(xiàn)什么樣的規(guī)律?
2的過剩近似值
的近似值
1.511.18033989
1.429.829635328
1.4159.750851808
1.41439.73987262
1.414229.738618643
1.4142149.738524602
1.41421369.738518332
1.414213579.738517862
1.4142135639.738517752
……
的近似值
2的不足近似值
9.5182696941.4
9.6726699731.41
9.7351710391.414
9.7383051741.4142
9.7384619071.41421
9.7385089281.414213
9.7385167651.4142135
9.7385177051.41421356
9.7385177361.414213562
……
(3)你能給上述思想起個(gè)名字嗎?
(4)一個(gè)正數(shù)的無理數(shù)次冪到底是一個(gè)什么性質(zhì)的數(shù)呢?如,根據(jù)你學(xué)過的知識,能作出判斷并合理地解釋嗎?
(5)借助上面的結(jié)論你能說出一般性的結(jié)論嗎?
活動:教師引導(dǎo),學(xué)生回憶,教師提問,學(xué)生回答,積極交流,及時(shí)評價(jià)學(xué)生,學(xué)生有困惑時(shí)加以解釋,可用多媒體顯示輔助內(nèi)容:
問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向.
問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián).
問題(3)上述方法實(shí)際上是無限接近,最后是逼近.
問題(4)對問題給予大膽猜測,從數(shù)軸的觀點(diǎn)加以解釋.
問題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般.
討論結(jié)果:(1)1.41,1.414,1.4142,1.41421,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.4143,1.41422,…,這些數(shù)都大于2,稱2的過剩近似值.
(2)第一個(gè)表:從大于2的方向逼近2時(shí),就從51.5,51.42,51.415,51.4143,51.41422,…,即大于的方向逼近.
第二個(gè)表:從小于2的方向逼近2時(shí),就從51.4,51.41,51.414,51.4142,51.41421,…,即小于的方向逼近.
從另一角度來看這個(gè)問題,在數(shù)軸上近似地表示這些點(diǎn),數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.4142,51.41421,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.4143,51.41422,…,即大于的方向接近,可以說從兩個(gè)方向無限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.4142,51.41421,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.4143,51.41422,…,按上述變化規(guī)律變化的結(jié)果,事實(shí)上表示這些數(shù)的點(diǎn)從兩個(gè)方向向表示的點(diǎn)靠近,但這個(gè)點(diǎn)一定在數(shù)軸上,由此我們可得到的結(jié)論是一定是一個(gè)實(shí)數(shù),即51.4<51.41<51.414<51.4142<51.41421<…<<…<51.41422<51.4143<51.415<51.42<51.5.
充分表明是一個(gè)實(shí)數(shù).
(3)逼近思想,事實(shí)上里面含有極限的思想,這是以后要學(xué)的知識.
(4)根據(jù)(2)(3)我們可以推斷是一個(gè)實(shí)數(shù),猜測一個(gè)正數(shù)的無理數(shù)次冪是一個(gè)實(shí)數(shù).
(5)無理數(shù)指數(shù)冪的意義:
一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個(gè)確定的實(shí)數(shù).
也就是說無理數(shù)可以作為指數(shù),并且它的結(jié)果是一個(gè)實(shí)數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴(kuò)充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù).我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個(gè)確定的實(shí)數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪.
提出問題
(1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時(shí),必須規(guī)定底數(shù)是正數(shù)?
(2)無理數(shù)指數(shù)冪的運(yùn)算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運(yùn)算法則相通呢?
(3)你能給出實(shí)數(shù)指數(shù)冪的運(yùn)算法則嗎?
活動:教師組織學(xué)生互助合作,交流探討,引導(dǎo)他們用反例說明問題,注意類比,歸納.
對問題(1)回顧我們學(xué)習(xí)分?jǐn)?shù)指數(shù)冪的意義時(shí)對底數(shù)的規(guī)定,舉例說明.
對問題(2)結(jié)合有理數(shù)指數(shù)冪的運(yùn)算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個(gè)確定的實(shí)數(shù),那么無理數(shù)指數(shù)冪的運(yùn)算法則應(yīng)當(dāng)與有理數(shù)指數(shù)冪的運(yùn)算法則類似,并且相通.
對問題(3)有了有理數(shù)指數(shù)冪的運(yùn)算法則和無理數(shù)指數(shù)冪的運(yùn)算法則,實(shí)數(shù)的運(yùn)算法則自然就得到了.
討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個(gè)確定的實(shí)數(shù),就不會再造成混亂.
(2)因?yàn)闊o理數(shù)指數(shù)冪是一個(gè)確定的實(shí)數(shù),所以能進(jìn)行指數(shù)的運(yùn)算,也能進(jìn)行冪的運(yùn)算,有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),同樣也適用于無理數(shù)指數(shù)冪.類比有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以得到無理數(shù)指數(shù)冪的運(yùn)算法則:
①aras=ar+s(a>0,r,s都是無理數(shù)).
②(ar)s=ars(a>0,r,s都是無理數(shù)).
③(ab)r=arbr(a>0,b>0,r是無理數(shù)).
(3)指數(shù)冪擴(kuò)充到實(shí)數(shù)后,指數(shù)冪的運(yùn)算性質(zhì)也就推廣到了實(shí)數(shù)指數(shù)冪.
實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì):
對任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì):
①aras=ar+s(a>0,r,s∈R).
②(ar)s=ars(a>0,r,s∈R).
③(ab)r=arbr(a>0,b>0,r∈R).
應(yīng)用示例
例1利用函數(shù)計(jì)算器計(jì)算.(精確到0.001)
(1)0.32.1;(2)3.14-3;(3);(4).
活動:教師教會學(xué)生利用函數(shù)計(jì)算器計(jì)算,熟悉計(jì)算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值;
對于(2),先按底數(shù)3.14,再按xy鍵,再按負(fù)號-鍵,再按3,最后按=即可;
對于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可;
對于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按鍵,再按3,最后按=鍵.有時(shí)也可按2ndf或shift鍵,使用鍵上面的功能去運(yùn)算.
學(xué)生可以相互交流,挖掘計(jì)算器的用途.
解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)≈2.336;(4)≈6.705.
點(diǎn)評:熟練掌握用計(jì)算器計(jì)算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會;用四舍五入法求近似值,若保留小數(shù)點(diǎn)后n位,只需看第(n+1)位能否進(jìn)位即可.
例2求值或化簡.
(1)a-4b23ab2(a>0,b>0);
(2)(a>0,b>0);
(3)5-26+7-43-6-42.
活動:學(xué)生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達(dá)到最簡,對既有分?jǐn)?shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分?jǐn)?shù)指數(shù)冪的形式,便于運(yùn)算,教師有針對性地提示引導(dǎo),對(1)由里向外把根式化成分?jǐn)?shù)指數(shù)冪,要緊扣分?jǐn)?shù)指數(shù)冪的意義和運(yùn)算性質(zhì),對(2)既有分?jǐn)?shù)指數(shù)冪又有根式,應(yīng)當(dāng)統(tǒng)一起來,化為分?jǐn)?shù)指數(shù)冪,對(3)有多重根號的式子,應(yīng)先去根號,這里是二次根式,被開方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學(xué)生作及時(shí)的評價(jià),注意總結(jié)解題的方法和規(guī)律.
解:(1)a-4b23ab2==3b46a11.
點(diǎn)評:根式的運(yùn)算常?;蓛绲倪\(yùn)算進(jìn)行,計(jì)算結(jié)果如沒有特殊要求,就用根式的形式來表示.
(2)
=
=425a0b0=425.
點(diǎn)評:化簡這類式子一般有兩種辦法,一是首先用負(fù)指數(shù)冪的定義把負(fù)指數(shù)化成正指數(shù),另一個(gè)方法是采用分式的基本性質(zhì)把負(fù)指數(shù)化成正指數(shù).
(3)5-26+7-43-6-42
=(3-2)2+(2-3)2-(2-2)2
=3-2+2-3-2+2=0.
點(diǎn)評:考慮根號里面的數(shù)是一個(gè)完全平方數(shù),千萬注意方根的性質(zhì)的運(yùn)用.
例3已知,n∈N*,求(x+1+x2)n的值.
活動:學(xué)生思考,觀察題目的特點(diǎn),從整體上看,應(yīng)先化簡,然后再求值,要有預(yù)見性,與具有對稱性,它們的積是常數(shù)1,為我們解題提供了思路,教師引導(dǎo)學(xué)生考慮問題的思路,必要時(shí)給予提示.
=.
這時(shí)應(yīng)看到1+x2=,
這樣先算出1+x2,再算出1+x2,代入即可.
解:將代入1+x2,得1+x2=,
所以(x+1+x2)n=
=
==5.
點(diǎn)評:運(yùn)用整體思想和完全平方公式是解決本題的關(guān)鍵,要深刻理解這種做法.
知能訓(xùn)練
課本習(xí)題2.1A組3.
利用投影儀投射下列補(bǔ)充練習(xí):
1.化簡:的結(jié)果是()
A.B.
C.D.
解析:根據(jù)本題的特點(diǎn),注意到它的整體性,特別是指數(shù)的規(guī)律性,我們可以進(jìn)行適當(dāng)?shù)淖冃危?br>
因?yàn)?,所以原式的分子分母同乘以?br>
依次類推,所以.
答案:A
2.計(jì)算2790.5+0.1-2+-3π0+9-0.5+490.5×2-4.
解:原式=
=53+100+916-3+13+716=100.
3.計(jì)算a+2a-1+a-2a-1(a≥1).
解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1).
本題可以繼續(xù)向下做,去掉絕對值,作為思考留作課下練習(xí).
4.設(shè)a>0,,則(x+1+x2)n的值為__________.
解析:1+x2=.
這樣先算出1+x2,再算出1+x2,
將代入1+x2,得1+x2=.
所以(x+1+x2)n=
==a.
答案:a
拓展提升
參照我們說明無理數(shù)指數(shù)冪的意義的過程,請你說明無理數(shù)指數(shù)冪的意義.
活動:教師引導(dǎo)學(xué)生回顧無理數(shù)指數(shù)冪的意義的過程,利用計(jì)算器計(jì)算出3的近似值,取它的過剩近似值和不足近似值,根據(jù)這些近似值計(jì)算的過剩近似值和不足近似值,利用逼近思想,“逼出”的意義,學(xué)生合作交流,在投影儀上展示自己的探究結(jié)果.
解:3=1.73205080…,取它的過剩近似值和不足近似值如下表.
3的過剩近似值
的過剩近似值
3的不足近似值
的不足近似值
1.83.4822022531.73.249009585
1.743.3403516781.733.317278183
1.7333.3241834461.7313.319578342
1.73213.322110361.73193.321649849
1.732063.3220202521.732043.3219722
1.7320513.3219975291.7320493.321992923
1.73205093.3219972981.73205073.321996838
1.732050813.3219970911.732050793.321997045
…………
我們把用2作底數(shù),3的不足近似值作指數(shù)的各個(gè)冪排成從小到大的一列數(shù)
21.7,21.72,21.731,21.7319,…,
同樣把用2作底數(shù),3的過剩近似值作指數(shù)的各個(gè)冪排成從大到小的一列數(shù):
21.8,21.74,21.733,21.7321,…,不難看出3的過剩近似值和不足近似值相同的位數(shù)越多,即3的近似值精確度越高,以其過剩近似值和不足近似值為指數(shù)的冪2α?xí)絹碓节吔谕粋€(gè)數(shù),我們把這個(gè)數(shù)記為,
即21.7<21.73<21.731<21.7319<…<<…<21.7321<21.733<21.74<21.8.
也就是說是一個(gè)實(shí)數(shù),=3.321997…也可以這樣解釋:
當(dāng)3的過剩近似值從大于3的方向逼近3時(shí),23的近似值從大于的方向逼近;
當(dāng)3的不足近似值從小于3的方向逼近3時(shí),23的近似值從小于的方向逼近.
所以就是一串有理指數(shù)冪21.7,21.73,21.731,21.7319,…,和另一串有理指數(shù)冪21.8,21.74,21.733,21.7321,…,按上述規(guī)律變化的結(jié)果,即≈3.321997.
課堂小結(jié)
(1)無理指數(shù)冪的意義.
一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個(gè)確定的實(shí)數(shù).
(2)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì):
對任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì):
①aras=ar+s(a>0,r,s∈R).
②(ar)s=ars(a>0,r,s∈R).
③(ab)r=arbr(a>0,b>0,r∈R).
(3)逼近的思想,體會無限接近的含義.
作業(yè)
課本習(xí)題2.1B組2.
設(shè)計(jì)感想
無理數(shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,教學(xué)中要讓學(xué)生通過多媒體的演示,理解無理數(shù)指數(shù)冪的意義,教學(xué)中也可以讓學(xué)生自己通過實(shí)際情況去探索,自己得出結(jié)論,加深對概念的理解,本堂課內(nèi)容較為抽象,又不能進(jìn)行推理,只能通過多媒體的教學(xué)手段,讓學(xué)生體會,特別是逼近的思想、類比的思想,多作練習(xí),提高學(xué)生理解問題、分析問題的能力.
備課資料
【備用習(xí)題】
1.以下各式中成立且結(jié)果為最簡根式的是()
A.a(chǎn)5a3a10a7=10a4
B.3xy2(xy)2=y(tǒng)3x2
C.a(chǎn)2bb3aab3=8a7b15
D.(35-125)3=5+125125-235125
答案:B
2.對于a>0,r,s∈Q,以下運(yùn)算中正確的是()
A.a(chǎn)ras=arsB.(ar)s=ars
C.a(chǎn)br=arbsD.a(chǎn)rbs=(ab)r+s
答案:B
3.式子x-2x-1=x-2x-1成立當(dāng)且僅當(dāng)()
A.x-2x-1≥0B.x≠1C.x<1D.x≥2
解析:方法一:
要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.
若x≥2,則式子x-2x-1=x-2x-1成立.
故選D.
方法二:
對A,式子x-2x-1≥0連式子成立也保證不了,尤其x-2≤0,x-1<0時(shí)式子不成立.
對B,x-1<0時(shí)式子不成立.
對C,x<1時(shí)x-1無意義.
對D正確.
答案:D
4.化簡b-(2b-1)(1<b<2).
解:b-(2b-1)=(b-1)2=b-1(1<b<2).
5.計(jì)算32+5+32-5.
解:令x=32+5+32-5,
兩邊立方得x3=2+5+2-5+332+532-5(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.
∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.
∴32+5+32-5=1.