88教案網(wǎng)
初中數(shù)學(xué)教學(xué)教案模板范文
初中數(shù)學(xué)教學(xué)教案模板范文。
當(dāng)我們受到啟發(fā),對(duì)生活有了新的感悟時(shí),可以將其記錄在心得體會(huì)中,這樣可以幫助我們總結(jié)以往思想、工作和學(xué)習(xí)。一起來學(xué)習(xí)心得體會(huì)是如何寫的吧,以下是小編為大家收集的初中數(shù)學(xué)新課標(biāo)核心素養(yǎng)心得體會(huì)范文,希望對(duì)大家有所幫助。
初中數(shù)學(xué)教學(xué)教案模板范文 篇1
教學(xué)目標(biāo):
1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.
2.會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù).
3.在嘗試、探索求反函數(shù)的過程中,深化對(duì)概念的認(rèn)識(shí),總結(jié)出求反函數(shù)的一般步驟,加深對(duì)函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識(shí).
4.進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點(diǎn)分析問題,培養(yǎng)抽象、概括的能力.
教學(xué)重點(diǎn):求反函數(shù)的方法.
教學(xué)難點(diǎn):反函數(shù)的概念.
教學(xué)過程:
教學(xué)活動(dòng)
設(shè)計(jì)意圖一、創(chuàng)設(shè)情境,引入新課
1.復(fù)習(xí)提問
①函數(shù)的概念
②y=f(x)中各變量的意義
2.同學(xué)們?cè)谖锢碚n學(xué)過勻速直線運(yùn)動(dòng)的位移和時(shí)間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時(shí)間t的函數(shù);在t=中,時(shí)間t是位移S的函數(shù).在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.
3.板書課題
由實(shí)際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.
二、實(shí)例分析,組織探究
1.問題組一:
(用投影給出函數(shù)與;與()的圖象)
(1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對(duì)稱;與()的圖象也關(guān)于直線y=x對(duì)稱.是求一個(gè)數(shù)立方的運(yùn)算,而是求一個(gè)數(shù)立方根的運(yùn)算,它們互為逆運(yùn)算.同樣,與()也互為逆運(yùn)算.)
(2)由,已知y能否求x?
(3)是否是一個(gè)函數(shù)?它與有何關(guān)系?
(4)與有何聯(lián)系?
2.問題組二:
(1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?
3.滲透反函數(shù)的概念.
(教師點(diǎn)明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點(diǎn))
從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點(diǎn),有利于培養(yǎng)學(xué)生抽象、概括的能力.
通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識(shí),在"最近發(fā)展區(qū)"設(shè)計(jì)問題,使學(xué)生對(duì)反函數(shù)有一個(gè)直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ).
三、師生互動(dòng),歸納定義
1.(根據(jù)上述實(shí)例,教師與學(xué)生共同歸納出反函數(shù)的定義)
函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域?yàn)?C.我們根據(jù)這個(gè)函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) .如果對(duì)于y在C中的任何一個(gè)值,通過x = j (y),x在A中都有的`值和它對(duì)應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對(duì)調(diào)寫成.
2.引導(dǎo)分析:
1)反函數(shù)也是函數(shù);
2)對(duì)應(yīng)法則為互逆運(yùn)算;
3)定義中的"如果"意味著對(duì)于一個(gè)任意的函數(shù)y=f(x)來說不一定有反函數(shù);
4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;
5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);
6)要理解好符號(hào)f;
7)交換變量x、y的原因.
3.兩次轉(zhuǎn)換x、y的對(duì)應(yīng)關(guān)系
(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價(jià)的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價(jià)的)
4.函數(shù)與其反函數(shù)的關(guān)系
函數(shù)y=f(x)
函數(shù)
定義域
A
C
值 域
C
A
四、應(yīng)用解題,總結(jié)步驟
1.(投影例題)
【例1】求下列函數(shù)的反函數(shù)
(1)y=3x-1 (2)y=x 1
【例2】求函數(shù)的反函數(shù).
(教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟.)
2.總結(jié)求函數(shù)反函數(shù)的步驟:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x與y互換得.
3° 寫出反函數(shù)的定義域.
(簡(jiǎn)記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?
(2)的反函數(shù)是________.
(3)(x
在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對(duì)性地體會(huì)定義的特點(diǎn),進(jìn)而對(duì)定義有更深刻的認(rèn)識(shí),與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會(huì)反函數(shù).在剖析定義的過程中,讓學(xué)生體會(huì)函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對(duì)數(shù)學(xué)的符號(hào)語(yǔ)言有更好的把握.
通過動(dòng)畫演示,表格對(duì)照,使學(xué)生對(duì)反函數(shù)定義從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而消化理解.
通過對(duì)具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.
題目的設(shè)計(jì)遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn).并體現(xiàn)了對(duì)定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.
五、鞏固強(qiáng)化,評(píng)價(jià)反饋
1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.
五、反思小結(jié),再度設(shè)疑
本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個(gè)函數(shù)的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節(jié)研究.
(讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會(huì),教師適時(shí)點(diǎn)撥)
進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對(duì)知識(shí)的掌握情況,評(píng)價(jià)學(xué)生對(duì)學(xué)習(xí)目標(biāo)的落實(shí)程度.具體實(shí)踐中可采取同學(xué)板演、分組競(jìng)賽等多種形式調(diào)動(dòng)學(xué)生的積極性."問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進(jìn)課堂又帶著新的問題走出課堂.
六、作業(yè)
習(xí)題2.4第1題,第2題
進(jìn)一步鞏固所學(xué)的知識(shí).
教學(xué)設(shè)計(jì)說明
"問題是數(shù)學(xué)的心臟".一個(gè)概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程.本節(jié)教案通過一個(gè)物理學(xué)中的具體實(shí)例引入反函數(shù),進(jìn)而又通過若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念.
反函數(shù)的概念是教學(xué)中的難點(diǎn),原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號(hào).由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成.另外,對(duì)概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評(píng)價(jià)反饋的作用.通過對(duì)函數(shù)與方程的分析,互逆探索,動(dòng)畫演示,表格對(duì)照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動(dòng)了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。
初中數(shù)學(xué)教學(xué)教案模板范文 篇2
教學(xué)目標(biāo)
1.知識(shí)與技能
能運(yùn)用運(yùn)算律探究去括號(hào)法則,并且利用去括號(hào)法則將整式化簡(jiǎn).
2.過程與方法
經(jīng)歷類比帶有括號(hào)的有理數(shù)的運(yùn)算,發(fā)現(xiàn)去括號(hào)時(shí)的符號(hào)變化的規(guī)律,歸納出去括號(hào)法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.
3.情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生主動(dòng)探究、合作交流的意識(shí),嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):去括號(hào)法則,準(zhǔn)確應(yīng)用法則將整式化簡(jiǎn).
2.難點(diǎn):括號(hào)前面是“-”號(hào)去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)變號(hào)容易產(chǎn)生錯(cuò)誤.
3.關(guān)鍵:準(zhǔn)確理解去括號(hào)法則.
教具準(zhǔn)備
投影儀.
教學(xué)過程
一、新授
利用合并同類項(xiàng)可以把一個(gè)多項(xiàng)式化簡(jiǎn),在實(shí)際問題中,往往列出的式子含有括號(hào),那么該怎樣化簡(jiǎn)呢?
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時(shí),那么它通過非凍土地段的時(shí)間為(t-0.5)小時(shí),于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長(zhǎng)為
100t+120(t-0.5)千米①
凍土地段與非凍土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都帶有括號(hào),它們應(yīng)如何化簡(jiǎn)?
思路點(diǎn)撥:教師引導(dǎo),啟發(fā)學(xué)生類比數(shù)的運(yùn)算,利用分配律.學(xué)生練習(xí)、交流后,教師歸納:
利用分配律,可以去括號(hào),合并同類項(xiàng),得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我們知道,化簡(jiǎn)帶有括號(hào)的整式,首先應(yīng)先去括號(hào).
上面兩式去括號(hào)部分變形分別為:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比較③、④兩式,你能發(fā)現(xiàn)去括號(hào)時(shí)符號(hào)變化的規(guī)律嗎?
思路點(diǎn)撥:鼓勵(lì)學(xué)生通過觀察,試用自己的語(yǔ)言敘述去括號(hào)法則,然后教師板書(或用屏幕)展示:
如果括號(hào)外的'因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相同;
如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相反.
特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).
利用分配律,可以將式子中的括號(hào)去掉,得:
+(x-3)=x-3(括號(hào)沒了,括號(hào)內(nèi)的每一項(xiàng)都沒有變號(hào))
-(x-3)=-x+3(括號(hào)沒了,括號(hào)內(nèi)的每一項(xiàng)都改變了符號(hào))
去括號(hào)規(guī)律要準(zhǔn)確理解,去括號(hào)應(yīng)對(duì)括號(hào)的每一項(xiàng)的符號(hào)都予考慮,做到要變都變;要不變,則誰(shuí)也不變;另外,括號(hào)內(nèi)原有幾項(xiàng)去掉括號(hào)后仍有幾項(xiàng).
二、范例學(xué)習(xí)
例1.化簡(jiǎn)下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路點(diǎn)撥:講解時(shí),先讓學(xué)生判定是哪種類型的去括號(hào),去括號(hào)后,要不要變號(hào),括號(hào)內(nèi)的每一項(xiàng)原來是什么符號(hào)?去括號(hào)時(shí),要同時(shí)去掉括號(hào)前的符號(hào).為了防止錯(cuò)誤,題(2)中-3(a2-2b),先把3乘到括號(hào)內(nèi),然后再去括號(hào).
解答過程按課本,可由學(xué)生口述,教師板書.
例2.兩船從同一港口同時(shí)出發(fā)反向而行,甲船順?biāo)掖嫠?兩船在靜水中的速度都是50千米/時(shí),水流速度是a千米/時(shí).
(1)2小時(shí)后兩船相距多遠(yuǎn)?
(2)2小時(shí)后甲船比乙船多航行多少千米?
教師操作投影儀,展示例2,學(xué)生思考、小組交流,尋求解答思路.
思路點(diǎn)撥:根據(jù)船順?biāo)叫械乃俣?船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時(shí),乙船速度為(50-a)千米/時(shí),2小時(shí)后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時(shí)出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.
解答過程按課本.
去括號(hào)時(shí)強(qiáng)調(diào):括號(hào)內(nèi)每一項(xiàng)都要乘以2,括號(hào)前是負(fù)因數(shù)時(shí),去掉括號(hào)后,括號(hào)內(nèi)每一項(xiàng)都要變號(hào).為了防止出錯(cuò),可以先用分配律將數(shù)字2與括號(hào)內(nèi)的各項(xiàng)相乘,然后再去括號(hào),熟練后,再省去這一步,直接去括號(hào).
三、鞏固練習(xí)
1.課本第68頁(yè)練習(xí)1、2題.
2.計(jì)算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路點(diǎn)撥:一般地,先去小括號(hào),再去中括號(hào).
四、課堂小結(jié)
去括號(hào)是代數(shù)式變形中的一種常用方法,去括號(hào)時(shí),特別是括號(hào)前面是“-”號(hào)時(shí),括號(hào)連同括號(hào)前面的“-”號(hào)去掉,括號(hào)里的各項(xiàng)都改變符號(hào).去括號(hào)規(guī)律可以簡(jiǎn)單記為“-”變“+”不變,要變?nèi)甲?當(dāng)括號(hào)前帶有數(shù)字因數(shù)時(shí),這個(gè)數(shù)字要乘以括號(hào)內(nèi)的每一項(xiàng),切勿漏乘某些項(xiàng).
五、作業(yè)布置
1.課本第71頁(yè)習(xí)題2.2第2、3、5、8題.
2.選用課時(shí)作業(yè)設(shè)計(jì).
初中數(shù)學(xué)教學(xué)教案模板范文 篇3
教學(xué)目標(biāo)
1使學(xué)生理解本章的知識(shí)結(jié)構(gòu),并通過本章的知識(shí)結(jié)構(gòu)掌握本章的全部知識(shí);
2對(duì)線段、射線、直線、角的概念及它們之間的關(guān)系有進(jìn)一步的認(rèn)識(shí);
3掌握本章的全部定理和公理;
4理解本章的數(shù)學(xué)思想方法;
5了解本章的題目類型。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn)是理解本章的知識(shí)結(jié)構(gòu),掌握本章的全部定和公理;難點(diǎn)是理解本章的數(shù)學(xué)思想方法。
教學(xué)設(shè)計(jì)過程
一、本章的知識(shí)結(jié)構(gòu)
二、本章中的概念
1直線、射線、線段的概念。
2線段的中點(diǎn)定義。
3角的兩個(gè)定義。
4直角、平角、周角、銳角、鈍角的概念。
5互余與互補(bǔ)的角。
三、本章中的公理和定理
1直線的公理;線段的公理。
2補(bǔ)角和余角的性質(zhì)定理。
四、本章中的主要習(xí)題類型
1對(duì)直線、射線、線段的概念的理解。
例1下列說法中正確的是( )。
A延長(zhǎng)射線OP B延長(zhǎng)直線CD
C延長(zhǎng)線段CD D反向延長(zhǎng)直線CD
解:C因?yàn)樯渚€和直線是可以向一方或兩方無(wú)限延伸的,所以任何延長(zhǎng)射線或直線的說法都是錯(cuò)誤的。而線段有兩個(gè)端點(diǎn),可以向兩方延長(zhǎng)。
例2如圖1-57中的線段共有多少條?
解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,F(xiàn)G。
2線段的和、差、倍、分。
例3已知線段AB,延長(zhǎng)AB到C,使AC=2BC,反向延長(zhǎng)AB到D使AD= BC,那么線段AD是線段AC的( )。
A.B. C. D.
解:B如圖1-58,因?yàn)锳D是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。
例4如圖1-59,B為線段AC上的一點(diǎn),AB=4cm,BC=3cm,M,N分別為AB,BC的中點(diǎn),求MN的長(zhǎng)。
解:因?yàn)锳B=4,M是AB的中點(diǎn),所以MB=2,又因?yàn)镹是BC的中點(diǎn),所以BN=1.5。則MN=2+1.5=3.5
3角的概念性質(zhì)及角平分線。
例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的度數(shù)。
解:因?yàn)镺D是∠AOB的平分線,所以∠BOD= ∠AOB;又因?yàn)镺E是∠BOC的平分線,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,
所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。
則∠EOD=90°。
例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數(shù)的比是多少?
解:因?yàn)椤螦OB=90°,又∠AOD=150°,所以∠BOD=60°。
又∠COD=90°,所以∠COB=30°。
則∠AOC=60°,(同角的.余角相等)
∠AOC與∠COB的度數(shù)的比是2∶1。
4互余與互補(bǔ)角的性質(zhì)。
例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數(shù)。
解:因?yàn)镃OD為直線,∠BOE=90°,∠BOD=45°,
所以∠COE=180°-90°-45°=45°
又AOB為直線,∠BOE=90°,∠COE=45°
故∠COA=180°-90°-45°=45°,
而AOB為直線,∠BOD=45°,
因此∠AOD=180°-45°=135°。
例8一個(gè)角是另一個(gè)角的3倍,且小有的余角與大角的余角之差為20°,求這兩個(gè)角的度數(shù)。
解:設(shè)第一個(gè)角為x°,則另一個(gè)角為3x°,
依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。
答:一個(gè)角為10°,另一個(gè)角為30°。
5度分秒的換算及和、差、倍、分的計(jì)算。
例9 (1)將4589°化成度、分、秒的形式。
(2)將80°34′45″化成度。
(3)計(jì)算:(36°55′40″-23°56′45″)。
解:(1)45°53′24″。
(2)約為8058°。
(3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進(jìn)位,做除法后得9°44′11″)
五、本章中所學(xué)到的數(shù)學(xué)思想
1運(yùn)動(dòng)變化的觀點(diǎn):幾何圖形不是孤立和靜止的,也應(yīng)看作不斷發(fā)展和變化的,如線段向一個(gè)方向延長(zhǎng),就發(fā)展成為射線;射線向另一方向延長(zhǎng)就發(fā)展成直線。又如射線饒它的端點(diǎn)旋轉(zhuǎn)就形成角;角的終邊不斷旋轉(zhuǎn)就變化成直角、平角和周角。從圖形的運(yùn)動(dòng)中可以看到變化,從變化中看到聯(lián)系和區(qū)別及特性。
2數(shù)形結(jié)合的思想:在幾何的知識(shí)中經(jīng)常遇到計(jì)算問題,對(duì)形的研究離不開數(shù)。正如數(shù)學(xué)家華羅庚所說:“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難如微”。本章的知識(shí)中,將線段的長(zhǎng)度用數(shù)量表示,利用方程的方法解決余角與補(bǔ)角的問題。因此我們對(duì)幾何的學(xué)習(xí)不能與代數(shù)的學(xué)習(xí)截然分開,在形的問題難以解決時(shí),發(fā)揮數(shù)的功能,在數(shù)的問題遇到困難時(shí),畫出與它相關(guān)的圖形,都會(huì)給問題的解決帶來新的思路。從幾何的起始課,就注意數(shù)形結(jié)合,就會(huì)養(yǎng)成良好的思維習(xí)慣。
3聯(lián)系實(shí)際,從實(shí)際事物中抽象出數(shù)學(xué)模型。數(shù)學(xué)的產(chǎn)生來源于生產(chǎn)和生活實(shí)踐,因此學(xué)習(xí)數(shù)學(xué)不能脫離實(shí)際生活,尤其是幾乎何的學(xué)習(xí)更離不開實(shí)際生活。一方面要讓學(xué)生知道本章的主要內(nèi)容是線和角,都在生活中有大量的原型存在,另一方面又要引導(dǎo)學(xué)生將所學(xué)的知識(shí)去解決某些簡(jiǎn)單的實(shí)際問題,這才是理論聯(lián)系實(shí)際的觀點(diǎn)。
六、本章的疑點(diǎn)和誤點(diǎn)分析
概念在應(yīng)用中的混淆。
例10判斷正誤:
(1)在∠AOB的邊OA的延長(zhǎng)線上取一點(diǎn)D。
(2)大于90°的角是鈍角。
(3)任何一個(gè)角都可以有余角。
(4)∠A是銳角,則∠A的所有余角都相等。
(5)兩個(gè)銳角的和一定小于平角。
(6)直線MN是平角。
(7)互補(bǔ)的兩個(gè)角的和一定等于平角。
(8)如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角就沒有余角。
(9)鈍角一定大于它的補(bǔ)角。
(10)經(jīng)過三點(diǎn)一定可以畫一條直線。
解:(1)錯(cuò)。因?yàn)榻堑膬蛇吺巧渚€,而射線是可以向一方無(wú)限延伸的,所以就不能再說射線的延長(zhǎng)線了。
(2)錯(cuò)。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。
(3)錯(cuò)。余角的定義是:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角互為余角。因此大于直角的角沒有余角。
(4)對(duì).∠A的所有余角都是90°-∠A。
(5)對(duì).若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.
(6)錯(cuò)。平角是一個(gè)角就要有頂點(diǎn),而直線上沒有表示平角頂點(diǎn)的點(diǎn)。如果在直線上標(biāo)出表示角的頂點(diǎn)的點(diǎn),就可以了。
(7)對(duì)。符合互補(bǔ)的角的定義。
(8)對(duì)。如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角一定是鈍角,而鈍角是沒有余角的。
(9)對(duì)。因?yàn)殁g角的補(bǔ)角是銳角,鈍角一定大于銳角。
(10)錯(cuò)。這個(gè)題應(yīng)該分情況討論:如果這三點(diǎn)在同一條直線上,這個(gè)結(jié)論是正確的。如果這三個(gè)點(diǎn)不在同一條直線上,那么過這三個(gè)點(diǎn)就不能畫一條直線。
板書設(shè)計(jì)
回顧與反思
(一)知識(shí)結(jié)構(gòu)(四)主要習(xí)題類型(五)本章的數(shù)學(xué)思想
略例1 1
· 2
(二)本章概念· 3
略· (六)疑誤點(diǎn)分析
(三)本章的公理和定理·
例9
初中數(shù)學(xué)教學(xué)教案模板范文 篇4
教學(xué)目標(biāo)
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。
教學(xué)重難點(diǎn)
利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過程
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題
1、一根為L(zhǎng)cm的線,一端固定,另一端懸掛一個(gè)小球,組成一個(gè)單擺,小球擺動(dòng)時(shí),離開平衡位置的位移s(單位:cm)與時(shí)間t(單位:s)的函數(shù)關(guān)系是
(1)求小球擺動(dòng)的周期和頻率;
(2)已知g=24500px/s2,要使小球擺動(dòng)的周期恰好是1秒,線的長(zhǎng)度l應(yīng)當(dāng)是多少?
(1)選用一個(gè)函數(shù)來近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系,并給出整點(diǎn)時(shí)的水深的近似數(shù)值(精確到0.001)。
(2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與洋底的距離),該船何時(shí)能進(jìn)入港口?在港口能呆多久?
(3)若某船的吃水深度為4米,安全間隙為1.5米,該船在2:00開始卸貨,吃水深度以每小時(shí)0.3米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
練習(xí):教材P65面3題
三、小結(jié):
1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
初中數(shù)學(xué)教學(xué)教案模板范文 篇5
我參加了20xx年初中數(shù)學(xué)遠(yuǎn)程培訓(xùn),這是我第二次參加初中遠(yuǎn)程培訓(xùn),總結(jié)此次培訓(xùn)活動(dòng),我收獲頗豐,下面我總結(jié)一下此次遠(yuǎn)程佩云活動(dòng)的心得體會(huì)。
一、主動(dòng)才能得到收獲
課程團(tuán)隊(duì)給我們組織了這么好的一個(gè)平臺(tái),我們沒有理由不好好利用。唯有主動(dòng)才能搶占先機(jī),唯有主動(dòng)才能取得豐碩的培訓(xùn)成果。這種主動(dòng)包括主動(dòng)學(xué)習(xí)課程視頻和文本資料,主動(dòng)參與在線研討、班級(jí)研討,主動(dòng)學(xué)習(xí)、收集、整理平臺(tái)上每日發(fā)表上傳的好資料,同時(shí)主動(dòng)做出自己的評(píng)價(jià),在這一過程中還要主動(dòng)接受專家的引領(lǐng),主動(dòng)與同行交流等等。
二、交流才能常進(jìn)步
學(xué)習(xí),需要耐得住寂寞,關(guān)起門來用心鉆研是必要的。但不能永遠(yuǎn)關(guān)起門來搞建設(shè),我們還要嘗試走出去和引進(jìn)來,這種走出去和引進(jìn)來就是交流的過程。而交流是我們學(xué)習(xí)成長(zhǎng)的.催化劑,很多平時(shí)百思不得其解的問題,可能因?yàn)閷?duì)方的一句點(diǎn)撥就有如醍醐灌頂,豁然開朗。
在培訓(xùn)中這種交流就包括很多種,比如你讀文本資料,從文本資料中獲得知識(shí)和思想,你將寫出的文章發(fā)表出去,別人讀你的文章而與你的思想交流有了他自己的收獲;又比如我們給別人評(píng)論,會(huì)吸引來作者或其他學(xué)員回復(fù),然后再回復(fù)下去,或者參與班級(jí)研討和在線研討,這種交流就是一種非常及時(shí)的交流;甚至我們還可能由此而結(jié)交些許好友,大家相約著面對(duì)面交流。總之,交流讓我們們學(xué)到更多的知識(shí),讓我們收獲更多的思想,也讓我們結(jié)交更多志同道合的好友。當(dāng)然,在主動(dòng)學(xué)習(xí)和主動(dòng)交流之后我們還要學(xué)會(huì)主動(dòng)反思和總結(jié),這個(gè)過程也是非常重要的。
三、培訓(xùn)之路是鼓勵(lì)之路,溫情之路
在此次培訓(xùn)中,我認(rèn)識(shí)了很多學(xué)員,也認(rèn)識(shí)了很多優(yōu)秀的老師、專家,他們都給了我誠(chéng)摯的鼓勵(lì),非常感謝他們!這次培訓(xùn)跟以往相比作業(yè)量、評(píng)論數(shù)大大減少,任務(wù)安排比以前更加科學(xué),更加人性化。我們?cè)谂嘤?xùn)中知識(shí)得到提升,思想得到升華,頭腦得到充實(shí)的同時(shí),情感也時(shí)時(shí)受到關(guān)愛暖流的滋潤(rùn)。這次培訓(xùn),很值!
初中數(shù)學(xué)教學(xué)教案模板范文 篇6
一、教材分析
本節(jié)內(nèi)容是人民教育出版社出版《義務(wù)教育課程實(shí)驗(yàn)教科書(五四學(xué)制)數(shù)學(xué)》(供天津用)八年級(jí)下冊(cè)第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。
二、設(shè)計(jì)思想
本節(jié)內(nèi)容是學(xué)生掌握了“整式”有關(guān)概念的延展學(xué)習(xí),為后繼學(xué)習(xí)整式運(yùn)算、因式分解、一元二次方程及函數(shù)知識(shí)奠定基礎(chǔ),是“數(shù)”向“式”的正式過度,具有十分重要地位。
八年級(jí)學(xué)生已具有了較強(qiáng)的數(shù)的運(yùn)算技能和“合并”的意識(shí)(解一元一次方程中用)同時(shí)也具有初步的觀察、歸納、探索的技能。因此,我結(jié)合教材,立足讓每個(gè)學(xué)生都有發(fā)展的宗旨,我采用合作探究的學(xué)習(xí)方式開展教學(xué)活動(dòng),通過設(shè)計(jì)有針對(duì)性、多樣式的問題引導(dǎo)學(xué)生,給學(xué)生提供充足的、和諧的探索空間讓學(xué)生學(xué)習(xí)。通過學(xué)習(xí)活動(dòng)不但培養(yǎng)學(xué)生化簡(jiǎn)意識(shí),提升數(shù)學(xué)運(yùn)算技能而且讓學(xué)生深刻體會(huì)到數(shù)學(xué)是解決實(shí)際問題的重要工具,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。
三、教學(xué)目標(biāo):
(一)知識(shí)技能目標(biāo):
1、理解同類項(xiàng)的含義,并能辨別同類項(xiàng)。
2、掌握合并同類項(xiàng)的方法,熟練的合并同類項(xiàng)。
3、掌握整式加減運(yùn)算的方法,熟練進(jìn)行運(yùn)算。
(二)過程方法目標(biāo):
1、通過探究同類項(xiàng)定義、合并同類項(xiàng)的方法的活動(dòng),培養(yǎng)學(xué)生觀察、歸納、探究的能力。
2、通過合并同類項(xiàng)、整式加減運(yùn)算的`練習(xí)活動(dòng),提高學(xué)生運(yùn)算技能,提升運(yùn)算的準(zhǔn)確率培養(yǎng)學(xué)生化簡(jiǎn)意識(shí),發(fā)展學(xué)生的抽象概括能力。
3、通過研究引例、探究例1的活動(dòng),發(fā)展學(xué)生的形象思維,初步培養(yǎng)學(xué)生的符號(hào)感。
(三)情感價(jià)值目標(biāo):
1、通過交流協(xié)商、分組探究,培養(yǎng)學(xué)生合作交流的意識(shí)和敢于探索未知問題的精神。
2、通過學(xué)習(xí)活動(dòng)培養(yǎng)學(xué)生科學(xué)、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
四、教學(xué)重、難點(diǎn):
合并同類項(xiàng)
五、教學(xué)關(guān)鍵:
同類項(xiàng)的概念
六、教學(xué)準(zhǔn)備:
教師:
1、篩選數(shù)學(xué)題目,精心設(shè)置問題情境。
2、制作大小不等的兩個(gè)長(zhǎng)方體紙盒實(shí)物模型,并能展開。
3、設(shè)計(jì)多媒體教學(xué)課件。(要凸顯①單項(xiàng)式中系數(shù)、字母、指數(shù)的特征②長(zhǎng)方體紙盒立體圖、展開圖。)
學(xué)生:
1、復(fù)習(xí)有關(guān)單項(xiàng)式的概念、有理數(shù)四則運(yùn)算及去括號(hào)的法則)
2、每小組制作大小不等的兩個(gè)長(zhǎng)方體紙盒模型。
初中數(shù)學(xué)教學(xué)教案模板范文 篇7
教學(xué)目標(biāo):
1、理解并掌握曲線在某一點(diǎn)處的切線的概念;
2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化
問題的能力及數(shù)形結(jié)合思想。
教學(xué)重點(diǎn):
理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。
教學(xué)難點(diǎn):
用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。
教學(xué)過程:
一、問題情境
1、問題情境。
如何精確地刻畫曲線上某一點(diǎn)處的變化趨勢(shì)呢?
如果將點(diǎn)P附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。
如果將點(diǎn)P附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的'直線,該直線是經(jīng)過點(diǎn)P的所有直線中最逼近曲線的一條直線。
因此,在點(diǎn)P附近我們可以用這條直線來代替曲線,也就是說,點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動(dòng)。
如圖所示,直線l1,l2為經(jīng)過曲線上一點(diǎn)P的兩條直線,
(1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;
(2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
(3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構(gòu)數(shù)學(xué)
切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無(wú)限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
三、數(shù)學(xué)運(yùn)用
例1 試求在點(diǎn)(2,4)處的切線斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當(dāng)Q沿曲線逼近點(diǎn)P時(shí),割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;
當(dāng)Q點(diǎn)橫坐標(biāo)無(wú)限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無(wú)限趨近于2時(shí),kPQ無(wú)限趨近于常數(shù)4。
從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。
練習(xí) 試求在x=1處的切線斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:
(1)找到定點(diǎn)P的坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);
(2)求出割線PQ的斜率;
(3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
解 設(shè)
所以,當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線的斜率。
變式訓(xùn)練
1。已知,求曲線在處的切線斜率和切線方程;
2。已知,求曲線在處的切線斜率和切線方程;
3。已知,求曲線在處的切線斜率和切線方程。
課堂練習(xí)
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結(jié)
1、曲線上一點(diǎn)P處的切線是過點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。
五、課外作業(yè)
初中數(shù)學(xué)教學(xué)教案模板范文 篇8
教學(xué)內(nèi)容:
蘇教版義務(wù)教育教科書《數(shù)學(xué)》四年級(jí)下冊(cè)第31-32頁(yè)練習(xí)五第12- 19題及思考題。
教學(xué)目標(biāo):
1.使學(xué)生進(jìn)一步掌握三位數(shù)乘兩位數(shù)的筆算方法,能正確計(jì)算得數(shù);進(jìn)―步熟悉常見的數(shù)量關(guān)系,能應(yīng)用相關(guān)的數(shù)量關(guān)系解決實(shí)際問題,并能說明解決問題的想法。
2.能在解決問題中發(fā)現(xiàn)新的數(shù)量關(guān)系并應(yīng)用于解決相關(guān)實(shí)際問題,培養(yǎng)細(xì)心筆算、認(rèn)真檢查的良好品質(zhì)。
教學(xué)重點(diǎn):常見的數(shù)量關(guān)系應(yīng)用。
教學(xué)難點(diǎn):綜合應(yīng)用數(shù)量關(guān)系解決實(shí)際問題。
教學(xué)準(zhǔn)備:多媒體課件。
教學(xué)過程:
一、復(fù)習(xí)回顧s
1.做練習(xí)五第12題,練習(xí)三位數(shù)乘兩位數(shù)的筆算。
教師出示題目,讓學(xué)生說說這幾道算式的特點(diǎn)。
思考:三位數(shù)乘兩位數(shù)筆算的計(jì)算方法是什么?
提示:先說說三位數(shù)乘兩位數(shù)筆算的方法,再進(jìn)行豎式計(jì)算。
比較:兩位數(shù)乘兩位數(shù)、三位數(shù)乘兩位數(shù)的計(jì)算方法有什么相同點(diǎn)?
明確:三位數(shù)乘兩位數(shù)和兩位數(shù)乘兩位數(shù)的計(jì)算方法相同,都是先用兩位數(shù)個(gè)位上的數(shù)去乘另一個(gè)乘數(shù),再用兩位數(shù)十位上的數(shù)去乘另一個(gè)乘數(shù),再把兩次乘得的積相加。
2.提出問題:我們學(xué)習(xí)了哪些基本的數(shù)量關(guān)系?
小組合作交流,學(xué)生整理信息再進(jìn)行匯報(bào)。
二、基本練習(xí)
1.做練習(xí)五第13題。
讓學(xué)生自主填表,說說“單價(jià)、數(shù)量、總價(jià)”和“速度、時(shí)間、路程”這兩組數(shù)量之間的關(guān)系。
說說題中已知哪兩個(gè)數(shù)量,根據(jù)數(shù)量關(guān)系式怎么求第三個(gè)數(shù)量?又是根據(jù)什么進(jìn)行列式計(jì)算?
2.做練習(xí)五第14題。
讓學(xué)生說說已知什么條件,要求什么問題?
學(xué)生在反饋時(shí),重點(diǎn)讓他們說說已知什么?要求什么?
用到的數(shù)量關(guān)系式是什么?列算式依據(jù)是什么?
最后讓學(xué)生進(jìn)行匯報(bào)交流,“通過練習(xí),引導(dǎo)學(xué)生初步感知“速度、時(shí)間、路程”三者之間的關(guān)系。
3.做練習(xí)五第15題。
出示練習(xí)題,提問:這道題又和我們生活中什么問題有關(guān)呢?(工程問題)
組織學(xué)生結(jié)合題目認(rèn)識(shí)工程問題中的“工作總量”“工作時(shí)間”“工作效率”。
分析工程問題的數(shù)量關(guān)系:
工作總量=工作效率×工作時(shí)間
工作效率=工作總量÷工作時(shí)間
工作時(shí)間=工作總量÷工作效率
組織學(xué)生獨(dú)立解決問題。教師巡視,進(jìn)行個(gè)別輔導(dǎo)。
組織全班匯報(bào)交流:
第(1)題:24×8=192(個(gè))
第(2)題:192÷24=8(時(shí))
第(3)題:192÷8=24(個(gè))
4.做練習(xí)五第17題。
思考:解決這個(gè)問題時(shí),要先算什么,你是怎樣思考的?
明確:根據(jù)什么問題找出數(shù)量關(guān)系?讓生注意解答的格式。
三、綜合練習(xí)
1.做練習(xí)五第18題。
讓學(xué)生獨(dú)立分析問題,說說是怎樣根據(jù)問題選擇條件的?
讓學(xué)生自主解答。
再進(jìn)行匯報(bào)。
教師提問:有沒有不同的解答方法?
2.做練習(xí)五第19題。
說說你是怎樣分析數(shù)量關(guān)系的?
讓學(xué)生自己解答。
全班交流過程中讓生體會(huì)到:列綜合算式計(jì)算的簡(jiǎn)便之處。
3.完成練習(xí)五的思考題。
這道題可以供學(xué)有余力的學(xué)生進(jìn)行練習(xí),在鞏固豎式計(jì)算方法的同時(shí),培養(yǎng)學(xué)生的邏輯推理能力。
四、全課小結(jié)
1.總結(jié)評(píng)價(jià)
回顧本節(jié)課的學(xué)習(xí)過程,你有什么收獲?還有什么疑問?
2.布置作業(yè)
完成補(bǔ)充習(xí)題。
板書設(shè)計(jì):
練習(xí)五
基本數(shù)量關(guān)系:
總價(jià)=數(shù)量×單價(jià)/路程=速度×?xí)r間
數(shù)量=總價(jià)÷單價(jià)/時(shí)間=路程÷速度
單價(jià)=總價(jià)÷數(shù)量/速度=路程÷時(shí)間
初中數(shù)學(xué)教學(xué)教案模板范文 篇9
昨天到興福中學(xué)參加數(shù)學(xué)教師培訓(xùn)會(huì),聽了兩節(jié)公開課:一節(jié)是興福中學(xué)韓翠華老師執(zhí)教的《九年級(jí)數(shù)學(xué)復(fù)習(xí)試卷講評(píng)》課,另一節(jié)是實(shí)驗(yàn)中學(xué)韓冰老師執(zhí)教的《閱讀理解專題》復(fù)習(xí)課。兩節(jié)課都貫徹了“以學(xué)生為主導(dǎo),以教師為主體,訓(xùn)練為主線”的教學(xué)思想。教師注重引導(dǎo)點(diǎn)撥,幫助學(xué)生歸納提煉解題方法和數(shù)學(xué)思想,很值得我學(xué)習(xí)和借鑒。
如何上好講評(píng)課?韓翠華老師這節(jié)課為我們提供了一個(gè)典型的范例。韓老師的首先出示了對(duì)試卷中各題出錯(cuò)情況的`統(tǒng)計(jì)圖,使人一目了然。把試卷上的題目進(jìn)行歸類重組,分類講解,韓老師把試卷上的題目分為三類:數(shù)與式、圖形與證明函數(shù)。重點(diǎn)問題重點(diǎn)講解,本節(jié)課重點(diǎn)講解了函數(shù)的有關(guān)題目,并且通過變式練習(xí)進(jìn)行針對(duì)性訓(xùn)練,收到了很好的效果。整節(jié)課課堂結(jié)構(gòu)緊湊,流暢自然。
通過聽這節(jié)講評(píng)課使我認(rèn)識(shí)到:要想上好講評(píng)課必須做到“兩前提”、“三避免”和“五化”。
講評(píng)課必須重視兩個(gè)前提:一是了解學(xué)生錯(cuò)誤的前提下講;二是在對(duì)全體學(xué)生的錯(cuò)誤進(jìn)行統(tǒng)計(jì)和原因分析的前提下講解。
三個(gè)避免是:避免簡(jiǎn)單的對(duì)答案,避免講解面面俱到,避免就題講題。
在試卷講評(píng)過程中要確?!拔寤保涸嚲碇亟M化、題目重點(diǎn)化、變式訓(xùn)練常規(guī)化、講解能力化、知識(shí)系統(tǒng)化。教師對(duì)試卷要進(jìn)行重組,不能按部就班地一個(gè)題目接一個(gè)題目的講解,應(yīng)將同一知識(shí)點(diǎn)的題目放在一起進(jìn)行分類講解,以便知識(shí)系統(tǒng)化。要把學(xué)生錯(cuò)誤率高的題目進(jìn)行重點(diǎn)講解,講清講透,并不是老師一講到底,一些題目可以讓學(xué)生進(jìn)行講解。這樣不但可以激發(fā)學(xué)生的求知欲和上進(jìn)心,鍛煉學(xué)生的語(yǔ)言表達(dá)能力,而且其他學(xué)生也會(huì)聽得更加認(rèn)真,從而提高了課堂的效率。重點(diǎn)題目講解后要緊跟變式訓(xùn)練,通過變式訓(xùn)練不僅可以檢查講解的效果,而且可以拓展學(xué)生思維,掌握一類題目的解法,達(dá)到多題歸一的目的。變式練習(xí)題雖重復(fù)但不呆板,有利于學(xué)生構(gòu)建完整合理的知識(shí)結(jié)構(gòu),每一個(gè)變式具有一定的創(chuàng)新性,但又能夯實(shí)基礎(chǔ)。實(shí)現(xiàn)“堅(jiān)實(shí)基礎(chǔ)上有所發(fā)展的”教學(xué)理念。在變式訓(xùn)練中教師必須幫助學(xué)生提煉數(shù)學(xué)思想方法,得到數(shù)學(xué)能力的升華。
初中數(shù)學(xué)教學(xué)反思相關(guān)推薦
更多>-
初中數(shù)學(xué)教師教學(xué)反思范文1000字模板7篇 88教案網(wǎng)相關(guān)專題:“數(shù)學(xué)教師教學(xué)反思”。...
-
關(guān)于初中數(shù)學(xué)教學(xué)設(shè)計(jì)模板通用 敬讀閱讀88教案網(wǎng)小編整理的關(guān)于初中數(shù)學(xué)教學(xué)設(shè)計(jì)模板,歡迎閱讀,希望大家能夠喜歡。一名合格的人民教師應(yīng)該保證教學(xué)的效率,當(dāng)有新的教學(xué)內(nèi)容時(shí),就會(huì)有一份新教案。編寫教案時(shí)以教學(xué)大綱和教材為依據(jù),做到目的明確,要求適當(dāng)。...
一助一活動(dòng)總結(jié)09-08
- 初中數(shù)學(xué)教案范例大全(集錦八篇)09-08
- 鄉(xiāng)鎮(zhèn)述職報(bào)告(通用十一篇)09-08
- 罵了同學(xué)檢討書匯總14篇09-08
- 感恩節(jié)活動(dòng)的策劃案09-08
- 開學(xué)的第一課心得體會(huì)202409-08
- 2024年重陽(yáng)節(jié)活動(dòng)主題09-08
- 軍訓(xùn)文案朋友圈老師短句(收藏64句)09-08
- 「教案參考」 暑假實(shí)習(xí)證明模板01-03
- 小學(xué)教學(xué)教案模板范文數(shù)學(xué)精選03-20
- 黨員教育工作計(jì)劃09-08