88教案網(wǎng)
解一元一次方程教案
解一元一次方程教案收藏。
我們聽了一場關(guān)于“解一元一次方程教案”的演講讓我們思考了很多,經(jīng)過閱讀本頁你的認(rèn)識會更加全面。老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。教案是評估學(xué)生學(xué)習(xí)效果的有效依據(jù)。
解一元一次方程教案【篇1】
一、教學(xué)目標(biāo)
(一).知識與技能
會利用合并同類項解一元一次方程.
(二).過程與方法
通過對實例的分析,體會一元一次方程作為實際問題的數(shù)學(xué)模型的作用.
(三).情感態(tài)度與價值觀
開展探究性學(xué)習(xí),發(fā)展學(xué)習(xí)能力.
二、重、難點與關(guān)鍵
(一).重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程.
(二).難點:會列一元一次方程解決實際問題.
(三).關(guān)鍵:抓住實際問題中的數(shù)量關(guān)系建立方程模型.
三、教學(xué)過程
(一)、復(fù)習(xí)提問
1.敘述等式的兩條性質(zhì).
2.解方程:4(x- )=2.
解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:
x- =
兩邊都加 ,得x= .
解法2:利用乘法分配律,去掉括號,得:
4x- =2
兩邊同加 ,得4x=
兩邊同除以4,得x= .
(二)、新授
公元825年左右,中亞細(xì)亞數(shù)學(xué)家阿爾、花拉子米寫了一本代數(shù)書,重點論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個問題.
問題1:某校三年級共購買計算機140臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,前年這個學(xué)校購買了多少臺計算機?
分析:設(shè)前年這個學(xué)校購買了x臺計算機,已知去年購買數(shù)量是前年的2倍,那么去年購買2x臺,又知今年購買數(shù)量是去年的2倍,則今年購買了22x(即4x)臺.
題目中的相等關(guān)系為:三年共購買計算機140臺,即
前年購買量+去年購買量+今年購買量=140
列方程:x+2x+4x=140
如何解這個方程呢?
2x表示2x,4x表示4x,x表示1x.
根據(jù)分配律,x+2x+4x=(1+2+4)x=7x.
這樣就可以把含x的項合并為一項,合并時要注意x的系數(shù)是1,不是0.
下面的框圖表示了解這個方程的具體過程:
x+2x+4x=140
合并
7x=140
系數(shù)化為1
x=20
由上可知,前年這個學(xué)校購買了20臺計算機.
上面解方程中合并起了化簡作用,把含有未知數(shù)的項合并為一項,從而達到把方程轉(zhuǎn)化為ax=b的形式,其中a、b是常數(shù).
例:某班學(xué)生共60分,外出參加種樹活動,根據(jù)任何的不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比是2:3:5,求各小組人數(shù).
分析:這里甲、乙、丙三個小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為x人.
問:本題中相等關(guān)系是什么?
答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.
解:設(shè)每一份為x人,則甲組人數(shù)為2x人,乙組人數(shù)為3x人,丙組為5x人,列方程:
2x+3x+5x=60
合并,得10x=60
系數(shù)化為1,得x=6
所以2x=12,3x=18,5x=30
答:甲組12人,乙組18人,丙組30人.
請同學(xué)們檢驗一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.
(三)、鞏固練習(xí)
1.課本第89頁練習(xí).
(1)x=3.
(2)可以先合并,也可以先把方程兩邊同乘以2.
具體解法如下:
解法1:合并,得( + )x=7
即 2x=7
系數(shù)化為1,得x=
解法2:兩邊同乘以2,得x+3x=14
合并,得 4x=14
系數(shù)化為1,得 x=
(3)合并,得-2.5x=10
系數(shù)化為1,得x=-4
2.補充練習(xí).
(1)足球的表面是由若干個黑色五邊形和白色六邊形皮塊圍成的,黑白皮塊的數(shù)目比為3:5,一個足球的表面一共有32個皮塊,黑色皮塊和白色皮塊各有多少?
(2)某學(xué)生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設(shè)未知數(shù),列方程,不求解)
解:(1)設(shè)每份為x個,則黑色皮塊有3x個,白色皮塊有5x個.
列方程 3x+2x=32
合并,得 8x=32
系數(shù)化為1,得 x=4
黑色皮塊為43=12(個),白色皮塊有54=20(個).
(2)設(shè)全書共有x頁,那么第一天讀了( x+2)頁,第二天讀了( x-1)頁.
本問題的相等關(guān)系是:第一天讀的量+第二天讀的量+還剩23頁=全書頁數(shù).
列方程: x+2+ x-1+23=x.
四、課堂小結(jié)
初學(xué)用代數(shù)方法解應(yīng)用題,感到不習(xí)慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點,本節(jié)課的兩個問題的相等關(guān)系都是:總量=各部分量的和.這是一個基本的相等關(guān)系.
合并就是把類型相同的項系數(shù)相加合并為一項,也就是逆用乘法分配律,合并時,注意x或-x的系數(shù)分別是1,-1,而不是0.
五、作業(yè)布置
1.課本第93頁習(xí)題3.2第1、3(1)、(2)、4、5題.
2.選用課時作業(yè)設(shè)計.
合并同類項習(xí)題課(第2課時)
一、解方程.
1.(1)3x+3-2x=7; (2) x+ x=3;
(3)5x-2-7x=8; (4) y-3-5y= ;
(5) - =5; (6)0.6x- x-3=0.
二、解答題.
2.育紅小學(xué)現(xiàn)有學(xué)生320人,比1995年學(xué)生人數(shù)的 少150人,問育紅小學(xué)1995年學(xué)生人數(shù)是多少?
3.甲、乙兩地相距460千米,A、B兩車分別從甲、乙兩地開出,A車每小時行駛60千米,B車每小時行駛48千米.
(1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?
(2)兩車相向而行,A車提前半小時出發(fā),則在B車出發(fā)后多少小時兩車相遇?相遇地點距離甲地多遠?
4.甲、乙二人從A地去B地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達B地,求A、B兩地之間的距離.
5.一條環(huán)形跑道長400米,甲練習(xí)騎自行車,平均每分鐘行駛550米;乙練習(xí)長跑,平均每分鐘跑250米,兩人同時、同地、同向出發(fā),經(jīng)過多少時間,兩人首次相遇?
答案:
一、1.(1)x=4 (2)x=4 (3)x=-5 (4)x=- (5)x=30 (6)x=11
二、2.705人,設(shè)育紅小學(xué)1995年學(xué)生人數(shù)為x人,列方程320= x-150.
3.(1)4 小時,設(shè)出發(fā)后x小時相遇,列方程60x+48x=460.
(2)3 小時,設(shè)B車開出后x小時兩車相遇,列方程60 +60x+48x=460.
4.3千米,設(shè)A、B兩地間的距離為x千米, - = .
5.1 分鐘,設(shè)經(jīng)過x分鐘兩人首次相遇,列方程550x-250x=400.
解一元一次方程
──移項(第3課時)
一、教學(xué)內(nèi)容
課本第89頁至第91頁.
二、教學(xué)目標(biāo)
(一).知識與技能
理解移項法,并知道移項法的依據(jù),會用移項法則解方程.
(二).情感態(tài)度與價值觀
鼓勵學(xué)生自主探索與合作交流,發(fā)展思維策略,體會方程的應(yīng)用價值.
三、重、難點與關(guān)鍵
(一).重點:運用方程解決實際問題,會用移項法則解方程.方程的各項應(yīng)包括前面的符號
(二).難點:對立相等關(guān)系.
(三).關(guān)鍵:理解移項法則的依據(jù),以及尋找問題中的等量關(guān)系.
四、教學(xué)過程 (一)、復(fù)習(xí)提問
1.運用方程解決實際問題的步驟是什么?
2.解方程: + =10.
(二)、新授
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個班有多少學(xué)生?
分析:設(shè)這個班有x名學(xué)生,根據(jù)第一種分法,分析已知量和未知量間的關(guān)系.
1.每人分3本,那么共分出多少本?(3x本)
2.共分出3x本和剩余的20本,可知道什么?
答:這批書共有(3x+20)本.
根據(jù)第二種分法,分析已知量與未知量之間的關(guān)系.
3.每人分4本,那么需要分出多少本?(4x本)
4.需要分出4x本和還缺少25本那么這批書共有多少本?
答:這批書共有(4x-25)本.
這批書的總數(shù)有幾種表示法?它們之間有什么關(guān)系?本題哪個相等關(guān)系可以作為列方程的依據(jù)?
這批書的總數(shù)是一個定值(不變量)表示它的兩個式子應(yīng)相等.
根據(jù)這一相等關(guān)系,列方程:
3x+20=4x-25
本題還可以畫示意圖,幫助我們分析:
從示意圖中容易得到這批書的總數(shù)與分出書、剩下書的關(guān)系是:
這批書的總數(shù)=3x+30
這批書的總數(shù)與需要分出的書的數(shù)量、還缺少書的數(shù)量關(guān)系是:
這批書的總數(shù)=4x-25
根據(jù)兩種分法,這批書的總數(shù)是相等的.
所以,列方程3x+20=4x-25.
注意變化中的不變量,尋找隱含的相等關(guān)系,從本題列方程的過程,可以發(fā)現(xiàn):表示同一個量的兩個不同式子相等.
思考:方程3x+20=4x-25的兩邊都含有x的項(3x與4x),也都含有不含字母的.常數(shù)項(20與-25)怎樣才能使它轉(zhuǎn)化為x=a(常數(shù))的形式呢?
要使方程右邊不含x的項,根據(jù)等式性質(zhì)1,兩邊都減去4x,同樣,把方程兩邊都減去20,方程左邊就不含常數(shù)項20,即
3x+20 -4x-20 =4x-25 -4x-20
即 3x-4x=-25-20
將它與原來方程比較,相當(dāng)于把原方程左邊的+20變?yōu)?20后移到方程右邊,把原方程右邊的4x變?yōu)?4x后移到左邊.
像上面那樣,把等式一邊的某項變號后移到另一邊,叫做移項.
方程中的任何一項都可以在改變符號后,從方程的一邊移到另一邊,即可以把方程等號右邊的項改變符號后移到等號的左邊,也可以把方程左邊的項改變符號后移到方程的右邊,注意要先變號后移項,別忘了變號.
下面的框圖表示了解這個方程的具體過程.
3x+20=4x-25
移項
3x-4x=-25-20
合并
-x=-45
系數(shù)化為1
x=46
由此可知這個班共有45個學(xué)生.
思考:上面解方程中移項起了什么作用?
答:移項使方程中含x的項歸到方程的同一邊(左邊),不含x的項即常數(shù)項歸到方程的另一邊(右邊),這樣就可以通過合并把方程轉(zhuǎn)化為x=a形式.
在解方程時,要弄清什么時候要移項,移哪些項,目的是什么?
解方程時經(jīng)常要合并和移項,前面提到的古老的代數(shù)書中的對消和還原,指的就是合并和移項.
如果把上面的問題2的條件不變,這個班有多少學(xué)生改為這批書有多少本?你會解嗎?試試看.
解法1:從原問題的解答中,已求的這個班有45個學(xué)生,只要把x=45代入3x+20(或4x-25)就可以求得這批書的總數(shù)為:
345+20=135+20=155(本)
解法2:如果不先求學(xué)生數(shù),直接設(shè)這批書共有x本,又如何布列方程?這時該用哪個相等關(guān)系列方程呢?
這批書共有x本,余下20本,共分出(x-20)本,每人分3本,可以分給 人,即這個班共有 人.
這批書有x本,每人分4本,還缺少25本,共需要(x+25)本,可以分給 人,即這個班共有 人.
這個班的人數(shù)是一個定值,表示它的兩個式子應(yīng)相等,根據(jù)這個相等關(guān)系列方程.
= (你會解這個方程嗎?)
即 - = +
移項,得 - = +
合并,得 =
系數(shù)化為1,得x=155.
答:這批書共有155本.
(三)、鞏固練習(xí)
1.課本第91頁練習(xí).
(1)解:移項,得6x-4x=-5+7
合并,得 2x=2
系數(shù)化為1,得x=1
(2)解:移項,得 x- x=6
合并,得- x=6
系數(shù)化為1,得x=-24
2.補充練習(xí).
下列移項對不對?如果不對,錯在哪里?應(yīng)當(dāng)怎樣改正?
(1)從3x+6=0得3x=6;
(2)從2x=x-1得到2x-x=1;
(3)從2+x-3=2x+1得到2-3-1=2x-x.
解:(1)錯,移項忘了要變號,應(yīng)改為3x=-6.
(2)錯.原方程中的-1仍然在方程右邊,并沒有移項,所以不要變號,應(yīng)改為2x-x-=-1.
(3)正確.
四、課堂小結(jié)
1.列一元一次方程解決實際問題的關(guān)鍵是審題、讀懂題意和找相等關(guān)系,今天解決的這個問題的相等關(guān)系不明顯,隱含在問題中,表示同一個量的兩個式子是相等.這個相等關(guān)系可以作列方程的依據(jù).
2.正確理解移項法則,移項中常犯的錯誤是忘記變號,還要注意移項與在方程的一邊交換兩項的位置有本質(zhì)區(qū)別,移項的依據(jù)是等式性質(zhì),在方程的一邊交換兩項的位置是根據(jù)交換律.
五、作業(yè)布置
1.課本第93頁至第94頁習(xí)題3.2第2、3(3)(4)、6、7、8題.
2.選用課時作業(yè)設(shè)計.
移項習(xí)題課(第4課時)
一、填空題.
1.在方程的兩邊加上或減去同一項,相當(dāng)于把原方程中的項______后,從方程的一邊移到另一邊,這種變形叫做________,其依據(jù)是________,移項要注意_____.
2.在方程的一邊交換兩項的位置______改變項的符號,而移項______改變符號.
3.解方程x+21=36得x=________;由10x-3=9得x=______.
二、判斷題.(對的打,錯的打)
4.移項就是把方程中的某一項移到等號的另一邊.( )
5.從6x=1,移項,得x=1-6,x=-5. ( )
6.由方程-4+x=7移項得x=7-4. ( )
三、解方程.
7.(1)8=7-2y; (2) = - ;
(3)5x-2=7x+8; (4)1- x=3x+ ;
(5)2x- =- +2; (6)- x+6=4x+1;
(7) -x=0.5x-3.
四、解答題.
8.設(shè)m=3x-2,n=-2x+3,當(dāng)x為何值時m=n?
9.甲糧倉存糧1000噸,乙糧倉存糧798噸,現(xiàn)要從兩個糧倉中運走212噸糧食,使兩倉庫剩余的糧食數(shù)量相等,那么應(yīng)從這兩個糧倉各運出多少噸?
答案:
一、1.合并 移項 合并同類項 變號 2.不 要 3.15 1.2
二、4. 5. 6.
三、7.(1)y=- (2)x= (3)x=-5 (4)x=-
(5)x=1 (6)x= (7)x=3
四、8.x=1 9.207,5,設(shè)從甲糧倉運出x噸,1000-x=798-(212-x)
解一元一次方程教案【篇2】
教學(xué)目的
1、使學(xué)生鞏固等式與方程的概念。
2、使學(xué)生掌握等式的性質(zhì)和靈活掌握一元一次方程的解法,培養(yǎng)學(xué)生求解方程的計算能力。
教學(xué)分析
重點:熟練掌握一元一次方程的解法。
難點:靈活地運用一元一次方程的解法步驟,計算簡化而準(zhǔn)確。
突破:多練習(xí),多比較,多思考。
教學(xué)過程
一、復(fù)習(xí)
1、什么是一元一次方程?一元一次方程的標(biāo)準(zhǔn)形式是什么?它的。解是什么?
2、等式的性質(zhì)是什么?(要求說出應(yīng)注意的兩點)
3、解一元一次方程的基本步驟是什么?
以解方程-2x+=為例,說明解一元一次方程的基本步驟與注意點,并口頭檢驗。
二、新授
1、已知方程(n+1)x|n|=1是關(guān)于x的一元一次方程,求n的值。
分析:根據(jù)一元一次方程的定義,得|n|=1且n+1≠0,解得n=1。
解:略
2、下列說法中,正確的是( )。
A -3x=0的解是x=-3
B -x+1=4的解為x=-
C-1=的解是x=1
D x2-x-2=0的解是x=2, x=-1(D正確)
3、x等于什么數(shù)時,代數(shù)式x+5的值比的值小2。
解:(解略,應(yīng)根據(jù)題目的意思列出方程。)
4、根據(jù)下列條件列出方程,并求出方程的解。
(1) 某數(shù)x的3倍減去9,等于某數(shù)的3分之1加上6;
(2) 已知-3m3(x-2)n與25m2+xn是同類項,求x的值;
(3) 已知代數(shù)式2[(x-1)+5]+x+1與代數(shù)式3[x-8(x-4)]+7的值互為相反數(shù),求x的值。
5根據(jù)下列方程的特點解方程。
(題目見課本中P208、16的2,4)
三、練習(xí)
P209習(xí)題:20。
四、小結(jié)
1、略。
五、作業(yè)
1、P240 A:1,2,3,4。
2、B:1,2。
解一元一次方程教案【篇3】
一、課題名稱:3.3解一元一次方程(二)——去括號與去分母
二、教學(xué)目的和要求:
1、知識目標(biāo)
(1)通過對比運用算術(shù)和列方程兩種方法解決實際問題的過程,使學(xué)生體會到列方程解應(yīng)用題更簡潔明了,省時省力;
(2)掌握去括號解一元一次方程的方法,能熟練求解一元一次方程(數(shù)字系數(shù)),并判別解的合理性。
2、能力目標(biāo)
(1)通過學(xué)生觀察、獨立思考等過程,培養(yǎng)學(xué)生歸納、慨括的能力;
(2)進一步讓學(xué)生感受到并嘗試尋找不同的解決問題的方法。
3、情感目標(biāo)
(1)激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣,使學(xué)生有獨立思考、勇于創(chuàng)新的精神,養(yǎng)成按客觀規(guī)律辦事的良好習(xí)慣;
(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì);
(3)通過學(xué)生間的相互交流、溝通,培養(yǎng)他們的協(xié)作意識。
三、教學(xué)重難點:
重點:去分母解方程。
難點:去分母時,不含分母的項會漏乘公分母,及沒有對分子加括號。
四、教學(xué)方法與手段:
運用引導(dǎo)發(fā)現(xiàn)法,引進競爭機制,調(diào)動課堂氣氛
五、教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題
問題1:我手中有6,x,30三張卡片,請同學(xué)們用他們編個一元一次方程,比一比看誰編的又快有對。
學(xué)生思考,根據(jù)自己對一元一次方程的理解程度自由編題。
問題2:解方程5(x-2)=8
解:5x=8+2,x=2,看一下這位同學(xué)的解法對嗎?相信學(xué)完本節(jié)內(nèi)容后,就知道其中的奧秘。
問題3:某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電減少20xx度,全年用電15萬度,這個工廠去年上半年每月平均用電多少度?
2、探索新知
(1)情境解決
問題1:設(shè)上半年每月平均用電x度,則下半年每月平均用電____度;上半年共用電____度,下半年共有電_____度。
問題2:教室引導(dǎo)學(xué)生尋找相等關(guān)系,列方程。
根據(jù)全年用電15萬度,列方程,得6x+6(x-20xx)=150000.
問題3:怎樣使這個方程向x=a的形式轉(zhuǎn)化呢?
6x+6(x-20xx)=150000
↓去括號
6x+6x-12000=150000
↓移項
6x+6x=150000+12000
↓合并同類項
12x=162000
↓系數(shù)化為1
x=13500
問題4:本題還有其他列方程的'方法嗎?
用其他方法列出的方程應(yīng)怎樣解?
設(shè)下半年每月平均用電x度,則6x+6(x+20xx)=150000.
(學(xué)生自己進行解決)
歸納結(jié)論:方程中有帶括號的式子時,根據(jù)乘法分配率和去括號法則化簡。(見“+”不變,見“—”全變)
去括號時要注意:
(1)不要漏乘括號內(nèi)的任何一項;
(2)若括號前面是“—”號,記住去括號后括號內(nèi)各項都變號。
(2)解一元一次方程——去括號
例題、解方程:3x—7(x—1)=3—2(x+3)。
解:去括號,得3x—7x+7=3—2x—6
移項,得3x—7x+2x=3—6—7
合并同類項,得—2x=—10
系數(shù)化為1,得x=5
3、變式訓(xùn)練,熟練技能
(1)解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
(2)3(2-3x)-3[3(2x-3)+3]=5;
(3)2 (x+1)+3(x+2)-3=-4(x+3).
(2)學(xué)校團委組織65名團員為學(xué)校建花壇搬磚,初一同學(xué)每人搬6塊,其他年級同學(xué)每人搬8塊,總共搬了400塊,問初一同學(xué)有多少人參加了搬磚?
(3)學(xué)校田徑隊的小剛在400米跑測試時,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度沖刺到達終點,成績?yōu)?分零5秒,問小剛在沖刺以前跑了多少時間?
4、總結(jié)反思,情意發(fā)展
(1)本節(jié)課你學(xué)習(xí)了什么?
(2)本節(jié)課你有哪些收獲?
(3)通過今天的學(xué)習(xí),你想進一步探究的問題是什么?
可以歸納為如下幾點:
①本節(jié)主要學(xué)習(xí)用去括號的方法解一元一次方程。
②主要用到的思想方法是轉(zhuǎn)化思想。
③注意的問題:括號前是“—”號的,去括號時,括號內(nèi)的各項要改變符號,乘數(shù)與括號內(nèi)多項式相乘,乘數(shù)應(yīng)乘遍括號內(nèi)的各項;在實際問題中,要會找等量關(guān)系。
5、布置作業(yè)
(1)必做題:課本第98頁習(xí)題3.3第
1、2題。
(2)選做題:
①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。
②杭州新西湖建成后,某班40名同學(xué)劃船游湖,一共租了8條小船,其中有可坐4人的小船和可坐6人的小船,40名同學(xué)剛好坐滿8條小船,問這兩種小船各租了幾條?
六、課后小結(jié):
本節(jié)課突出數(shù)學(xué)的應(yīng)用意識。教師首先用學(xué)生感興趣的游戲和實際問題引入課題,然后逐步給出解答。在各環(huán)節(jié)的安排上都設(shè)計成一個個的問題,使學(xué)生能圍繞問題展開
思考、討論,進行學(xué)習(xí)。
強調(diào)學(xué)生主體意識的體現(xiàn),在設(shè)計中,教師始終把學(xué)生放在主體的地位,讓學(xué)生通過嘗試得到解決,歸納出去括號解方程的特點,讓學(xué)生通過合作與交流,得出問題的不同解答方法。
從設(shè)計上體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試列出含未知數(shù)的式子,尋找相等關(guān)系列出方程。
解一元一次方程教案【篇4】
一、教學(xué)目標(biāo)
1、知識技能目標(biāo):
(1)、了解“去括號”是解方程的重要步驟。
(2)、準(zhǔn)確而熟練地運用去括號法則解帶有括號的一元一次方程。
2、能力目標(biāo)
(1)學(xué)會對所學(xué)過的知識進行整理和歸納;進一步發(fā)展學(xué)生抽象概括的能力。
(2)準(zhǔn)確而熟練地運用去括號法則解帶有括號的方程。
(3)學(xué)會利用列一元一次方程去解決有關(guān)數(shù)學(xué)問題,進一步發(fā)展學(xué)生的實踐能力。
3、情感目標(biāo)
(1)通過問題的探究,激發(fā)學(xué)生的好奇心和求知欲,讓學(xué)生主動參與教學(xué)活動,從而讓學(xué)生形成主動了解數(shù)學(xué)、應(yīng)用數(shù)學(xué)的態(tài)度。
(2)通過合并同類項、移項、去括號的法則的復(fù)習(xí),引導(dǎo)學(xué)生對知識的整理和歸納,并在運用數(shù)學(xué)知識解決問題的活動中讓學(xué)生獲取成功的體驗,從而建立學(xué)習(xí)的自信心。
二、教學(xué)重點
重點:了解“去括號”是解方程的重要步驟。
難點:括號前是“-”號的,去括號時,括號內(nèi)的各項要改變符號,乘數(shù)與括號內(nèi)多項式相乘,乘數(shù)應(yīng)乘遍括號內(nèi)的各項。
三、教學(xué)過程
【活動一】溫故而知新(多媒體展示)
填 空
1.去括號法則是: 負(fù)變正不變 ;
2.化簡下列各式:
(1)a (b+c)= ab+ac ;
(2) 7(x-1)= 7x-7 ;
(3) -2(x+3)=-2x-6 ;
(4) -(x-1.5)=-x+1.5 ;
3.合并同類項法則: (同類項)系數(shù)相加,字母(部分)不變 ;
4.合并同類項。
(1)、 2x-3x= -x ;
(2) 、3x-2(x-1.5)= x+3 ;
(3)、 2a+3(5-4a)= 15-10a ;
(4)、-3[1-3(x-1)]= 9x-12 ;
5.解一元一次方程的一般步驟是: 移項、合并同同類項、系數(shù)化為1; 6.方程5x-2x=9的解是 x=3 ;
7.方程8x-19=6x-9的解是 x=5 ;
8. 說說下列這個方程和我們以前學(xué)的方程有什么不同?你會解下列方程 嗎?
3x-7(x-1)=3-2(x-3)
出示課題:3.3解一元一次方程(二)---去括號
【活動二】探究新知(多媒體展示)
1.P96.問題:某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電量減少2000度,全年用電15萬度,這個工廠去年上半年每月平均用電多少度?
◆你會用方程解決這個問題嗎?
分析:設(shè)上半年每月平均用電x度,
則下半年每月平均用電 (x-2000 度;
上半年共用電 6x 度;
下半年共用電 6(x-2000)度。
根據(jù)全年用電15萬度,可列方程
6x+6(x-2000)=150000 。
去括號,得: 6x+6x-12000=150000 ,
移項,得: 6x+6x=150000+12000
合并同類項,得:12x=1620000 ,
系數(shù)化為1,得 : x=13500 。
由上可知,這個工廠上半年每月平均用電13500度
2.思考:本題還有其他列方程的方法嗎?
用其他方法列出的方程應(yīng)該怎樣解?
3. ◆小結(jié):目前我們解含有括號的一元一次方程的一般步驟是:
去括號——移項——合并同類項——系數(shù)化為一
【活動三】范例學(xué)習(xí)(多媒體展示)
例1:解方程 3x-7(x-1)=3-2(x+3)。
解:去括號,得:
移項,得:
合并同類項,得:
系數(shù)化為1,得 :
【活動四】隨堂練習(xí)(多媒體展示)
1 解下列方程
(1). 5x+(2-4x)=0 (2).8y-3(3y+2)=6
(3).4x+3(2x-3)=12-(x+4) (4).1+2[1-3(x-1)]=4x
◆小結(jié)。 在同一個方程中如果遇到多層括號一般由里到外,逐層去括號。
【活動五】新知應(yīng)用,拓展提升。(練習(xí)冊P49—P50)(多媒體展示)
1.方程4(2-x)-3(x+1)=6的解是 ( C )
A. x=7; B. C. D.x=-7
2.若方程3x+(2a+1)=x-(3a+2)的解是0,則a的值等于( D )
A. B. C. D. 3.代數(shù)式5a+4與3(a+4)互為相反數(shù),則a的值是 ( B )
A. -1 ; B. -2; C. 1 ; D. 2.
4.目前我省小學(xué)和初中在校生共136萬人,其中小學(xué)在校生人數(shù)比初中生在校生人數(shù)的2倍少2萬人,目前我省初中在校生有 46 萬人。
5.(1)若x=4時,代數(shù)式5(x+b)-10與(b+4)x的值相等,則b= 6 。
(2)當(dāng)m= 16 時,方程5x+4=4x-3和2(x+1)-m=-2(m-2)的解相同。
6、 列方程求解:
(1)當(dāng)x= 0 時,代數(shù)式 2(3x+7)和 14-10.5x的'值相等?
(2)、當(dāng)y= 10 時,代數(shù)式2(3y+4)的值比5(2y-7)的值大3?
【活動六】總結(jié)提煉:(多媒體展示)
1.說說你的收獲
2. 目前我們解含有括號的一元一次方程的一般步驟是:
去括號——移項——合并同類項——系數(shù)化為1
3.去括號時要注意什么?注意:
(1)當(dāng)括號前是“-”號,去括號時,各項都要變號。
(2)括號前有數(shù)字,則要乘遍括號內(nèi)所有項,不能漏乘并注意符號。
(3)在同一個方程中如果遇到多層括號一般由里到外,逐層去括號。 4.你還有何疑惑?
【鞏固練習(xí)】 (多媒體展示)
A組 解方程:
(1)5(x+2)=2(5x-1) (2)4x+3=2(x-1)+1
(3)(x+1)-2(x-1)=1-3x (4)2(x-1)-(x+2)=3(4-x)
B組:已知 A= 3x+2, B=4+2x
① 當(dāng)x取何值時, A=2B;
② 當(dāng)x取何值時, 3A=1-2B
C組 列方程求解:
(1)當(dāng)x取何值時,代數(shù)式4x-5與3x-6的值互為相反數(shù)?
(2)一架飛機在兩城之間飛行,風(fēng)速為24千米/時。順風(fēng)飛行需要2小時50分,
逆風(fēng)飛行需要3小時,求無風(fēng)時飛機的速度和兩城之間的航程。
解一元一次方程教案【篇5】
第一課時
教學(xué)目的
1.了解一元一次方程的概念。
2.掌握含有括號的一元一次方程的解法。
重點、難點
1.重點:解含有括號的一元一次方程的解法。
2.難點:括號前面是負(fù)號時,去括號時忘記變號。
教學(xué)過程
一、復(fù)習(xí)提問
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括號法則是什么?“移項”要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。
例1.判斷下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
強調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
補充:解方程3x-[3(x+1)-(1+4)]=l
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
三、鞏固練習(xí)
教科書第9頁,練習(xí),l、2、3。
四、小結(jié)
學(xué)習(xí)了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
五、作業(yè)
1.教科書第12頁習(xí)題6.2,2第l題。
第二課時
教學(xué)目的
掌握去分母解方程的方法,體會到轉(zhuǎn)化的思想。對于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的過程和自覺檢驗方程的解是否正確的良好習(xí)慣。
重點、難點
1、重點:掌握去分母解方程的方法。
2、難點:求各分母的最小公倍數(shù),去分母時,有時要添括號。
教學(xué)過程
一、復(fù)習(xí)提問
1.去括號和添括號法則。
2.求幾個數(shù)的最小公倍數(shù)的.方法。
二、新授
例1:解方程(見課本)
解一元一次方程有哪些步驟?
一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運用這些步驟。
補充例:解方程 (x+15)=- (x-7)
三、鞏固練習(xí)
教科書第10頁,練習(xí)1、2。
四、小結(jié)
1.解一元一次方程有哪些步驟?
2.掌握移項要變號,去分母時,方程兩邊每一項都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項,另外分?jǐn)?shù)線有兩層意義,一方面它是除號,另一方面它又代表著括號,所以在去分母時,應(yīng)該將分子用括號括上。
五、作業(yè)
教科書第13頁習(xí)題6.2,2第2題。
第三課時
教學(xué)目的
使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。
重點、難點
1、重點:靈活應(yīng)用解題步驟。
2、難點:在“靈活”二字上下功夫。
教學(xué)過程 :
一、 一、 復(fù)習(xí)
1、一元一次方程的解題步驟。
2、分?jǐn)?shù)的基本性質(zhì)。
二、新授
例1.解方程(見課本)
分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會。
例2.解方程(見課本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整數(shù))
分析:在公式中,V、D、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。
三、鞏固練習(xí)。
根據(jù)公式V=V0+at,填寫下列表中的空格。
VV0at02848314155476137
四、小結(jié)。
若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時擴大若干倍,此時分子要作為一個整體,需要補上括號,注意不是去分母,不能把方程其余的項也擴大若干倍。
五、作業(yè) 。
解一元一次方程教案【篇6】
一、教學(xué)目標(biāo)
【知識與技能】
理解一元一次方程及其相關(guān)概念,能根據(jù)實際問題中的等量關(guān)系列出一元一次方程。
【過程與方法】
通過探究一元一次方程的過程,提升觀察與總結(jié)概括的能力。
【情感、態(tài)度與價值觀】
在學(xué)習(xí)活動中獲得成功的體驗,提升對數(shù)學(xué)的興趣。
二、教學(xué)重難點
【重點】一元一次方程及其相關(guān)概念,從實際問題到一元一次方程的分析過程。
【難點】分析實際問題中的等量關(guān)系列一元一次方程。
三、教學(xué)過程
(一)導(dǎo)入新課
出示問題:(1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?
通過提問如何解決引導(dǎo)學(xué)生想到算術(shù)法和方程法。
(二)講解新知
再出示兩個問題:
(2)一臺計算機已使用1700h,預(yù)計每月再使用150h,經(jīng)過多少月這臺計算機的使用時間達到規(guī)定的檢修時間2450h?
(3)某校女生占全體學(xué)生數(shù)的52%,比男生多80人,這個學(xué)校有多少學(xué)生?
組織同桌合作列方程,并說明等號兩邊的意義及列式依據(jù)。
在學(xué)生回答的基礎(chǔ)上,教師板書:
組織同桌兩人一組,觀察并討論三個方程的共同特點。提示學(xué)生從式的角度思考,關(guān)注項、次數(shù)、字母種類等。
通過師生問答形式引出只有一個未知數(shù)未知數(shù)次數(shù)都是1等號兩邊都是整式的特征后,教師講解一元一次方程的定義。注意解釋元的含義。
組織學(xué)生總結(jié)從上述實際問題到一元一次方程的分析過程,歸納得到:
解一元一次方程教案【篇7】
教學(xué)目標(biāo)1.使學(xué)生掌握移項的概念,并能利用移項解簡單的一元一次方程;2.培養(yǎng)學(xué)生觀察、分析、概括和轉(zhuǎn)化的能力,提高他們的運算能力。教學(xué)重點:移項解一元一次方程。教學(xué)難點:移項的概念教學(xué)方法:啟發(fā)式教學(xué)教學(xué)過程:(一)情境創(chuàng)設(shè)(二):探索新知解方程:(1)3x-5=4.(2)7x=5x-4在分析本題時,教師應(yīng)向?qū)W生提出如下問題:1.怎樣才能將此方程化為ax=b的形式?2.上述變形的根據(jù)是什么?解:3x-5=4,方程兩邊都加上,得3x-5+5=4+5,(本題的解答過程應(yīng)找多名學(xué)生分別口述,教師嚴(yán)格、規(guī)范板書,并請學(xué)生口算檢驗)解方程7x=5x-4.針對(1),(2)題的分析與解答,教師可提出以下幾個問題:(1)將方程3x-5=4,變形為3x=4+5這一過程中,什么變化了?怎樣變化的?(2)將方程7x=5x-4,變形為7x-5x=-4這一過程中,什么變化了?怎樣變化的?我們將方程中某一項改變后,從方程的一邊移到另一邊,這種變形叫做移項。利用移項,我們可以將(2)題按以下步驟來書寫。解:移項,得,合并同類項,得未知數(shù)x的系數(shù)化1,得(至此,應(yīng)讓學(xué)生總結(jié)出解諸如例1、例2這樣的一元一次方程的步驟,并強調(diào)移項要變號).(三)自學(xué)例題:解方程:x-3=4-x解:移項,得和并同類項,得系數(shù)化為1練習(xí):1(a)組(1)方程3x+6=2x-8移項后,得(2)方程2x-0.3=1.2+3x移項,得(3)下列方程變形正確的是()a若3x+2=1,則3x=3b若-x+1=0,則-x=1c若x-1=3x,則-1=3x-xd若-=o,則x=4(4)用移項法解下列方程:(a)10y+7=12y-5-3y(b)0.5x+=x+2(c)=+x(d)9+x=2x+12-4x(四):教學(xué)小結(jié):
解一元一次方程教案【篇8】
一、說教材
方程是應(yīng)用非常廣泛的數(shù)學(xué)工具,它在義務(wù)教育階段的數(shù)學(xué)課程中占重要地位。本節(jié)課的教學(xué)內(nèi)容是《解一元一次方程》的第3課時。解方程既是本章的重點也為今后學(xué)習(xí)其他方程、不等式及函數(shù)有重要基礎(chǔ)作用。為了使學(xué)生牢固掌握解方程體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型,產(chǎn)生學(xué)習(xí)解方程的欲望,教材設(shè)置了新穎的問題情境,讓學(xué)生從具體的情境中獲取信息,列方程,然后嘗試主動探究方程的解法。并通過練習(xí)歸納掌握解方程的基本步驟和技能。
教學(xué)目標(biāo)
(1)、知識目標(biāo):
掌握解一元一次方程中"去分母"的方法,并能解這種類型的方程
了解一元一次方程解法的一般步驟
(2)、能力目標(biāo):
經(jīng)歷"把實際問題抽象為方程"的過程,發(fā)展用方程方法分析問題、解決問題的能力,
(3)、情感目標(biāo):
1、通過具體情境引入新問題(如何去分母),激發(fā)學(xué)生的探究欲望
2、通過埃及古題的情境感受數(shù)學(xué)文明。
教學(xué)重點:
通過"去分母"解一元一次方程
3、教學(xué)難點:
探究通過"去分母"的方法解一元一次方程
4、教學(xué)關(guān)鍵:
找最簡公分母、合并同類項
二、說教法:
在前面的學(xué)段中,學(xué)生已學(xué)習(xí)了合并同類項、去括號等整式運算內(nèi)容。解一元一次方程就成為承上啟下的重要內(nèi)容。因此,它既是重點也是難點。我根據(jù)學(xué)生認(rèn)識規(guī)律和教學(xué)的啟發(fā)性、直觀性和面向全體因材施教等教學(xué)原則,積極創(chuàng)設(shè)新穎的問題情境,以“學(xué)生發(fā)展為本,以活動為主線,以創(chuàng)新為主旨”,等有效手段,以引導(dǎo)法為主,輔之以直觀演示法、討論法,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,激發(fā)學(xué)生的學(xué)習(xí)積極性,使學(xué)生主動參與學(xué)習(xí)的全過程。
我的教學(xué)設(shè)計的指導(dǎo)思想是:
1、讓學(xué)生自己去嘗試發(fā)現(xiàn)問題,而不是被動的回答老師的問題、接受老師的答案。
2、精心設(shè)計問題,因為好的問題設(shè)計能不斷激發(fā)學(xué)習(xí)動機,還能給學(xué)生提供學(xué)習(xí)的目標(biāo)和思維的空間,使學(xué)生自主學(xué)習(xí)真正成為可能。授課中通過一系列層層遞進的問題,給學(xué)生充分的時間和廣闊的思維空間,充分表達自己的想法,在此基礎(chǔ)上解決問題并得出結(jié)論。
三、說學(xué)法
本課時主要讓學(xué)生分析、觀察、歸納出用等式基本性質(zhì)二,讓學(xué)生進一步解答方程中系數(shù)為分?jǐn)?shù)時,如何使其“整數(shù)化”,從而化歸到上課時見過的方程類型上去。
縱觀這三節(jié)課的安排,在內(nèi)容的呈現(xiàn)順序上讓我們感覺到了:
(1)數(shù)學(xué)知識的階梯性。新內(nèi)容的學(xué)習(xí)解答過程,總是借助一些已知的知識與方法,將其轉(zhuǎn)化,讓舊知識服務(wù)于新內(nèi)容;
(2)數(shù)學(xué)知識的規(guī)律性。解方程中方程的類型多種多樣,但它的解法過程,有一個常見的規(guī)律,“去分母,去括號,移項,合并同類項,將未知數(shù)的系數(shù)化為1,把一元一次方程轉(zhuǎn)化為x =a(a為常數(shù))的形式。”
(3)運算過程的技巧性。如解方程時,解法有:
①可以先去括號,整理后去分母;
②可以去括號后,不去分母,直接求解;
③先去分母,再去括號。經(jīng)檢驗,三種方法都很好。
④運算過程的合理性。
如:解方程時,去分母要計算正確,就必須清醒地知道,“方程兩邊同時乘以6”意義是什么。
總之,本部分內(nèi)容要求學(xué)生掌握解一元一次方程的基本思路:靈活運用解一元一次方程的步驟,將“復(fù)雜”轉(zhuǎn)化為“簡單”,把“陌生”轉(zhuǎn)化為“熟知”。
②可以去括號后,不去分母,直接求解;
③先去分母,再去括號。經(jīng)檢驗,三種方法都很好。
④運算過程的合理性。
四、教學(xué)過程設(shè)計:
本節(jié)課設(shè)計了五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):學(xué)生自學(xué),獨立自主;第二環(huán)節(jié):教師講解,示范作用;第三環(huán)節(jié):討論研究,深入理解;第四環(huán)節(jié):課堂小結(jié);第五環(huán)節(jié):布置作業(yè);第六環(huán)節(jié):小測
第一環(huán)節(jié):學(xué)生自學(xué),獨立自主
先創(chuàng)設(shè)問題情境:古代埃及人用象形文字寫在一種特殊的草上的著作,至今已有3700多年的歷史了在文書中記載了許多有關(guān)數(shù)學(xué)的問題
問題一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。(板書)
(1)能不能用方程解決這個問題?
(2)能嘗試解這個方程嗎?
(3)不同的解法有什么各自的特點?
設(shè)計意圖:
1、利用列方程、解方程解決實際問題,再一次讓學(xué)生感受方程的優(yōu)越性,提高學(xué)生主動使用方程的意識
讓學(xué)生自學(xué)課本P178例題5,培養(yǎng)學(xué)生自學(xué)能力,同時提高學(xué)習(xí)效率(時間5分鐘)
第二環(huán)節(jié):教師講解,示范作用
(一)例5解方程
解法一:去括號,得
移項、合并同類項,得
兩邊同時除以(或乘以),得
X=—28
解法二:去分母,得
4(x+14)=7(x+20)
去括號,得
4x+56=7x+140
移項、合并同類項,得
—3x=84
兩邊同時除以—3,得
x=—28
(二)講解課前提出的問題:一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。
列出方程
經(jīng)過對同一方程不同解法到去分母能夠使解方程的過程更加便捷,明白為什么要去分母,這是"去分母"這一步驟的必要性;同時,讓學(xué)生認(rèn)同"去分母"是科學(xué)的、可行的,明確為什么能去分母這樣,學(xué)生就會自覺參與探索去分母的一般做法的活動,從而發(fā)現(xiàn)"方程兩邊同時乘以所有分母的最小公倍數(shù)"這一方法,也首次由學(xué)生自行突破了難點。
第三環(huán)節(jié):討論研究,深入理解;
內(nèi)容:本課時的想一想、例題6及練習(xí)題1、(3)、(5)、(6),分析它們的解答過程
目的:
1、進一步體會規(guī)范做題對解題的嚴(yán)謹(jǐn)、準(zhǔn)確的積極影響作用。
2、對于較復(fù)雜的方程,培養(yǎng)學(xué)生自覺反思求解過程和自覺檢驗方程解是否正確的良好習(xí)慣。
3、讓學(xué)生自覺發(fā)現(xiàn)解方程的方法,是他們體會解法步驟可以靈活多樣,但其基本思路是把“復(fù)雜”轉(zhuǎn)化為“簡單”,把“新”轉(zhuǎn)化為“舊”。
實際效果:
1、學(xué)生在分析例6:解方程的解題過程時,認(rèn)為采用上課時的解題的方法——先去括號,再求解的方法,運算量比先去分母,再去括號求方程解要大的多,且容易出錯,學(xué)生自然地接受了去分母的思想與方法。同時在分析過程中提出:去分母時,依據(jù)等式的基本性質(zhì)二,要讓各分母的最小公倍數(shù)同時乘以方程兩邊的每一項。
如:上例去分母以后得
6(x+15)=15—10(x—7)
此過程也顯示了學(xué)生解題過程的規(guī)范性。
2、在對方程的解題過程分析中,有的學(xué)生認(rèn)為不去分母直接寫成:x=8也比較方便。學(xué)生轉(zhuǎn)化代數(shù)式,合并同類項等方面的運算能力較過關(guān),他們處理問題的方法也較靈活。
3、教學(xué)過程學(xué)生討論熱烈,尤其是每一步解題過程的正確,增強了自信心,肯定了自己的許多想法,形成了許多解決問題的有效的方法。
第四環(huán)節(jié):課堂小結(jié)
內(nèi)容:交流本節(jié)課的收獲
目的:
1、小結(jié)本課時的知識點
2、使學(xué)生理性地歸納解一元一次方程的解法思想與解法思路
3、在生生、師生的交流過程中,欣賞別人的優(yōu)秀之處,讓學(xué)生充分展示自己。
實際效果:
學(xué)生們不僅將近幾節(jié)課學(xué)的解一元一次方程的思想方法給予適當(dāng)?shù)男〗Y(jié)歸納。而且對例6解題的每一步都說出它的變形依據(jù),充分看出了他們研究數(shù)學(xué)問題的思維方式。同時還提出其他類型一元一次方程的解題方法與技巧。
第五環(huán)節(jié):布置作業(yè)
課本P178,習(xí)題5.5的知識技能(1)、(2)、(4)、(5)、(8)及問題解決1
第六環(huán)節(jié):小測,檢查學(xué)生學(xué)習(xí)情況
解下列方程:(5分鐘)
五、評價分析
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間交往互動與共同參與發(fā)展的過程。本節(jié)課的評價要讓學(xué)生體會到參與學(xué)習(xí)、與人合作的重要性,獲得成績的喜悅,從而激發(fā)性的學(xué)習(xí)動力。在這節(jié)的數(shù)學(xué)課,如要獲得最直接、真實的反饋,就要盡量讓學(xué)生多說、多思考,對于學(xué)生提出的問題和解決問題的方法,教師都要給予鼓勵和引導(dǎo),并隨時觀察解決,評價應(yīng)充分考慮到每個學(xué)生的差異,這節(jié)課通過現(xiàn)代化的技術(shù)的運用,節(jié)省出盡可能多的時間,提出挑戰(zhàn)性的問題,讓學(xué)生通過開放式的數(shù)學(xué)討論提高學(xué)生學(xué)習(xí)的興趣,在交流中獲益。通過隨堂練習(xí)和作業(yè)來激勵其學(xué)習(xí)。同時做練習(xí)時,將評價及時反饋給學(xué)生,樹立學(xué)習(xí)數(shù)學(xué)的自信心,促進學(xué)生的進一步發(fā)展。并在課后作成長記錄,使學(xué)生比較全面了解自己的學(xué)習(xí)過程,特別感受自己的不斷成長和進步,為下一步教學(xué)提供重要依據(jù)。
解一元一次方程教案【篇9】
第一課時
教學(xué)目的
1.了解一元一次方程的概念。
2.掌握含有括號的一元一次方程的解法。
重點、難點
1.重點:解含有括號的一元一次方程的解法。
2.難點:括號前面是負(fù)號時,去括號時忘記變號。
教學(xué)過程
一、復(fù)習(xí)提問
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括號法則是什么?“移項”要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。
例1.判斷下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
強調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項,若括號前面是“-”號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
補充:解方程3x-[3(x+1)-(1+4)]=l
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
三、鞏固練習(xí)
教科書第9頁,練習(xí),l、2、3。
四、小結(jié)
學(xué)習(xí)了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
五、作業(yè)
1.教科書第12頁習(xí)題6.2,2第l題。
第二課時
教學(xué)目的
掌握去分母解方程的方法,體會到轉(zhuǎn)化的思想。對于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的`過程和自覺檢驗方程的解是否正確的良好習(xí)慣。
重點、難點
1、重點:掌握去分母解方程的方法。
2、難點:求各分母的最小公倍數(shù),去分母時,有時要添括號。
教學(xué)過程
一、復(fù)習(xí)提問
1.去括號和添括號法則。
2.求幾個數(shù)的最小公倍數(shù)的方法。
二、新授
例1:解方程(見課本)
解一元一次方程有哪些步驟?
一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運用這些步驟。
補充例:解方程 (x+15)=- (x-7)
三、鞏固練習(xí)
教科書第10頁,練習(xí)1、2。
四、小結(jié)
1.解一元一次方程有哪些步驟?
2.掌握移項要變號,去分母時,方程兩邊每一項都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項,另外分?jǐn)?shù)線有兩層意義,一方面它是除號,另一方面它又代表著括號,所以在去分母時,應(yīng)該將分子用括號括上。
五、作業(yè)
教科書第13頁習(xí)題6.2,2第2題。
第三課時
教學(xué)目的
使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。
重點、難點
1、重點:靈活應(yīng)用解題步驟。
2、難點:在“靈活”二字上下功夫。
教學(xué)過程
一、 一、 復(fù)習(xí)
1、一元一次方程的解題步驟。
2、分?jǐn)?shù)的基本性質(zhì)。
二、新授
例1.解方程(見課本)
分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會。
例2.解方程(見課本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整數(shù))
分析:在公式中,V、D、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。
三、鞏固練習(xí)。
根據(jù)公式V=V0+at,填寫下列表中的空格。
VV0at02848314155476137
四、小結(jié)。
若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時擴大若干倍,此時分子要作為一個整體,需要補上括號,注意不是去分母,不能把方程其余的項也擴大若干倍。
五、作業(yè) 。
以上就是《解一元一次方程教案收藏》的全部內(nèi)容,想了解更多內(nèi)容,請點擊一元一次方程教案查看或關(guān)注本網(wǎng)站內(nèi)容更新,感謝您的關(guān)注!
一元一次方程教案相關(guān)推薦
更多>-
解一元一次方程(1) 老師在新授課程時,一般會準(zhǔn)備教案課件,大家應(yīng)該開始寫教案課件了。對教案課件的工作進行一個詳細(xì)的計劃,可以更好完成工作任務(wù)!你們會寫適合教案課件的范文嗎?下面是小編為大家整理的“解一元一次方程”,僅供您在工作和學(xué)習(xí)中參考。課題解一元一次方程課型新授課教學(xué)目標(biāo)1.了解與一元一次方程有關(guān)的概念,掌握等式的...
-
3.3解一元一次方程 每個老師在上課前需要規(guī)劃好教案課件,大家在細(xì)心籌備教案課件中。只有寫好教案課件計劃,才能促進我們的工作進一步發(fā)展!你們到底知道多少優(yōu)秀的教案課件呢?以下是小編為大家收集的“3.3解一元一次方程”但愿對您的學(xué)習(xí)工作帶來幫助。3.3解一元一次方程一、學(xué)習(xí)目標(biāo)1.知道解一元一次方程的去分母步驟,并能熟練地...
- 3.2解一元一次方程11-19
- 4.2解一元一次方程(2)11-12
- 3.2解一元一次方程(一)11-05
- 4.2解一元一次方程(4)11-12
- 3.3解一元一次方程(2)11-19
- 解一元一次方程(二)(1)10-06
- 一元一次方程10-19
- 求解一元一次方程10-06
庖丁解牛教案錦集九篇09-20
- 最新小班美術(shù)教案(錦集12篇)09-20
- 幼兒園中班語言教案九篇09-20
- 2024幼兒園食品安全教案8篇09-20
- 學(xué)校安全周活動總結(jié)09-20
- 幼兒園區(qū)域活動總結(jié)十一篇09-20
- 2024幼兒園美術(shù)籃球教案09-20
- 幼兒園大班美術(shù)教案內(nèi)容9篇09-20
- 大班教案(熱門7篇)09-20
- 解一元一次方程教案收藏09-20
- 初中數(shù)學(xué)二元一次方程教案模板09-17
- 2024一元一次方程教案12篇06-08
- 解一元一次方程(1)11-05
- 3.3解一元一次方程11-05