小學(xué)數(shù)學(xué)數(shù)學(xué)教案
發(fā)表時間:2021-07-20高三數(shù)學(xué)教案:《簡單的線性規(guī)劃》教學(xué)設(shè)計。
本文題目:高三數(shù)學(xué)教案:簡單的線性規(guī)劃
●知識梳理
1.二元一次不等式表示平面區(qū)域
在平面直角坐標(biāo)系中,已知直線Ax+By+C=0,坐標(biāo)平面內(nèi)的點P(x0,y0).
B>0時,①Ax0+By0+C>0,則點P(x0,y0)在直線的上方;②Ax0+By0+C
對于任意的二元一次不等式Ax+By+C>0(或
當(dāng)B>0時,①Ax+By+C>0表示直線Ax+By+C=0上方的區(qū)域;②Ax+By+C
2.線性規(guī)劃
求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題.
滿足線性約束條件的解(x,y)叫做可行解,由所有可行解組成的集合叫做可行域(類似函數(shù)的定義域);使目標(biāo)函數(shù)取得最大值或最小值的可行解叫做最優(yōu)解.生產(chǎn)實際中有許多問題都可以歸結(jié)為線性規(guī)劃問題.
線性規(guī)劃問題一般用圖解法,其步驟如下:
(1)根據(jù)題意,設(shè)出變量x、y;
(2)找出線性約束條件;
(3)確定線性目標(biāo)函數(shù)z=f(x,y);
(4)畫出可行域(即各約束條件所示區(qū)域的公共區(qū)域);
(5)利用線性目標(biāo)函數(shù)作平行直線系f(x,y)=t(t為參數(shù));
(6)觀察圖形,找到直線f(x,y)=t在可行域上使t取得欲求最值的位置,以確定最優(yōu)解,給出答案.
●點擊雙基
1.下列命題中正確的是
A.點(0,0)在區(qū)域x+y≥0內(nèi)
B.點(0,0)在區(qū)域x+y+1
C.點(1,0)在區(qū)域y>2x內(nèi)
D.點(0,1)在區(qū)域x-y+1>0內(nèi)
解析:將(0,0)代入x+y≥0,成立.
答案:A
2.(2005年海淀區(qū)期末練習(xí)題)設(shè)動點坐標(biāo)(x,y)滿足
(x-y+1)(x+y-4)≥0,
x≥3,
A. B. C. D.10
解析:數(shù)形結(jié)合可知當(dāng)x=3,y=1時,x2+y2的最小值為10.
答案:D
2x-y+1≥0,
x-2y-1≤0,
x+y≤1
A.正三角形及其內(nèi)部
B.等腰三角形及其內(nèi)部
C.在第一象限內(nèi)的一個無界區(qū)域
D.不包含第一象限內(nèi)的點的一個有界區(qū)域
解析:將(0,0)代入不等式組適合C,不對;將( , )代入不等式組適合D,不對;又知2x-y+1=0與x-2y-1=0關(guān)于y=x對稱且所夾頂角α滿足
tanα= = .
∴α≠ .
答案:B
4.點(-2,t)在直線2x-3y+6=0的上方,則t的取值范圍是________________.
解析:(-2,t)在2x-3y+6=0的上方,則2×(-2)-3t+6 .
答案:t>
5.不等式組 表示的平面區(qū)域內(nèi)的整點(橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點)共有____________個.
解析:(1,1),(1,2),(2,1),共3個.
答案:3
●典例剖析
【例1】 求不等式|x-1|+|y-1|≤2表示的平面區(qū)域的面積.
剖析:依據(jù)條件畫出所表達(dá)的區(qū)域,再根據(jù)區(qū)域的特點求其面積.
解:|x-1|+|y-1|≤2可化為
x≥1, x≥1, x≤1, x≤1,
y≥1, y≤1, y≥1, y≤1,
x+y ≤4 x-y ≤2 y-x ≤2 x+y≥0.
其平面區(qū)域如圖.
∴面積S= ×4×4=8.
評述:畫平面區(qū)域時作圖要盡量準(zhǔn)確,要注意邊界.
深化拓展
若再求:① ;② 的值域,你會做嗎?
答案: ①(-∞,- ]∪[ ,+∞);②[1,5].
【例2】 某人上午7時,乘摩托艇以勻速v n mile/h(4≤v≤20)從A港出發(fā)到距50 n mile的B港去,然后乘汽車以勻速w km/h(30≤w≤100)自B港向距300 km的C市駛?cè)?應(yīng)該在同一天下午4至9點到達(dá)C市.設(shè)乘汽車、摩托艇去所需要的時間分別是x h、y h.
(1)作圖表示滿足上述條件的x、y范圍;
(2)如果已知所需的經(jīng)費
p=100+3×(5-x)+2×(8-y)(元),
那么v、w分別是多少時走得最經(jīng)濟(jì)?此時需花費多少元?
剖析:由p=100+3×(5-x)+2×(8-y)可知影響花費的是3x+2y的取值范圍.
解:(1)依題意得v= ,w= ,4≤v≤20,30≤w≤100.
∴3≤x≤10, ≤y≤ . ①
由于乘汽車、摩托艇所需的時間和x+y應(yīng)在9至14個小時之間,即9≤x+y≤14.②
因此,滿足①②的點(x,y)的存在范圍是圖中陰影部分(包括邊界).
(2)∵p=100+3?(5-x)+2?(8-y),
∴3x+2y=131-p.
設(shè)131-p=k,那么當(dāng)k最大時,p最小.在通過圖中的陰影部分區(qū)域(包括邊界)且斜率為- 的直線3x+2y=k中,使k值最大的直線必通過點(10,4),即當(dāng)x=10,y=4時,p最小.
此時,v=12.5,w=30,p的最小值為93元.
評述:線性規(guī)劃問題首先要根據(jù)實際問題列出表達(dá)約束條件的不等式.然后分析要求量的幾何意義.
【例3】 某礦山車隊有4輛載重量為10 t的甲型卡車和7輛載重量為6 t的乙型卡車,有9名駕駛員.此車隊每天至少要運360 t礦石至冶煉廠.已知甲型卡車每輛每天可往返6次,乙型卡車每輛每天可往返8次.甲型卡車每輛每天的成本費為252元,乙型卡車每輛每天的成本費為160元.問每天派出甲型車與乙型車各多少輛,車隊所花成本費最低?
剖析:弄清題意,明確與運輸成本有關(guān)的變量的各型車的輛數(shù),找出它們的約束條件,列出目標(biāo)函數(shù),用圖解法求其整數(shù)最優(yōu)解.
解:設(shè)每天派出甲型車x輛、乙型車y輛,車隊所花成本費為z元,那么
x+y≤9,
10×6x+6×8x≥360,
0≤x≤4,
0≤y≤7.
z=252x+160y,
其中x、y∈N.
作出不等式組所表示的平面區(qū)域,即可行域,如圖.
作出直線l0:252x+160y=0,把直線l向右上方平移,使其經(jīng)過可行域上的整點,且使在y軸上的截距最小.觀察圖形,可見當(dāng)直線252x+160y=t經(jīng)過點(2,5)時,滿足上述要求.
此時,z=252x+160y取得最小值,即x=2,y=5時,zmin=252×2+160×5=1304.
答:每天派出甲型車2輛,乙型車5輛,車隊所用成本費最低.
評述:用圖解法解線性規(guī)劃題時,求整數(shù)最優(yōu)解是個難點,對作圖精度要求較高,平行直線系f(x,y)=t的斜率要畫準(zhǔn),可行域內(nèi)的整點要找準(zhǔn),最好使用“網(wǎng)點法”先作出可行域中的各整點.
●闖關(guān)訓(xùn)練
夯實基礎(chǔ)
1.(x-1)2+(y-1)2=1是|x-1|+|y-1|≤1的__________條件.
A.充分而不必要 B.必要而不充分
C.充分且必要 D.既不充分也不必要
解析:數(shù)形結(jié)合.
答案:B
2.(x+2y+1)(x-y+4)≤0表示的平面區(qū)域為
解析:可轉(zhuǎn)化為
x+2y+1≥0, x+2y+1≤0,
x-y+4≤0 x-y+4≥0.
答案:B
3.(2004年全國卷Ⅱ,14)設(shè)x、y滿足約束條件
x≥0,
x≥y,
2x-y≤1,則z=3x+2y的最大值是____________.
解析:如圖,當(dāng)x=y=1時,zmax=5.
答案:5
x-4y+3≤0,
3x+5y-25≤0,
x≥1,
_________.
解析:作出可行域,如圖.當(dāng)把z看作常數(shù)時,它表示直線y=zx的斜率,因此,當(dāng)直線y=zx過點A時,z最大;當(dāng)直線y=zx過點B時,z最小.
x=1,
3x+5y-25=0,得A(1, ).
x-4y+3=0,
3x+5y-25=0,
∴zmax= = ,zmin= .
答案:
5.畫出以A(3,-1)、B(-1,1)、C(1,3)為頂點的△ABC的區(qū)域(包括各邊),寫出該區(qū)域所表示的二元一次不等式組,并求以該區(qū)域為可行域的目標(biāo)函數(shù)z=3x-2y的最大值和最小值.
分析:本例含三個問題:①畫指定區(qū)域;②寫所畫區(qū)域的代數(shù)表達(dá)式——不等式組; ③求以所寫不等式組為約束條件的給定目標(biāo)函數(shù)的最值.
解:如圖,連結(jié)點A、B、C,則直線AB、BC、CA所圍成的區(qū)域為所求△ABC區(qū)域.
直線AB的方程為x+2y-1=0,BC及CA的直線方程分別為x-y+2=0,2x+y-5=0.
在△ABC內(nèi)取一點P(1,1),分別代入x+2y-1,x-y+2,2x+y-5得x+2y-1>0,x-y+2>0,2x+y-5
因此所求區(qū)域的不等式組為
x+2y-1≥0,
x-y+2≥0,
2x+y-5≤0.
作平行于直線3x-2y=0的直線系3x-2y=t(t為參數(shù)),即平移直線y= x,觀察圖形可知:當(dāng)直線y= x- t過A(3,-1)時,縱截距- t最小.此時t最大,tmax=3×3-2× (-1)=11;
當(dāng)直線y= x- t經(jīng)過點B(-1,1)時,縱截距- t最大,此時t有最小值為tmin= 3×(-1)-2×1=-5.
因此,函數(shù)z=3x-2y在約束條件
x+2y-1≥0,
x-y+2≥0,
2x+y-5≤0
6.某校伙食長期以面粉和大米為主食,面食每100 g含蛋白質(zhì)6個單位,含淀粉4個單位,售價0.5元,米食每100 g含蛋白質(zhì)3個單位,含淀粉7個單位,售價0.4元,學(xué)校要求給學(xué)生配制盒飯,每盒盒飯至少有8個單位的蛋白質(zhì)和10個單位的淀粉,問應(yīng)如何配制盒飯,才既科學(xué)又費用最少?
解:設(shè)每盒盒飯需要面食x(百克),米食y(百克),
所需費用為S=0.5x+0.4y,且x、y滿足
6x+3y≥8,
4x+7y≥10,
x≥0,
y≥0,
由圖可知,直線y=- x+ S過A( , )時,縱截距 S最小,即S最小.
故每盒盒飯為面食 百克,米食 百克時既科學(xué)又費用最少.
培養(yǎng)能力
7.配制A、B兩種藥劑,需要甲、乙兩種原料,已知配一劑A種藥需甲料3 mg,乙料5 mg;配一劑B種藥需甲料5 mg,乙料4 mg.今有甲料20 mg,乙料25 mg,若A、B兩種藥至少各配一劑,問共有多少種配制方法?
解:設(shè)A、B兩種藥分別配x、y劑(x、y∈N),則
x≥1,
y≥1,
3x+5y≤20,
5x+4y≤25.
上述不等式組的解集是以直線x=1,y=1,3x+5y=20及5x+4y=25為邊界所圍成的區(qū)域,這個區(qū)域內(nèi)的整點為(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)、(3,2)、(4,1).所以,在至少各配一劑的情況下,共有8種不同的配制方法.
8.某公司計劃在今年內(nèi)同時出售變頻空調(diào)機和智能洗衣機,由于這兩種產(chǎn)品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實際情況(如資金、勞動力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤達(dá)到最大.已知對這兩種產(chǎn)品有直接限制的因素是資金和勞動力,通過調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:
資 金 單位產(chǎn)品所需資金(百元) 月資金供應(yīng)量(百元)
空調(diào)機 洗衣機
成 本 30 20 300
勞動力(工資) 5 10 110
單位利潤 6 8
試問:怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤達(dá)到最大,最大利潤是多少?
解:設(shè)空調(diào)機、洗衣機的月供應(yīng)量分別是x、y臺,總利潤是P,則P=6x+8y,由題意有
30x+20y≤300,
5x+10y≤110,
x≥0,
y≥0,
x、y均為整數(shù).
由圖知直線y=- x+ P過M(4,9)時,縱截距最大.這時P也取最大值Pmax=6×4+8×9=96(百元).
故當(dāng)月供應(yīng)量為空調(diào)機4臺,洗衣機9臺時,可獲得最大利潤9600元.
探究創(chuàng)新
9.實系數(shù)方程f(x)=x2+ax+2b=0的一個根在(0,1)內(nèi),另一個根在(1,2)內(nèi),求:
(1) 的值域;
(2)(a-1)2+(b-2)2的值域;
(3)a+b-3的值域.
f(0)>0
f(1)
f(2)>0
b>0,
a+b+1
a+b+2>0.
如圖所示. A(-3,1)、B(-2,0)、C(-1,0).
又由所要求的量的幾何意義知,值域分別為(1)( ,1);(2)(8,17);(3)(-5,-4).
●思悟小結(jié)
簡單的線性規(guī)劃在實際生產(chǎn)生活中應(yīng)用非常廣泛,主要解決的問題是:在資源的限制下,如何使用資源來完成最多的生產(chǎn)任務(wù);或是給定一項任務(wù),如何合理安排和規(guī)劃,能以最少的資源來完成.如常見的任務(wù)安排問題、配料問題、下料問題、布局問題、庫存問題,通常解法是將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,歸結(jié)為線性規(guī)劃,使用圖解法解決.
圖解法解決線性規(guī)劃問題時,根據(jù)約束條件畫出可行域是關(guān)鍵的一步.一般地,可行域可以是封閉的多邊形,也可以是一側(cè)開放的非封閉平面區(qū)域.第二是畫好線性目標(biāo)函數(shù)對應(yīng)的平行直線系,特別是其斜率與可行域邊界直線斜率的大小關(guān)系要判斷準(zhǔn)確.通常最優(yōu)解在可行域的頂點(即邊界線的交點)處取得,但最優(yōu)整數(shù)解不一定是頂點坐標(biāo)的近似值.它應(yīng)是目標(biāo)函數(shù)所對應(yīng)的直線平移進(jìn)入可行域最先或最后經(jīng)過的那一整點的坐標(biāo).
●教師下載中心
教學(xué)點睛
線性規(guī)劃是新增添的教學(xué)內(nèi)容,應(yīng)予以足夠重視.
線性規(guī)劃問題中的可行域,實際上是二元一次不等式(組)表示的平面區(qū)域,是解決線性規(guī)劃問題的基礎(chǔ),因為在直線Ax+By+C=0同一側(cè)的所有點(x,y)實數(shù)Ax+By+C的符號相同,所以只需在此直線的某一側(cè)任取一點(x0,y0)〔若原點不在直線上,則取原點(0,0)最簡便〕,把它的坐標(biāo)代入Ax+By+C=0,由其值的符號即可判斷二元一次不等式Ax+By+C>0(或
在求線性目標(biāo)函數(shù)z=ax+by的最大值或最小值時,設(shè)ax+by=t,則此直線往右(或左)平移時,t值隨之增大(或減小),要會在可行域中確定最優(yōu)解.
解線性規(guī)劃應(yīng)用題步驟:(1)設(shè)出決策變量,找出線性約束條件和線性目標(biāo)函數(shù); (2)利用圖象在線性約束條件下找出決策變量,使線性目標(biāo)函數(shù)達(dá)到最大(或最小).
拓展題例
【例1】 已知f(x)=px2-q且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的范圍.
解:∵-4≤f(1)≤-1,-1≤f(2)≤5,
p-q≤-1,
p-q≥-4,
4p-q≤5,
4p-q≥-1.
求z=9p-q的最值.
p=0,
q=1,
zmin=-1,
p=3,
q=7,
∴-1≤f(3)≤20.
【例2】 某汽車公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型號的汽車,若A廠每小時可完成1輛甲型車和2輛乙型車;B廠每小時可完成3輛甲型車和1輛乙型車.今欲制造40輛甲型車和20輛乙型車,問這兩家工廠各工作幾小時,才能使所費的總工作時數(shù)最少?
解:設(shè)A廠工作x h,B廠工作y h,總工作時數(shù)為t h,則t=x+y,且x+3y≥40,2x+y≥20,x≥0,y≥0,可行解區(qū)域如圖.而符合問題的解為此區(qū)域內(nèi)的格子點(縱、橫坐標(biāo)都是整數(shù)的點稱為格子點),于是問題變?yōu)橐诖丝尚薪鈪^(qū)域內(nèi),找出格子點(x,y),使t=x+y的值為最小.
由圖知當(dāng)直線l:y=-x+t過Q點時,縱、橫截距t最小,但由于符合題意的解必須是格子點,我們還必須看Q點是否是格子點.
x+3y=40,
2x+y=20,
得Q(4,12)為格子點.
故A廠工作4 h,B廠工作12 h,可使所費的總工作時數(shù)最少.
相關(guān)推薦
高二數(shù)學(xué)教案:《簡單的線性規(guī)劃》教學(xué)設(shè)計(二)
高二數(shù)學(xué)教案:《簡單的線性規(guī)劃》教學(xué)設(shè)計(二)
教學(xué)目標(biāo)
(1)使學(xué)生了解并會用二元一次不等式表示平面區(qū)域以及用二元一次不等式組表示平面區(qū)域;
(2)了解線性規(guī)化的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;
(3)了解線性規(guī)化問題的圖解法,并能應(yīng)用它解決一些簡單的實際問題;
(4)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建模”和解決實際問題的能力;
(5)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識,激勵學(xué)生勇于創(chuàng)新.
教學(xué)建議
一、知識結(jié)構(gòu)
教科書首先通過一個具體問題,介紹了二元一次不等式表示平面區(qū)域.再通過一個具體實例,介紹了線性規(guī)化問題及有關(guān)的幾個基本概念及一種基本解法-圖解法,并利用幾道例題說明線性規(guī)化在實際中的應(yīng)用.
二、重點、難點分析
本小節(jié)的重點是二元一次不等式(組)表示平面的區(qū)域.
對學(xué)生來說,二元一次不等式(組)表示平面的區(qū)域是一個比較陌生、抽象的概念,按高二學(xué)生現(xiàn)有的知識和認(rèn)知水平難以透徹理解,因此學(xué)習(xí)二元一次不等式(組)表示平面的區(qū)域分為兩個大的層次:
(1)二元一次不等式表示平面區(qū)域.首先通過建立新舊知識的聯(lián)系,自然地給出概念.明確二元一次不等式在平面直角坐標(biāo)系中表示直線某一側(cè)所有點組成的平面區(qū)域不包含邊界直線(畫成虛線).其次再擴大到所表示的平面區(qū)域是包含邊界直線且要把邊界直線畫成實線.
(2)二元一次不等式組表示平面區(qū)域.在理解二元一次不等式表示平面區(qū)域含義的基礎(chǔ)上,畫不等式組所表示的平面區(qū)域,找出各個不等式所表示的平面區(qū)域的公共部分.這是學(xué)生對代數(shù)問題等價轉(zhuǎn)化為幾何問題以及數(shù)學(xué)建模方法解決實際問題的基礎(chǔ).
難點是把實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答.
對許多學(xué)生來說,從抽象到的化歸并不比從具體到抽象遇到的問題少,學(xué)生解數(shù)學(xué)應(yīng)用題的最常見困難是不會將實際問題提煉成數(shù)學(xué)問題,即不會建模.所以把實際問題轉(zhuǎn)化為線性規(guī)劃問題作為本節(jié)的難點,并緊緊圍繞如何引導(dǎo)學(xué)生根據(jù)實際問題中的已知條件,找出約束條件和目標(biāo)函數(shù),然后利用圖解法求出最優(yōu)解作為突破這個難點的關(guān)鍵.
對學(xué)生而言解決應(yīng)用問題的障礙主要有三類:①不能正確理解題意,弄清各元素之間的關(guān)系;②不能分清問題的主次關(guān)系,因而抓不住問題的本質(zhì),無法建立數(shù)學(xué)模型;③孤立地考慮單個的問題情景,不能多方聯(lián)想,形成正遷移.針對這些障礙以及題目本身文字過長等因素,將本課設(shè)計為計算機輔助教學(xué),從而將實際問題鮮活直觀地展現(xiàn)在學(xué)生面前,以利于理解;分析完題后,能夠抓住問題的本質(zhì)特征,從而將實際問題抽象概括為線性規(guī)劃問題.另外,利用計算機可以較快地幫助學(xué)生掌握尋找整點最優(yōu)解的方法.
三、教法建議
(1)對學(xué)生來說,二元一次不等式(組)表示平面的區(qū)域是一個比較陌生的概念,不象二元一次方程表示直線那樣已早有所知,為使學(xué)生對這一概念的引進(jìn)不感到突然,應(yīng)建立新舊知識的聯(lián)系,以便自然地給出概念
(2)建議將本節(jié)新課講授分為五步(思考、嘗試、猜想、證明、歸納)來進(jìn)行,目的是為了分散難點,層層遞進(jìn),突出重點,只要學(xué)生對舊知識掌握較好,完全有可能由學(xué)生主動去探求新知,得出結(jié)論.
(3)要舉幾個典型例題,特別是似是而非的例子,對理解二元一次不等式(組)表示的平面區(qū)域的含義是十分必要的.
(4)建議通過本節(jié)教學(xué)著重培養(yǎng)學(xué)生掌握“數(shù)形結(jié)合”的數(shù)學(xué)思想,盡管側(cè)重于用“數(shù)”研究“形”,但同時也用“形”去研究“數(shù)”,這對培養(yǎng)學(xué)生觀察、聯(lián)想、猜測、歸納等數(shù)學(xué)能力是大有益處的.
(5)對作業(yè)、思考題、研究性題的建議:①作業(yè)主要訓(xùn)練學(xué)生規(guī)范的解題步驟和作圖能力;②思考題主要供學(xué)有余力的學(xué)生課后完成;③研究性題綜合性較大,主要用于拓寬學(xué)生的思維.
(6)若實際問題要求的最優(yōu)解是整數(shù)解,而我們利用圖解法得到的解為非整數(shù)解(近似解),應(yīng)作適當(dāng)?shù)恼{(diào)整,其方法應(yīng)以與線性目標(biāo)函數(shù)的直線的距離為依據(jù),在直線的附近尋求與此直線距離最近的整點,不要在用圖解法所得到的近似解附近尋找.
如果可行域中的整點數(shù)目很少,采用逐個試驗法也可.
(7)在線性規(guī)劃的實際問題中,主要掌握兩種類型:一是給定一定數(shù)量的人力、物力資源,問怎樣運用這些資源能使完成的任務(wù)量最大,收到的效益最大;二是給定一項任務(wù)問怎樣統(tǒng)籌安排,能使完成的這項任務(wù)耗費的人力、物力資源最?。?/p>
線性規(guī)劃教學(xué)設(shè)計方案(一)
教學(xué)目標(biāo)
使學(xué)生了解并會作二元一次不等式和不等式組表示的區(qū)域.
重點難點
了解二元一次不等式表示平面區(qū)域.
教學(xué)過程
【引入新課】
我們知道一元一次不等式和一元二次不等式的解集都表示直線上的點集,那么在平面坐標(biāo)系中,二元一次不等式的解集的意義是什么呢?
【二元一次不等式表示的平面區(qū)域】
1.先分析一個具體的例子
簡單的線性規(guī)劃問題
簡單的線性規(guī)劃問題
使用說明1.課前完成語系學(xué)案上的問題導(dǎo)學(xué)及例題.
2.認(rèn)真限時完成,規(guī)范書寫,課堂小組合作探討,答疑解惑.
學(xué)習(xí)目標(biāo):(1)了解線性規(guī)劃的意義及線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域、最優(yōu)解等概念;
(2)能根據(jù)條件,建立線性目標(biāo)函數(shù);
(3)了解線性規(guī)劃問題的圖解法,并會用圖解法求線性目標(biāo)函數(shù)的最大值、最小值
問題導(dǎo)學(xué):
1.對于關(guān)于兩個變量x,y的不等關(guān)系表示成的不等式(組),稱為(),如果約束條件中都是關(guān)于x,y的一次不等式,稱為()
2.在線性約束條件下,欲達(dá)到最大值或最小值所涉及的關(guān)于變量x,y的函數(shù)解析式=f(x,y),稱為(),當(dāng)f(x,y)是關(guān)于x,y的一次解析式時,z=f(x,y)稱為()
3.在線性約束條件下求線性目標(biāo)函數(shù)的最大值或最小值問題,統(tǒng)稱為(),滿足線性約束條件的解(x,y)叫做()由所有可行解組成的集合叫做(),使目標(biāo)函數(shù)取得最大值或最小值的可行解叫做這個問題的(),使x,y均為整數(shù)的最優(yōu)解叫做()。
4.解線性規(guī)劃應(yīng)用題的一般步驟:
1.設(shè)出_________
2.列出_________,確定_________
3.畫出_________
4.作目標(biāo)函數(shù)表示的一族平行直線,使其中某條直線與_________有交點,
5.判斷_________求出目標(biāo)函數(shù)的_________,并回到原問題中作答。.
典型例題:
例1.(1)求z=2x+y的最大值,使x、y滿足約束條件
(2)求z=3x+5y的最大值和最小值,使x、y滿足約束條件
例2.某工廠用A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一件甲產(chǎn)品使用4個A配件耗時1h,每生產(chǎn)一件乙產(chǎn)品使用4個B配件耗時2h,該廠每天最多可從配件廠獲得16個A配件和12個B配件,,生產(chǎn)一件甲產(chǎn)品獲利2萬元,生產(chǎn)一件乙產(chǎn)品獲利3萬元,采用哪種生產(chǎn)安排利潤最大?(按每天8h計算)
基礎(chǔ)測評:
一.選擇題.
1.若x0,y0,且x+y1,則z=x+y的最大值為()
A-1B1
C2D-2
2.目標(biāo)函數(shù)z=2x-y,將其看成直線方程時,z的意義是()
A,該直線的截距
B.該直線的縱截距
C.該直線的縱截距的相反數(shù)
D.該直線的橫截距
3.不等式組x–y+5≥0x+y≥0x≤3表示的平面區(qū)域的面積等于()
A、32B、1214C、1154D、632
4.有5輛6噸的汽車,4輛4噸的汽車,要運送最多的貨物,完成這項運輸任務(wù)的線性目標(biāo)函數(shù)為()
A,Z=6x+4yBz=5x+4y
Cz=x+yDz=4x+5y
5..如圖,表示的平面區(qū)域是()
6.給出平面區(qū)域如圖7-28所示,其中A(5,3),B(1,1),C(1,5),若使目標(biāo)函數(shù)z=ax+y(a0)取得最大值的最優(yōu)解有無窮多個,則a的值是()
A.B.C.2D.
二填空題
7.z=3x+2y,x、y滿足,在直線x=3上找出三個整點可行解為__________。
8.給出下面的線性規(guī)劃問題:求z=3x+5y的最大值和最小值,使x、y滿足約束條件,欲使目標(biāo)函數(shù)z只有最小值而無最大值,請你設(shè)計一種改變約束條件的辦法(仍由三個不等式構(gòu)成,且只能改變其中一個不等式),那么結(jié)果是__________。
9.已知變量x,y滿足條件x-4y-3
3x+5y25
x1
,設(shè)z=2x+y,取點(3,2)可求得z=8;取點(5,2)可求得=12;取點(1,1)可求得=3;取點(0,0)可求得z=0,點(3,2)叫做__________。
,點(0,0)叫做__________。點(5,2)和點(1,1)均叫做_________。
三解答題;
10.已知x、y滿足不等式組,求z=3x+y的最小值。
11.已知點(x,y)滿足不等式組,求在這些點中,
①使目標(biāo)函數(shù)k=6x+8y取得最大值的點P的坐標(biāo);
②使目標(biāo)函數(shù)k=8x+6y取得最大值的點P的坐標(biāo).
12.下表給出X、Y、Z三種食品的維生素含量及其成本
XYZ
維生素A/單位/千克400500300
維生素B/單位/千克700100300
成本/(元/千克)643
現(xiàn)欲將三種食物混合成100千克的混合食品,要求至少含35000單位維生素A,40000單位維生素B,采用何種配比成本最?。?br>
簡單線性規(guī)劃教案
俗話說,凡事預(yù)則立,不預(yù)則廢。高中教師要準(zhǔn)備好教案,這是高中教師需要精心準(zhǔn)備的。教案可以讓學(xué)生們能夠更好的找到學(xué)習(xí)的樂趣,幫助高中教師緩解教學(xué)的壓力,提高教學(xué)質(zhì)量。您知道高中教案應(yīng)該要怎么下筆嗎?考慮到您的需要,小編特地編輯了“簡單線性規(guī)劃教案”,相信能對大家有所幫助。
教學(xué)設(shè)計
3.5.2簡單線性規(guī)劃
整體設(shè)計
教學(xué)分析
本節(jié)內(nèi)容在教材中有著重要的地位與作用.線性規(guī)劃是利用數(shù)學(xué)為工具,來研究一定的人、財、物等資源在一定條件下,如何精打細(xì)算巧安排,用最少的資源,取得最大的經(jīng)濟(jì)效益.它是數(shù)學(xué)規(guī)劃中理論較完整、方法較成熟、應(yīng)用較廣泛的一個分支,并能解決科學(xué)研究、工程設(shè)計、經(jīng)濟(jì)管理等許多方面的實際問題.中學(xué)所學(xué)的線性規(guī)劃只是規(guī)劃論中的極小一部分,但這部分內(nèi)容體現(xiàn)了數(shù)學(xué)的工具性、應(yīng)用性,同時也滲透了化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,為學(xué)生今后解決實際問題提供了一種重要的解題方法——數(shù)學(xué)建模法.通過這部分內(nèi)容的學(xué)習(xí),可使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力.
把實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是本節(jié)的重點也是難點.對許多學(xué)生來說,解數(shù)學(xué)應(yīng)用題的最常見的困難是不會將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,即不會建模,所以把實際問題轉(zhuǎn)化為線性規(guī)劃問題作為本節(jié)的難點.對學(xué)生而言,解決應(yīng)用問題的障礙主要有三類:①不能正確理解題意,弄清各元素之間的關(guān)系;②不能分清問題的主次關(guān)系,因而抓不住問題的本質(zhì),無法建立數(shù)學(xué)模型;③孤立地考慮單個的問題情境,不能多方面聯(lián)想,形成正遷移.針對這些障礙以及題目本身文字過長等因素,將本節(jié)設(shè)計為計算機輔助教學(xué),充分利用現(xiàn)代化教學(xué)工具,從而將實際問題鮮活直觀地展現(xiàn)在學(xué)生面前,以利于理解.
實際教學(xué)中注意以下幾個問題:①用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵.可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找到目標(biāo)函數(shù).②可行域就是二元一次不等式組所表示的平面區(qū)域,可行域可以是封閉的多邊形,也可以是一側(cè)開放的無限大的平面區(qū)域.③如果可行域是一個凸多邊形,那么一般在其頂點處使目標(biāo)函數(shù)取得最大值或最小值,最優(yōu)解一般就是多邊形的某個頂點.到底哪個頂點為最優(yōu)解,可有兩種確定方法:一是將目標(biāo)函數(shù)的直線平行移動,最先通過或最后通過的頂點便是;另一種方法可利用圍成可行域的直線的斜率來判斷.④若實際問題要求的最優(yōu)解是整數(shù)解,而我們利用圖解法得到的解為非整數(shù)解(近似解),應(yīng)作適當(dāng)?shù)恼{(diào)整.其方法應(yīng)以與線性目標(biāo)函數(shù)的直線的距離為依據(jù),在直線的附近尋求與此直線距離最近的整點,不要在用圖解法所得到的近似解附近尋找.如果可行域中的整點數(shù)目很少,采用逐個試驗法也是很有效的辦法.⑤在線性規(guī)劃的實際問題中,主要掌握兩種類型:一是給定一定數(shù)量的人力、物力資源,問怎樣運用這些資源能使完成的任務(wù)量最大,收到的效益最大;二是給定一項任務(wù),問怎樣統(tǒng)籌安排,能使完成的這項任務(wù)耗費的人力、物力資源最?。?br>
如果條件允許,可將本節(jié)的思考與討論融入課堂.
三維目標(biāo)
1.使學(xué)生了解線性規(guī)劃的意義以及約束條件、目標(biāo)函數(shù)、可行解、可行域、最優(yōu)解等基本概念;了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的實際問題.
2.通過本節(jié)內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建?!焙徒鉀Q實際問題的能力.
3.通過本節(jié)學(xué)習(xí),理解線性規(guī)劃求最優(yōu)解的原理,明確線性規(guī)劃在現(xiàn)實生活中的意義.
重點難點
教學(xué)重點:求線性目標(biāo)函數(shù)的最值問題,培養(yǎng)學(xué)生“用數(shù)學(xué)”的意識,理解線性規(guī)劃最優(yōu)解的原理.
教學(xué)難點:把實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答.
課時安排
2課時
教學(xué)過程
第1課時
導(dǎo)入新課
思路1.(問題引入)由身邊的線性規(guī)劃問題導(dǎo)入課題,同時闡明其重要意義.如6枝玫瑰花與3枝康乃馨的價格之和大于24元.而4枝玫瑰與5枝康乃馨的價格之和小于22元.如果想買2枝玫瑰與3枝康乃馨,那么價格比較結(jié)果是怎樣的呢?可由學(xué)生列出不等關(guān)系,并畫出平面區(qū)域.由此導(dǎo)入新課.
思路2.(章頭問題引入)在生產(chǎn)與營銷活動中,我們常常需要考慮:怎樣利用現(xiàn)在的資源取得最大的收益,或者怎樣以最少的資源投入去完成一項給定的任務(wù).我們把這一類問題稱為“最優(yōu)化”問題.線性規(guī)劃知識恰是解決這類問題的得力工具.由此展開新課.
推進(jìn)新課
新知探究
提出問題
1回憶二元一次不等式Ax+By+C>0在平面直角坐標(biāo)系中的平面區(qū)域的確定方法.
2怎樣從實際問題中抽象出不等式組,并畫出所確定的平面區(qū)域?
3閱讀教材,明確什么是目標(biāo)函數(shù),線性目標(biāo)函數(shù),約束條件,線性約束條件,線性規(guī)劃問題,最優(yōu)解,可行域.,4你能給出解決線性規(guī)劃問題的一般步驟嗎?
活動:教師引導(dǎo)學(xué)生回顧二元一次不等式表示平面區(qū)域常用的方法是:直線定界、原點定域,即先畫出對應(yīng)直線,再將原點坐標(biāo)代入直線方程中,看其值比零大還是比零?。徊坏仁浇M表示的平面區(qū)域是各個不等式所表示的平面點集的交集,是它們平面區(qū)域的公共部分.
教師引導(dǎo)學(xué)生探究教材本節(jié)開頭的問題.根據(jù)上節(jié)所學(xué),學(xué)生很容易設(shè)出計劃生產(chǎn)甲種產(chǎn)品x工時,生產(chǎn)乙種產(chǎn)品y工時,且很容易地列出獲得利潤總額為f=30x+40y,①
及x,y滿足的條件
3x+2y≤1200,x+2y≤800,x≥0,y≥0.②
教師引導(dǎo)學(xué)生畫出上述不等式組表示的區(qū)域,如下圖.
結(jié)合圖形,教師與學(xué)生一起探究,原問題就是在x,y滿足②的情況下,求f的最大值.也就是在圖中陰影部分內(nèi)找一點,把它的坐標(biāo)代入式子30x+40y時,使該式值最大.若令30x+40y=0,則此方程表示通過原點的一條直線,記為l0,則在區(qū)域OABC內(nèi)有30x+40y≥0.設(shè)這個區(qū)域內(nèi)任意一點P(x,y)到l0的距離為d,則d=|30x+40y|302+402=30x+40y302+402,即30x+40y=302+402d.
由此可發(fā)現(xiàn),點P(x,y)到直線l0的距離d越大,式子30x+40y的值就越大.這樣問題又轉(zhuǎn)化為:在區(qū)域OABC內(nèi),找與直線l0距離最大的點.觀察圖象易發(fā)現(xiàn),平移直線l0,最后經(jīng)過的點為B,易知區(qū)域OABC內(nèi)的點B即為所求.
解方程組3x+2y=1200,x+2y=800,得B(200,300),代入式子①,得fmax=30×200+40×300=18000.
即問題中,用200工時生產(chǎn)甲種產(chǎn)品,用300工時生產(chǎn)乙種產(chǎn)品,能獲得最大利潤18000元.
進(jìn)一步探究上述問題,不等式組是一組對變量x、y的約束條件,由于這組約束條件都是關(guān)于x、y的一次不等式,所以又可稱其為線性約束條件.z=2x+y是欲達(dá)到最大值或最小值所涉及的變量x、y的解析式,我們把它稱為目標(biāo)函數(shù).由于z=2x+y又是關(guān)于x、y的一次解析式,所以又可叫做線性目標(biāo)函數(shù).線性約束條件除了用一次不等式表示外,也可用一次方程表示.[
一般地,求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題.例如:我們剛才研究的就是求線性目標(biāo)函數(shù)z=2x+y在線性約束條件下的最大值和最小值的問題,即為線性規(guī)劃問題.滿足線性約束條件的解(x,y)叫做可行解,由所有可行解組成的集合叫做可行域.其中,使目標(biāo)函數(shù)取得最大值或最小值的可行解叫做這個問題的最優(yōu)解,接著讓學(xué)生說出上述問題中的目標(biāo)函數(shù),約束條件,可行域,最優(yōu)解分別是什么.
根據(jù)以上探究,我們可以得出用圖解法解決線性規(guī)劃問題的一般步驟:
(1)分析并將已知數(shù)據(jù)列出表格;
(2)確定線性約束條件;
(3)確定線性目標(biāo)函數(shù);
(4)畫出可行域;
(5)利用線性目標(biāo)函數(shù)求出最優(yōu)解.在可行域內(nèi)平行移動目標(biāo)函數(shù),從圖中能判定問題有唯一最優(yōu)解,或者是無窮最優(yōu)解,或是無最優(yōu)解;
(6)實際問題需要整數(shù)解時,應(yīng)適當(dāng)調(diào)整確定最優(yōu)解.
討論結(jié)果:
(1)~(4)略.
應(yīng)用示例
例1已知x、y滿足不等式x+2y≥2,2x+y≥1,x≥0,y≥0,求z=3x+y的最小值.
活動:可先找出可行域,平行移動直線l0:3x+y=0找出可行解,進(jìn)而求出目標(biāo)函數(shù)的最小值.
解:不等式x+2y≥2表示直線x+2y=2上及其右上方的點的集合;
不等式2x+y≥1表示直線2x+y=1上及其右上方的點的集合.
可行域如圖所示.
作直線l0:3x+y=0,作一組與直線l0平行的直線l:3x+y=t(t∈R).
∵x、y是上面不等式組表示的區(qū)域內(nèi)的點的橫縱坐標(biāo),
由圖可知,當(dāng)直線l:3x+y=z通過點P(0,1)時,z取到最小值1,即zmin=1.
點評:簡單線性規(guī)劃問題就是求線性目標(biāo)函數(shù)在線性約束條件下的最優(yōu)解,無論此類題目是以什么實際問題提出,其求解的格式與步驟是不變的.
(1)尋找線性約束條件,線性目標(biāo)函數(shù);
(2)由二元一次不等式表示的平面區(qū)域作出可行域;
(3)在可行域內(nèi)求目標(biāo)函數(shù)的最優(yōu)解.
變式訓(xùn)練
若變量x,y滿足2x+y≤40,x+2y≤50,x≥0,y≥0,則z=3x+2y的最大值是________.
答案:70
解析:由不等式組2x+y≤40,?x+2y≤50,?x≥0,?y≥0畫出可行域如下圖.
結(jié)合圖形,
由2x+y=40,x+2y=50x=10,y=20,
于是zmax=3×10+2×20=70.
例2(教材本小節(jié)例2)
活動:教材此例的數(shù)據(jù)以表格的形式給出.這樣可使量與量之間的關(guān)系一目了然,非常有助于我們順利地找出約束條件和目標(biāo)函數(shù),特別是對于那些量比較多的問題.本例難度不大,可由學(xué)生自己完成,教師給予適當(dāng)點撥.
點評:完成此例后,可讓學(xué)生對應(yīng)用線性規(guī)劃解決實際問題作一簡單歸納.對較好的學(xué)生,教師可結(jié)合思考與討論進(jìn)行歸納.
變式訓(xùn)練
某家具廠有方木料90m3,五合板600m2,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2;生產(chǎn)每個書櫥需要方木料0.2m3、五合板1m2.出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元,如果只安排生產(chǎn)書桌,可獲利潤多少?如果只安排生產(chǎn)書櫥,可獲利潤多少?怎樣安排生產(chǎn)可使所得利潤最大?
解:(1)設(shè)只生產(chǎn)書桌x張,可獲得利潤z元,
則0.1x≤90,2x≤600x≤900,x≤300x≤300.
z=80x,∴當(dāng)x=300時,zmax=80×300=24000(元),
即如果只安排生產(chǎn)書桌,最多可生產(chǎn)300張書桌,獲得利潤24000元.
(2)設(shè)只生產(chǎn)書櫥y張,可獲利潤z元,
則0.2y≤90,y≤600y≤450,y≤600y≤450.
z=120y,∴當(dāng)y=450時,zmax=120×450=54000(元),
即如果只安排生產(chǎn)書櫥,最多可生產(chǎn)450個,獲得利潤54000元.
(3)設(shè)生產(chǎn)書桌x張,書櫥y個,利潤總額為z元.
則0.1x+0.2y≤90,2x+y≤600,x≥0,y≥0x+2y≤900,2x+y≤600,x≥0,y≥0,
z=80x+120y,可行域如圖.
由圖可知:當(dāng)直線y=-23x+z120經(jīng)過可行域上的點M時,截距z120最大,即z最大,解方程組x+2y=900,?2x+y=600,得M的坐標(biāo)為(100,400).
∴zmax=80x+120y=80×100+120×400=56000(元).
因此,生產(chǎn)書桌100張、書櫥400個,可使所得利潤最大,最大利潤為56000元.
例3某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)甲種產(chǎn)品1t需耗A種礦石10t、B種礦石5t、煤4t;生產(chǎn)乙種產(chǎn)品需耗A種礦石4t、B種礦石4t、煤9t.每1t甲種產(chǎn)品的利潤是600元,每1t乙種產(chǎn)品的利潤是1000元.工廠在生產(chǎn)這兩種產(chǎn)品的計劃中要求消耗A種礦石不超過300t、B種礦石不超過200t、煤不超過360t,甲、乙兩種產(chǎn)品應(yīng)各生產(chǎn)多少(精確到0.1t),能使利潤總額達(dá)到最大?
活動:將已知數(shù)據(jù)列成下表,然后按線性規(guī)劃解決實際問題的步驟完成,本例可由學(xué)生自己完成.
解:設(shè)生產(chǎn)甲、乙兩種產(chǎn)品分別為xt、yt,利潤總額為z元,
那么10x+4y≤300,5x+4y≤200,4x+9y≤360,x≥0,y≥0;
目標(biāo)函數(shù)為z=600x+1000y.
作出以上不等式組所表示的平面區(qū)域,即可行域如圖.
作直線l:600x+1000y=0,即直線l:3x+5y=0.
把直線l向右上方平移至l1的位置時,直線經(jīng)過可行域上的點M,且與原點距離最大,此時z=600x+1000y取最大值.
解方程組5x+4y=200,4x+9y=360,得x=36029≈12.4,y=100029≈34.4.∴M的坐標(biāo)為(12.4,34.4).
答:應(yīng)生產(chǎn)甲產(chǎn)品約12.4t,乙產(chǎn)品34.4t,能使利潤總額達(dá)到最大.
知能訓(xùn)練
1.設(shè)變量x,y滿足約束條件:y≥x,x+2y≤2,x≥-2,則z=x-3y的最小值為()
A.-2B.-4C.-6D.-8
2.醫(yī)院用甲、乙兩種原料為手術(shù)后的病人配營養(yǎng)餐.甲種原料每10g含5單位蛋白質(zhì)和10單位鐵質(zhì),售價3元;乙種原料每10g含7單位蛋白質(zhì)和4單位鐵質(zhì),售價2元.若病人每餐至少需要35單位蛋白質(zhì)和40單位鐵質(zhì).試問:應(yīng)如何使用甲、乙原料,才能既滿足營養(yǎng),又使費用最???
答案:
1.D解析:在坐標(biāo)平面內(nèi)畫出不等式組y≥x,x+2y≤2,x≥-2所表示的平面區(qū)域,作出直線x-3y=0,平移該直線,并結(jié)合圖形(圖略)知點(-2,2)為最優(yōu)解.所以目標(biāo)函數(shù)的最小值為zmin=-2-3×2=-8,故選D.
2.活動:將已知數(shù)據(jù)列成下表:
原料/10g蛋白質(zhì)/單位鐵質(zhì)/單位
甲510
乙74
費用32
設(shè)甲、乙兩種原料分別用10xg和10yg,則需要的費用為z=3x+2y;病人每餐至少需要35單位蛋白質(zhì),可表示為5x+7y≥35;同理,對鐵質(zhì)的要求可以表示為10x+4y≥40,這樣,問題成為在約束條件5x+7y≥35,10x+4y≥40,x≥0,y≥0下,求目標(biāo)函數(shù)z=3x+2y的最小值.
解:設(shè)甲、乙兩種原料分別用10xg和10yg,總費用為z,那么5x+7y≥35,10x+4y≥40,x≥0,y≥0;
目標(biāo)函數(shù)為z=3x+2y,
作出可行域如圖.
把z=3x+2y變形為y=-32x+z2,得到斜率為-32,在y軸上的截距為z2,隨z變化的一組平行直線.
由圖可知,當(dāng)直線y=-32x+z2經(jīng)過可行域上的點A時,截距z2最小,即z最?。?br>
由10x+4y=40,5x+7y=35,得A(145,3),∴zmin=3×145+2×3=14.4.∴甲種原料使用145×10=28(g),乙種原料使用3×10=30(g)時,費用最省.
課堂小結(jié)
1.讓學(xué)生自己歸納整合本節(jié)所學(xué)的知識方法及用線性規(guī)劃解決實際問題的方法步驟,自己在本節(jié)中的最大收獲有哪些?
2.教師強調(diào),通過本節(jié)學(xué)習(xí),需掌握如何用線性規(guī)劃解決實際問題的解題思路:首先,應(yīng)準(zhǔn)確建立數(shù)學(xué)模型,即根據(jù)題意找出約束條件,確定線性目標(biāo)函數(shù).然后,用圖解法求得數(shù)學(xué)模型的解,即畫出可行域,在可行域內(nèi)求得使目標(biāo)函數(shù)取得最值的解.最后,還要根據(jù)實際意義將數(shù)學(xué)模型的解轉(zhuǎn)化為實際問題的解,即結(jié)合實際情況求得最優(yōu)解.
作業(yè)
習(xí)題3—5A組3、4、5;習(xí)題3—5B組3.
設(shè)計感想
1.本節(jié)內(nèi)容與實際問題聯(lián)系緊密,有利于培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識以及解決實際問題的能力.本節(jié)內(nèi)容滲透了多種數(shù)學(xué)思想,是向?qū)W生進(jìn)行數(shù)學(xué)思想方法教學(xué)的典型教材,也是培養(yǎng)學(xué)生觀察、作圖能力的典型教材.
2.通過實例給出解題步驟,讓其更深入了解并掌握新知.這里強調(diào)的還有作圖的規(guī)范問題,這是學(xué)生容易忽視的,但這又是本節(jié)課很重要的一部分.
3.關(guān)于難度把握問題,依據(jù)《課程標(biāo)準(zhǔn)》及教材分析,二元一次不等式表示平面區(qū)域以及線性規(guī)劃的有關(guān)概念比較抽象,按高二學(xué)生現(xiàn)有的知識和認(rèn)知水平難以透徹理解,再加上學(xué)生對代數(shù)問題等價轉(zhuǎn)化為幾何問題,以及數(shù)學(xué)建模方法解決實際問題有一個學(xué)習(xí)消化的過程,故本節(jié)知識內(nèi)容定為了解層次.但這個了解不同于其他的了解,應(yīng)注意讓學(xué)生切實學(xué)會從實際問題抽象出約束條件及目標(biāo)函數(shù),并注意規(guī)范書寫解答步驟.
(設(shè)計者:鄭吉星)
第2課時
導(dǎo)入新課
思路1.(直接導(dǎo)入)上一節(jié)課我們探究了用線性規(guī)劃解決實際問題的一種類型,這節(jié)課我們進(jìn)一步探究有關(guān)線性規(guī)劃的一些問題,看看用線性規(guī)劃還能解決哪些實際問題.教師出示多媒體課件,提出問題,由此引入新課.
思路2.(問題導(dǎo)入)關(guān)于線性規(guī)劃的整點問題是個難點,我們是用平移直線的辦法來解決的,需要畫圖精確,令學(xué)生很頭痛.下面我們探究調(diào)整最優(yōu)值法來確定最優(yōu)整數(shù)解的方法.教師用多媒體出示以下問題:
某人有樓房一座,室內(nèi)面積共有180平方米,擬分隔成兩類房間作為旅游客房,大房間每間面積為18平方米,可住游客5名,每名游客每天住宿費40元,小房間每間面積15平方米,可住游客3名,每名游客每天住宿費50元;裝修大房間每間需1000元,裝修小房間每間需600元.如果他只能籌款8000元用于裝修,且游客能住滿客房,他應(yīng)隔出大房間和小房間各多少間,能獲得最大收益?
學(xué)生很容易設(shè)隔出大房間x間,小房間y間時收益為z元,則x,y滿足
18x+15y≤180,1000x+600y≤8000,x≥0,x∈N,y≥0,y∈N.
作出可行域(出示多媒體課件),作直線l:200x+150y=0,即l:4x+3y=0,把直線l向右上方平移,直線經(jīng)過可行域上的點B時,與原點距離最大,此時z=200x+150y取得最大值,解方程組6x+5y=60,5x+3y=40,得點B的坐標(biāo)為(207,607),由于B的坐標(biāo)不是整數(shù),而最優(yōu)解(x,y)中,x、y必須都是整數(shù),所以可行域內(nèi)的點B不是最優(yōu)解.
以下教師與學(xué)生共同探究調(diào)整最優(yōu)值法來確定最優(yōu)整點的方法:
將B點坐標(biāo)代入4x+3y=z,得z=3717,所以令4x+3y=37.
所以y=37-4x3,x=37-3y4,代入約束條件得y=9,x無解;
再令4x+3y=36,所以y=36-4x3,x=36-3y4,代入約束條件得7≤y≤12,0≤x≤4.
又因為4x+3y=36,所以得最優(yōu)解為(0,12)和(3,8),此時z的最大值是36,最大利潤是1800元.
用圖解法解決時,容易丟一組解,而選擇調(diào)整最優(yōu)值法,即可避免丟解問題,只是需要一定的不等式及不定方程的知識.鼓勵學(xué)生課外進(jìn)一步探究其他方法.
推進(jìn)新課
新知探究
提出問題
1回憶上節(jié)課我們利用線性規(guī)劃解決實際問題的方法、步驟、格式,解題時應(yīng)注意哪些問題?
2前面我們解決了可行域中整點問題,明確了求可行域中最優(yōu)解問題,請思考最優(yōu)解的個數(shù)有可能為無數(shù)個嗎?
活動:教師與學(xué)生一起回憶上節(jié)課利用線性規(guī)劃解決實際問題時應(yīng)注意:①在尋求約束條件時,要注意挖掘隱含條件;②在確定最優(yōu)解時,首先要賦予因變量的幾何意義,然后利用圖形的直觀來確定最優(yōu)解;③在確定最優(yōu)解時,用直線的斜率來定位.
關(guān)于可行域中的整點求法,是以與線性目標(biāo)函數(shù)的直線的距離為依據(jù),在直線的附近尋求與此直線距離最近的整點.如果可行域中的整點數(shù)目很少,采用逐個試驗法也是很有效的辦法.下面我們進(jìn)一步探究最優(yōu)解問題以及用線性規(guī)劃解決的另一類實際問題.
討論結(jié)果:(1)略.
(2)求最優(yōu)解,若沒有特殊要求,一般為邊界交點.但取得最值的最優(yōu)解可能有無窮多個.若通過圖形觀察不易分辨時,可把邊界交點代入驗證.
應(yīng)用示例
例1某公司計劃2008年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元.甲、乙電視臺的收費標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘.假定甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司帶來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大?最大收益是多少萬元?
活動:這是高考中繼江蘇卷線性規(guī)劃大題后第二個線性規(guī)劃大題,教師引導(dǎo)學(xué)生按前面的方法列出表格,則各量之間的關(guān)系即一目了然.本題難度不大,可由學(xué)生自己解決.列表如下:
甲乙合計
時間x分鐘y分鐘300
收費500元/分鐘200元/分鐘9萬元
解:設(shè)公司在甲電視臺和乙電視臺做廣告的時間分別為x分鐘和y分鐘,總收益為z元.
由題意得x+y≤300,500x+200y≤90000,x≥0,y≥0.目標(biāo)函數(shù)為z=3000x+2000y.
二元一次不等式組等價于x+y≤300,5x+2y≤900,x≥0,y≥0.
作出二元一次不等式組所表示的平面區(qū)域,即可行域,如圖.
作直線l:3000x+2000y=0,即3x+2y=0.
平移直線l,從圖中可知,當(dāng)直線l過M點時,目標(biāo)函數(shù)取得最大值.
聯(lián)立x+y=300,5x+2y=900,解得x=100,y=200.∴點M的坐標(biāo)為(100,200).
∴zmax=3000x+2000y=700000(元).
答:該公司在甲電視臺做100分鐘廣告,在乙電視臺做200分鐘廣告,公司的收益最大,最大收益是70萬元.
例2(教材本小節(jié)例3)
活動:本例是整數(shù)線性規(guī)劃問題.整數(shù)線性規(guī)劃問題的可行域是由滿足不等式的整點組成的集合,所求的最優(yōu)解必須是整數(shù)解.我們知道,最優(yōu)解一般都為邊界的交點,若這個交點不是整數(shù),則需要平移直線找到附近的最優(yōu)解.本例可由教師與學(xué)生共同完成.
點評:找整數(shù)最優(yōu)解是個難點,要求畫圖精確,要使學(xué)生明白如何找整數(shù)最優(yōu)解的原理.
變式訓(xùn)練
某公司招收男職員x名,女職員y名,x和y必須滿足約束條件5x-11y≥-22,2x+3y≥9,2x≤11,則z=10x+10y的最大值是()
A.80B.85C.90D.95
答案:C
解析:畫出約束條件表示的平面區(qū)域,如圖所示.
由x=112,5x-11y=-22,
解得A(112,92).
而由題意知x和y必須是正整數(shù),直線y=-x+z10平移經(jīng)過的整點為(5,4)時,z=10x+10y取得最大值90.
例3某人承攬一項業(yè)務(wù),需做文字標(biāo)牌2個,繪畫標(biāo)牌3個,現(xiàn)有兩種規(guī)格的原料,甲種規(guī)格每張3m2,可做文字標(biāo)牌1個,繪畫標(biāo)牌2個,乙種規(guī)格每張2m2,可做文字標(biāo)牌2個,繪畫標(biāo)牌1個,求兩種規(guī)格的原料各用多少張,才能使總的用料面積最小?
解:設(shè)用甲種規(guī)格原料x張,乙種規(guī)格原料y張,則可做文字標(biāo)牌x+2y個,繪畫標(biāo)牌2x+y個,
由題意可得x+2y≥2,2x+y≥3,x≥0,y≥0.
所用原料的總面積為z=3x+2y,作出可行域,如圖陰影所示.作直線l0:3x+2y=0,作一組與直線l0平行的直線l:3x+2y=t(t∈R),當(dāng)直線l通過2x+y=3與直線x+2y=2的交點A(43,13)時,t取得最小值為133.
因為43,13都不是整數(shù),而最優(yōu)解(x,y)中,x、y必須都是整數(shù),所以可行域內(nèi)點(43,13)不是最優(yōu)解.經(jīng)過可行域內(nèi)整點,點B(1,1)滿足3x+2y=5,使t最?。?br>
所以最優(yōu)解為B(1,1),即用甲種規(guī)格原料1張,乙種規(guī)格原料1張,可使所用原料總面積最小為5m2.
知能訓(xùn)練
1.設(shè)變量x,y滿足約束條件x-y≥0,x+y≤1,x+2y≥1,則目標(biāo)函數(shù)z=5x+y的最大值為()
A.2B.3C.4D.5
2.設(shè)x、y滿足約束條件x-4y≤-3,3x+5y≤25,x≥1,分別求下列各式的最大值、最小值:
(1)z=6x+10y;
(2)z=2x-y;
(3)z=2x-y(x,y均為整數(shù)).
答案:
1.D解析:如圖,由可行域知目標(biāo)函數(shù)z=5x+y過點A(1,0)時z取得最大值,zmax=5.
2.解:(1)先作出可行域,如下圖所示的△ABC的區(qū)域,且求得A(5,2)、B(1,1)、C(1,225).
作出直線l0:6x+10y=0,再將直線l0平移,
當(dāng)l0的平行線l1過B點時,可使z=6x+10y達(dá)到最小值;
當(dāng)l0的平行線l2過A點時,可使z=6x+10y達(dá)到最大值.
∴zmin=6×1+10×1=16;zmax=6×5+10×2=50.
(2)同上,作出直線l0:2x-y=0,再將直線l0平移,當(dāng)l0的平行線l1過C點時,
可使z=2x-y達(dá)到最小值;
當(dāng)l0的平行線l2過A點時,可使z=2x-y達(dá)到最大值.∴zmax=8,zmin=-125.
(3)同上,作出直線l0:2x-y=0,再將直線l0平移,
當(dāng)l0的平行線l2過A點時,可使z=2x-y達(dá)到最大值,∴zmax=8.
當(dāng)l0的平行線l1過C點時,可使z=2x-y達(dá)到最小值,
但由于225不是整數(shù),而最優(yōu)解(x,y)中,x、y必須都是整數(shù),
∴可行域內(nèi)的點C(1,225)不是最優(yōu)解.
當(dāng)l0的平行線經(jīng)過可行域內(nèi)的整點(1,4)時,可使z=2x-y達(dá)到最小值.
∴zmin=2×1-4=-2.
課堂小結(jié)
1.我們用線性規(guī)劃解決了哪些實際問題?
2.教師點撥學(xué)生:你能用精練的幾個字來說明利用線性規(guī)劃解決實際問題的方法與步驟嗎?
(1)找:找出實際問題中的約束條件及目標(biāo)函數(shù);(2)畫:畫出線性約束條件所表示的可行域;(3)移:在線性目標(biāo)函數(shù)所表示的一組平行線中,利用平移的方法找出與可行域有公共點且縱截距最大或最小的直線;(4)求:通過解方程組求出最優(yōu)解;(5)答:作出答案.即可用5個字來概括:找、畫、移、求、答.
作業(yè)
一、習(xí)題3—5A組6;習(xí)題3—5B組4、5.
二、閱讀本章小結(jié)
設(shè)計感想
1.本課時設(shè)計注重學(xué)生的操作練習(xí).通過學(xué)生積極參與,動手操作,培養(yǎng)創(chuàng)造性思維、增強創(chuàng)新意識,使認(rèn)知在練習(xí)中加深,興趣在練習(xí)中勃發(fā),情感在練習(xí)中陶冶,質(zhì)量在練習(xí)中提高,目標(biāo)在練習(xí)中實現(xiàn).
2.本課時注重了學(xué)生的能力訓(xùn)練.通過本節(jié)的學(xué)習(xí),向?qū)W生滲透數(shù)形結(jié)合的思想,深化對知識的理解和掌握,體驗發(fā)現(xiàn)的快樂,增強創(chuàng)新意識,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識.
3.本課時設(shè)計強化使用現(xiàn)代化教學(xué)手段.充分發(fā)揮多媒體教學(xué)的優(yōu)勢,利用計算機作為輔助工具,更清楚地展示區(qū)域問題,有利于發(fā)現(xiàn)區(qū)域問題的異同點,將信息技術(shù)和數(shù)學(xué)課件有機地結(jié)合起來,有利于突出重點,突破難點,有利于教學(xué)目標(biāo)的實現(xiàn).
備課資料
一、備選例題
【例1】某糖果廠生產(chǎn)A、B兩種糖果,A種糖果每箱獲利潤40元,B種糖果每箱獲利潤50元,其生產(chǎn)過程分為混合、烹調(diào)、包裝三道工序,下表為每箱糖果生產(chǎn)過程中所需平均時間:(單位:分鐘)
混合烹調(diào)包裝
A153
B241
每種糖果的生產(chǎn)過程中,混合的設(shè)備至多能用12小時,烹調(diào)的設(shè)備至多能用30小時,包裝的設(shè)備至多能用15小時,試求每種糖果各生產(chǎn)多少箱可獲得最大利潤?
活動:找約束條件,建立目標(biāo)函數(shù).
解:設(shè)生產(chǎn)A種糖果x箱,B種糖果y箱,可獲得利潤z元,則此問題的約束條件x+2y≤720,5x+4y≤1800,3x+y≤900,x≥0,y≥0下,求目標(biāo)函數(shù)z=40x+50y的最大值,作出可行域如圖,其邊界OA:y=0,AB:3x+y-900=0,BC:5x+4y-1800=0,CD:x+2y-720=0,DO:x=0.
由z=40x+50y,得y=-45x+z50,它表示斜率為-45,截距為z50的平行直線系,z50越大,z越大,從而可知過C點時截距最大,z取得了最大值.
解方程組x+2y=7205x+4y=1800C(120,300).
∴zmax=40×120+50×300=19800,即生產(chǎn)A種糖果120箱,生產(chǎn)B種糖果300箱,可得最大利潤19800元.
點評:由于生產(chǎn)A種糖果120箱,生產(chǎn)B種糖果300箱,就使得兩種糖果共計使用的混合時間為120+2×300=720(分),烹調(diào)時間5×120+4×300=1800(分),包裝時間3×120+300=660(分),這說明該計劃已完全利用了混合設(shè)備與烹調(diào)設(shè)備的可用時間,但對包裝設(shè)備卻有240分鐘的包裝時間未加利用,這種“過?!眴栴}構(gòu)成了該問題的“松弛”部分,有待于改進(jìn)研究.
【例2】要將甲、乙兩種大小不同的鋼板截成A、B兩種規(guī)格,每張鋼板可同時截得A、B兩種規(guī)格的小鋼板的塊數(shù)如下表所示:
已知庫房中現(xiàn)有甲、乙兩種鋼板的數(shù)量分別為5張和10張,市場急需A、B兩種規(guī)格的成品數(shù)分別為15塊和27塊.
(1)問各截這兩種鋼板多少張可得到所需的成品數(shù),且使所用的鋼板張數(shù)最少?
(2)若某人對線性規(guī)劃知識了解不多,而在可行域的整點中隨意取出一解,求其恰好取到最優(yōu)解的概率.
解:設(shè)需截甲、乙兩種鋼板的張數(shù)分別為x、y,則2x+y≥15,x+3y≥27,0≤x≤5,0≤y≤10,
作出可行域如圖.
(1)因為目標(biāo)函數(shù)為z=x+y(x、y為整數(shù)),所以在一組平行直線x+y=t(t為參數(shù))中,經(jīng)過可行域內(nèi)的整點且與原點距離最近的直線是x+y=12,其經(jīng)過的整點是(3,9)和(4,8),它們都是最優(yōu)解.
(2)因為可行域內(nèi)的整點個數(shù)為8,而最優(yōu)解有兩個,所以所求的概率為p=28=0.25.
答:兩種鋼板的張數(shù)分別為3、9或4、8,概率為0.25.
二、利潤的線性預(yù)測
問題:某企業(yè)1999年的利潤為5萬元,2000年的利潤為7萬元,2001年的利潤為8萬元.請你根據(jù)以上信息擬定兩個不同的利潤增長直線方程,從而預(yù)測2003年企業(yè)的利潤,請問你幫該企業(yè)預(yù)測的利潤是多少萬元?
解:建立平面直角坐標(biāo)系,1999年的利潤為5萬元,對應(yīng)的點為A(0,5),2000年的利潤為7萬元,2001年的利潤為8萬元分別對應(yīng)點B(1,7)和C(2,8),那么
(1)過A、B兩點的直線作為預(yù)測直線l1,其方程為y=2x+5,這樣預(yù)測2003年的利潤為13萬元.
(2)過A、C兩點的直線作為預(yù)測直線l2,其方程為y=32x+5,這樣預(yù)測2003年的利潤為11萬元.
(3)過B、C兩點的直線作為預(yù)測直線l3,其方程為y=x+6,這樣預(yù)測2003年的利潤為10萬元.
(4)過A及線段BC的中點E(32,152)的直線作為預(yù)測直線l4,其方程為y=53x+5,這樣預(yù)測2003年的利潤約為11.667萬元.
(5)過A及△ABC的重心F(1,203)(注:203為3年的年平均利潤)的直線作為預(yù)測直線l5,其方程為y=53x+5,這樣預(yù)測2003年的利潤為11.667萬元.
(6)過C及△ABC的重心F(1,203)(注:203為3年的年平均利潤)的直線作為預(yù)測直線l6,其方程為y=43x+163,這樣預(yù)測2003年的利潤為10.667萬元.
(7)過A及以線段BC的斜率kBC=1作為預(yù)測直線斜率,則預(yù)測直線l7的方程為y=x+5,這樣預(yù)測2003年的利潤為9萬元.
(8)過B及以線段AC的斜率kAC=32作為預(yù)測直線斜率,則預(yù)測直線l8的方程為y=32x+112,這樣預(yù)測2003年的利潤為11.5萬元.
(9)過C及以線段AB的斜率kAB=2作為預(yù)測直線斜率,則預(yù)測直線l9的方程為y=2x+4,這樣預(yù)測2003年的利潤為12萬元.
(10)過A及以線段AB的斜率kAB與線段AC的斜率kAC的平均數(shù)作為預(yù)測直線斜率,則預(yù)測直線l10的方程為y=74x+5,這樣預(yù)測2003年的利潤為12萬元.
還有其他方案,在此不一一列舉.
點評:(1)讀完以上的各種預(yù)測方案后,請你先思考兩個問題:
①第(5)種方案與第(4)種方案的結(jié)果完全一致,這是為什么?
②第(7)種方案中,kBC的現(xiàn)實意義是什么?
(2)本題可從以下兩個方面進(jìn)一步拓展,其一是根據(jù)以上的基本解題思路,提出新的方案,如方案(6)過△ABC的重心F(1,203),找出以m為斜率的直線中與A、C兩點距離的平方和最小的直線作為預(yù)測直線;其二是根據(jù)以上結(jié)論及你自己的答案估計利潤的范圍,你預(yù)測的利潤頻率出現(xiàn)最多的是哪一個值?你認(rèn)為將你預(yù)測的結(jié)論作怎樣的處理,使之得到的利潤預(yù)測更有效?如果不要求用線性預(yù)測,你能得出什么結(jié)果?
簡單的線性規(guī)劃1
經(jīng)驗告訴我們,成功是留給有準(zhǔn)備的人。高中教師要準(zhǔn)備好教案,這是高中教師的任務(wù)之一。教案可以讓學(xué)生更好的消化課堂內(nèi)容,幫助高中教師在教學(xué)期間更好的掌握節(jié)奏。那么如何寫好我們的高中教案呢?小編經(jīng)過搜集和處理,為您提供簡單的線性規(guī)劃1,供大家參考,希望能幫助到有需要的朋友。
簡單的線性規(guī)劃1教學(xué)目標(biāo)(1)使學(xué)生了解并會用二元一次不等式表示平面區(qū)域以及用二元一次不等式組表示平面區(qū)域;
(2)了解線性規(guī)化的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;
(3)了解線性規(guī)化問題的圖解法,并能應(yīng)用它解決一些簡單的實際問題;
(4)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建模”和解決實際問題的能力;
(5)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的愛好和“用數(shù)學(xué)”的意識,激勵學(xué)生勇于創(chuàng)新.
教學(xué)建議
一、知識結(jié)構(gòu)
教科書首先通過一個具體問題,介紹了二元一次不等式表示平面區(qū)域.再通過一個具體實例,介紹了線性規(guī)化問題及有關(guān)的幾個基本概念及一種基本解法-圖解法,并利用幾道例題說明線性規(guī)化在實際中的應(yīng)用.
二、重點、難點分析
本小節(jié)的重點是二元一次不等式(組)表示平面的區(qū)域.
對學(xué)生來說,二元一次不等式(組)表示平面的區(qū)域是一個比較生疏、抽象的概念,按高二學(xué)生現(xiàn)有的知識和認(rèn)知水平難以透徹理解,因此學(xué)習(xí)二元一次不等式(組)表示平面的區(qū)域分為兩個大的層次:
(1)二元一次不等式表示平面區(qū)域.首先通過建立新舊知識的聯(lián)系,自然地給出概念.明確二元一次不等式在平面直角坐標(biāo)系中表示直線某一側(cè)所有點組成的平面區(qū)域不包含邊界直線(畫成虛線).其次再擴大到所表示的平面區(qū)域是包含邊界直線且要把邊界直線畫成實線.
(2)二元一次不等式組表示平面區(qū)域.在理解二元一次不等式表示平面區(qū)域含義的基礎(chǔ)上,畫不等式組所表示的平面區(qū)域,找出各個不等式所表示的平面區(qū)域的公共部分.這是學(xué)生對代數(shù)問題等價轉(zhuǎn)化為幾何問題以及數(shù)學(xué)建模方法解決實際問題的基礎(chǔ).
難點是把實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答.
對許多學(xué)生來說,從抽象到的化歸并不比從具體到抽象碰到的問題少,學(xué)生解數(shù)學(xué)應(yīng)用題的最常見困難是不會將實際問題提煉成數(shù)學(xué)問題,即不會建模.所以把實際問題轉(zhuǎn)化為線性規(guī)劃問題作為本節(jié)的難點,并緊緊圍繞如何引導(dǎo)學(xué)生根據(jù)實際問題中的已知條件,找出約束條件和目標(biāo)函數(shù),然后利用圖解法求出最優(yōu)解作為突破這個難點的關(guān)鍵.
對學(xué)生而言解決應(yīng)用問題的障礙主要有三類:①不能正確理解題意,弄清各元素之間的關(guān)系;②不能分清問題的主次關(guān)系,因而抓不住問題的本質(zhì),無法建立數(shù)學(xué)模型;③孤立地考慮單個的問題情景,不能多方聯(lián)想,形成正遷移.針對這些障礙以及題目本身文字過長等因素,將本課設(shè)計為計算機輔助教學(xué),從而將實際問題鮮活直觀地展現(xiàn)在學(xué)生面前,以利于理解;分析完題后,能夠抓住問題的本質(zhì)特征,從而將實際問題抽象概括為線性規(guī)劃問題.另外,利用計算機可以較快地幫助學(xué)生把握尋找整點最優(yōu)解的方法.
三、教法建議
(1)對學(xué)生來說,二元一次不等式(組)表示平面的區(qū)域是一個比較生疏的概念,不象二元一次方程表示直線那樣已早有所知,為使學(xué)生對這一概念的引進(jìn)不感到忽然,應(yīng)建立新舊知識的聯(lián)系,以便自然地給出概念
(2)建議將本節(jié)新課講授分為五步(思考、嘗試、猜想、證實、歸納)來進(jìn)行,目的是為了分散難點,層層遞進(jìn),突出重點,只要學(xué)生對舊知識把握較好,完全有可能由學(xué)生主動去探求新知,得出結(jié)論.
(3)要舉幾個典型例題,非凡是似是而非的例子,對理解二元一次不等式(組)表示的平面區(qū)域的含義是十分必要的.
(4)建議通過本節(jié)教學(xué)著重培養(yǎng)學(xué)生把握“數(shù)形結(jié)合”的數(shù)學(xué)思想,盡管側(cè)重于用“數(shù)”研究“形”,但同時也用“形”去研究“數(shù)”,這對培養(yǎng)學(xué)生觀察、聯(lián)想、猜測、歸納等數(shù)學(xué)能力是大有益處的.
(5)對作業(yè)、思考題、研究性題的建議:①作業(yè)主要練習(xí)學(xué)生規(guī)范的解題步驟和作圖能力;②思考題主要供學(xué)有余力的學(xué)生課后完成;③研究性題綜合性較大,主要用于拓寬學(xué)生的思維.
(6)若實際問題要求的最優(yōu)解是整數(shù)解,而我們利用圖解法得到的解為非整數(shù)解(近似解),應(yīng)作適當(dāng)?shù)恼{(diào)整,其方法應(yīng)以與線性目標(biāo)函數(shù)的直線的距離為依據(jù),在直線的四周尋求與此直線距離最近的整點,不要在用圖解法所得到的近似解四周尋找.
假如可行域中的整點數(shù)目很少,采用逐個試驗法也可.
(7)在線性規(guī)劃的實際問題中,主要把握兩種類型:一是給定一定數(shù)量的人力、物力資源,問怎樣運用這些資源能使完成的任務(wù)量最大,收到的效益最大;二是給定一項任務(wù)問怎樣統(tǒng)籌安排,能使完成的這項任務(wù)耗費的人力、物力資源最小.
線性規(guī)劃教學(xué)設(shè)計方案(一)
教學(xué)目標(biāo)
使學(xué)生了解并會作二元一次不等式和不等式組表示的區(qū)域.
重點難點
了解二元一次不等式表示平面區(qū)域.
教學(xué)過程
引入新課
我們知道一元一次不等式和一元二次不等式的解集都表示直線上的點集,那么在平面坐標(biāo)系中,二元一次不等式的解集的意義是什么呢?
二元一次不等式表示的平面區(qū)域
1.先分析一個具體的例子
我們知道,在平面直角坐標(biāo)系中,以二元一次方程的解為坐標(biāo)的點的集合是經(jīng)過點(0,1)和(1,0)的一條直線l(如圖)那么,以二元一次不等式(即含有兩個未知數(shù),且未知數(shù)的最高次數(shù)都是1的不等式)的解為坐標(biāo)的點的集合是什么圖形呢?
在平面直角坐標(biāo)系中,所有點被直線l分三類:①在l上;②在l的右上方的平面區(qū)域;③在l的左下方的平面區(qū)域(如圖)取集合A的點(1,1)、(1,2)、(2,2)等,我們發(fā)現(xiàn)這些點都在l的右上方的平面區(qū)域,而點(0,0)、(-1,-1)等等不屬于A,它們滿足不等式,這些點卻在l的左下方的平面區(qū)域.
由此我們猜想,對直線l右上方的任意點成立;對直線l左下方的任意點成立,下面我們證實這個事實.
在直線上任取一點,過點P作垂直于y軸的直線,在此直線上點P右側(cè)的任意一點,都有∴
于是
所以
因為點,是L上的任意點,所以,對于直線右上方的任意點,
都成立
同理,對于直線左下方的任意點,
都成立
所以,在平面直角坐標(biāo)系中,以二元一次不等式的解為坐標(biāo)的點的集點.
是直線右上方的平面區(qū)域(如圖)
類似地,在平面直角坐標(biāo)系中,以二元一次不等式的解為坐標(biāo)的點的集合是直線左下方的平面區(qū)域.
2.二元一次不等式和表示平面域.
(1)結(jié)論:二元一次不等式在平面直角坐標(biāo)系中表示直線某一側(cè)所有點組成的平面區(qū)域.
把直線畫成虛線以表示區(qū)域不包括邊界直線,若畫不等式就表示的面區(qū)域時,此區(qū)域包括邊界直線,則把邊界直線畫成實線.
(2)判定方法:由于對在直線同一側(cè)的所有點,把它的坐標(biāo)代入,所得的實數(shù)的符號都相同,故只需在這條直線的某一側(cè)取一個非凡點,以的正負(fù)情況便可判定表示這一直線哪一側(cè)的平面區(qū)域,非凡地,當(dāng)時,常把原點作為此非凡點.
應(yīng)用舉例
例1畫出不等式表示的平面區(qū)域
解;先畫直線(畫線虛線)取原點(0,0),代入,
∴∴原點在不等式表示的平面區(qū)域內(nèi),不等式表示的平面區(qū)域如圖陰影部分.
例2畫出不等式組
表示的平面區(qū)域
分析:在不等式組表示的平面區(qū)域是各個不等式所表示的平面點集的交集,因而是各個不等式所表示的平面區(qū)域的公共部分.
解:不等式表示直線上及右上方的平面區(qū)域,表示直線上及右上方的平面區(qū)域,上及左上方的平面區(qū)域,所以原不等式表示的平面區(qū)域如圖中的陰影部分.
課堂練習(xí)
作出下列二元一次不等式或不等式組表示的平面區(qū)域.
(1)(2)(3)
(4)(5)
總結(jié)提煉
1.二元一次不等式表示的平面區(qū)域.
2.二元一次不等式表示哪個平面區(qū)域的判定方法.
3.二元一次不等式組表示的平面區(qū)域.
布置作業(yè)
1.不等式表示的區(qū)域在的().
A.右上方B.右下方C.左上方D.左下方
2.不等式表示的平面區(qū)域是().
3.不等式組表示的平面區(qū)域是().
4.直線右上方的平面區(qū)域可用不等式表示.
5.不等式組表示的平面區(qū)域內(nèi)的整點坐標(biāo)是.
6.畫出表示的區(qū)域.
答案:
1.B2.D3.B4.5.(-1,-1)