88教案網(wǎng)
因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思
因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思1000字匯總。
老師在上課前需要有教案課件,每個老師對于寫教案課件都不陌生。要知道優(yōu)秀教案課件,會讓學(xué)生更快地理解各知識要點。最好教案課件是怎么樣的呢?經(jīng)過整理,小編為你呈上因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思1000字匯總,歡迎大家參考閱讀。
因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思【篇1】
這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計上的反思和一些初淺的想法。
本單元內(nèi)容在編排上與老教材有較大的差異,比如在認(rèn)識“因數(shù)、倍數(shù)”時,不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運(yùn)用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。特別是用除法找因數(shù)的學(xué)生,正是因為他們意識到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。在這個環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運(yùn)用所學(xué)知識,找到求因數(shù)的方法),如教師一開始就引導(dǎo)學(xué)生:想幾和幾相乘,勢必會造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動?用已有的經(jīng)驗自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨立思考、自主探索、促思(促進(jìn)學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認(rèn)為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實現(xiàn)學(xué)生學(xué)習(xí)的主體地位。
學(xué)生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點,我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的。
因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思【篇2】
今天我把《倍數(shù)和因數(shù)》這個單元上完了,這個單元的內(nèi)容教材上安排了7課時,可是我卻上了10課時。在上這個單元之前我就意識到這個單元的概念比較多,學(xué)生肯定會產(chǎn)生混淆。于是我在上課時特別注意了每個概念的講解,盡可能的讓學(xué)生體會每個概念間的聯(lián)系與區(qū)別。這個單元上完以后有以下幾點感受。
一、“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法讓我搞不清。
“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法讓我搞不清。我記得以前教六年級的時候,書上說的是“倍數(shù)和約數(shù)”,而不是現(xiàn)在的“倍數(shù)和因數(shù)”。我到現(xiàn)在還沒有完全弄清楚為什么現(xiàn)在的書上為什么要把“倍數(shù)和約數(shù)”改成“倍數(shù)和因數(shù)”。不過我現(xiàn)在正在上網(wǎng)查資料和請教別人,相信要不了不久我會把這個問題給搞清楚的。
二、為什么本冊書上在講“倍數(shù)與因數(shù)”的時候不提整除。
我的頭腦也許還受以前書的影響,我認(rèn)為說到“倍數(shù)與因數(shù)”必須要談到整除,似乎只有談到了整除,才有資格說到“倍數(shù)與因數(shù)”,但是我在實際上課的過程中,也體會到了書上在這里不提整除的好處。但是我的心里也產(chǎn)生了一個新的疑問,國標(biāo)版教材到底在什么時候什么數(shù)學(xué)環(huán)境下才提出“整除”這個概念的,我現(xiàn)在期待在國標(biāo)版的教材上看到“整除”這個概念。
三、3的倍數(shù)的特征怎樣讓學(xué)生發(fā)現(xiàn)出來?
我在上課的時候發(fā)現(xiàn)學(xué)生能很容易的發(fā)現(xiàn)2和5的倍數(shù)的特征,對于3的倍數(shù)的特征,學(xué)生就發(fā)現(xiàn)不了了。我感覺書上的那種方法比較機(jī)械,肯定會有一種更好的方法能引導(dǎo)學(xué)生找出3的倍數(shù)的特征,只不過到現(xiàn)在我還沒想出來,不知道誰有好辦法能告訴我一下,在這里我先謝謝了。
四、我覺得這個單元上完以后,一定要讓學(xué)生搞清楚“偶數(shù)與奇數(shù)”是對應(yīng)存在的,“素數(shù)與合數(shù)”也是對應(yīng)存在的。這兩組數(shù)之間不能搞混淆。這兩組數(shù)之間最大的區(qū)別就在于它們的分?jǐn)?shù)標(biāo)準(zhǔn)不同,當(dāng)然它們之間也有交叉的部分。我這個單元上完以后,給學(xué)生做了這樣的一組題目。
1、4這個數(shù)可以怎樣稱呼?
(學(xué)生的回答是:可以稱它為偶數(shù)、合數(shù)、自然數(shù),還可以稱它為整數(shù))
這道題重點是讓學(xué)生體會到同樣一個數(shù),由于看的角度不一樣,它就有不同的名稱。
2、判別
(1)、所有的偶數(shù)都是合數(shù)………………………()
(2)、所有的奇數(shù)都是素數(shù)………………………()
(3)、所有的合數(shù)都是偶數(shù)………………………()
(4)、所有的素數(shù)都是奇數(shù)………………………()
這一組題目做下來,我感覺對于幫助學(xué)生理解這個單元的概念還是很有幫助的。
成功之處:先讓學(xué)生看主題兔,從學(xué)生已有知識出發(fā),列出不同的乘法算式,然后采取自學(xué)的方法,讓學(xué)生自悟因數(shù)和倍數(shù)的含義及因數(shù)和倍數(shù)所指的數(shù)的范圍。教師通過提問的方式,學(xué)生通過合作交流的方式,理解因數(shù)和倍數(shù)是一對相互依存的概念。整個教學(xué)過程有收有放,收放適度。
不足之處:在鞏固新知中,第3題:在36、4、9、12、3、0這些數(shù)中,誰和誰有因數(shù)和倍數(shù)關(guān)系。學(xué)生的解答出現(xiàn)遺漏現(xiàn)象。
聽教師說,這部分內(nèi)容現(xiàn)在的教學(xué)設(shè)計與以前的不一樣了。以前是以定理的方式出現(xiàn)的,而現(xiàn)在的教材則從形象入手“用12個同樣大的正方形拼成一個長方形,每排擺幾個,擺了幾排?用乘法算式把自己的擺法表示出來,并在小組里交流”。也就是說現(xiàn)在的教材讓學(xué)生借助舊知——乘法與除法算式來學(xué)習(xí)新知——倍數(shù)與因數(shù)。當(dāng)時,那位老師說:“學(xué)生能弄清倍數(shù)與因數(shù)嗎?”當(dāng)時,我根據(jù)自己課堂上學(xué)生的反應(yīng)與接受程度回答的是“還好”。就我對這本教材的理解,我覺得教材從直觀入手來教學(xué)新知,還是比較合理的。
首先,對于一個10歲的孩子來說,他們的抽象理解水平還沒有到能直接接納定理的程度,或者說小學(xué)數(shù)學(xué)教學(xué)的任務(wù)更多地在于培養(yǎng)學(xué)生對于數(shù)學(xué)的興趣、數(shù)學(xué)的基本思想方法與基本的數(shù)學(xué)經(jīng)驗,主要不是掌握抽象的定理。他們學(xué)習(xí)數(shù)學(xué)的道路還很漫長,我們小學(xué)教師的重任在于傳達(dá)給學(xué)生這樣一個聲音:數(shù)學(xué)是好玩的、更是值得玩的!
在課后的檢測中,我教的兩個班中,只有一兩個學(xué)生把倍數(shù)和因數(shù)弄反了。而且學(xué)生對于似乎抽象的數(shù)興趣濃厚,激情滿滿。現(xiàn)在想來,教材關(guān)鍵在于厘清倍數(shù)、因數(shù)的內(nèi)在聯(lián)系與區(qū)別,用更接近學(xué)生生活的直觀例子來幫助學(xué)生理解枯燥的數(shù)學(xué)內(nèi)容。我在說明倍數(shù)、因數(shù)與自然數(shù)的依存關(guān)系時,舉的例子是:我們能說××是兒子嗎?××是弟弟嗎?……。這樣使學(xué)生明白我們應(yīng)該說的是××是××的倍數(shù)、××是××的因數(shù)。
當(dāng)然,這一節(jié)新授課的容量是很大的,上課時只是滲透了倍數(shù)、因數(shù)的概念與基本特點。因此,我們還需要對這部分內(nèi)容進(jìn)一步鞏固。
因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思【篇3】
有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容,但教材在傳承以往優(yōu)秀做法的同時也進(jìn)行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分,還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心。因此,在教學(xué)中,我有兩點最深的體會:研讀教材,走進(jìn)去;活用教材,走出來。《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如a÷b=n表示a能被b整除,b能整除a。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖引出一個乘法算式,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣編排對于學(xué)生來說更容易理解和掌握。因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。
教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學(xué)生的實際情況,我進(jìn)行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進(jìn)而又借助體態(tài)語言——打手勢,讓學(xué)生說出30和36的因數(shù),達(dá)到了鞏固練習(xí)的目的。又明確了像36當(dāng)兩個因數(shù)相等時,只寫其中的一個6。這樣設(shè)計由易到難,由淺入深,符合了學(xué)生的認(rèn)知規(guī)律。
教材在編排上雖然對于學(xué)生來說更容易理解和掌握。但這部分內(nèi)容學(xué)生畢竟初次接觸,對于學(xué)生來說還是比較難掌握的內(nèi)容。本來計劃因數(shù)與倍數(shù)(12-14頁)一節(jié)課講完,實際操作一節(jié)課只能揭示出因數(shù)與倍數(shù)的概念、求一個數(shù)的因數(shù)的方法、一個數(shù)的因數(shù)的特征(12-13頁)。下課后,與 成老師交流,她與我有同感。可從各種資料上看了許多教學(xué)設(shè)計,都是在一節(jié)課講3頁,我想,新內(nèi)容概念多,一節(jié)課講完,學(xué)生確實吃不消。俗話說:“磨刀不誤砍柴工”打好前面的知識基礎(chǔ),第二課時講求一個數(shù)的倍數(shù)的方法以及一個數(shù)的倍數(shù)特征自然可以放手讓學(xué)生自己去探究,并且還有充足的時間對求一個數(shù)的因數(shù)的方法、一個數(shù)的因數(shù)的特征和求一個數(shù)的倍數(shù)的方法、一個數(shù)的倍數(shù)特征進(jìn)行對比,從而強(qiáng)化所學(xué)知識。
所以我認(rèn)為,課堂容量大就不可避免地造成缺少當(dāng)堂反饋的時間,過大的容量使學(xué)生學(xué)的不夠深入。我們教師總是想在一節(jié)課中讓學(xué)生掌握盡量多的知識,其實這樣反而會減少學(xué)生的思考時間,也使老師無法照顧差生,知道差生接受的程度,今后要多思考怎樣合理安排。
因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思【篇4】
一、單元主題圖體驗數(shù)學(xué)化過程。單元主題圖是教材中的一個重要內(nèi)容,它是選擇某一個主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識出發(fā)來組織教學(xué)的,首先讓學(xué)生獨立觀察主題圖,通過獨立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗獲取知識的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗“數(shù)學(xué)化”的過程。
二、數(shù)形結(jié)合實現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認(rèn)識,設(shè)計了“用小正方形拼長方形”的操作活動,引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認(rèn)識,而且能與操作活動與圖形描述聯(lián)系起來,促進(jìn)了學(xué)生的有意義建構(gòu),這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。
三、探索活動關(guān)注解決問題的策略。學(xué)生在探索活動中,運(yùn)用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗證等過程,孩子們學(xué)會了思考,初步形成了解決問題的一些基本策略。
四、困惑:
1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時給學(xué)生進(jìn)行課后輔導(dǎo)的時間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個一個單元只有一個練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。
2、不太明白為什么一定要使用“因數(shù)”這個概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯了,那不是因數(shù),是約數(shù)……”,讓人哭笑
因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思【篇5】
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。這一單元是本冊教材的重點和難點,說它重要是因為它將是第四單元的基礎(chǔ),說它是因為概念太多——因數(shù)、倍數(shù)、偶數(shù)、奇數(shù)、質(zhì)數(shù)、合數(shù)再加上2的、3的、5的、2和5、2、3和5的倍數(shù)的特征等,讓學(xué)生應(yīng)接不暇,要將這些抽象的知識教給學(xué)生,很難聯(lián)系生活實際,只有舉例說明,歸納總結(jié)、得出結(jié)論,有意識地培養(yǎng)學(xué)生的抽象概念能力。
(1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。
(2)“約數(shù)”一詞被“因數(shù)”所取代。
(3)新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。
自認(rèn)為今天早上第二節(jié)課自己上得挺不錯,至少挺順。從出示乘法算式,如2*6=12,認(rèn)知誰是誰的因數(shù),誰是誰的倍數(shù),然后仿例說說3*4=12,誰是誰的因數(shù),誰是誰的倍數(shù),再找12的其他因數(shù)有哪些?學(xué)生自主舉例說說因數(shù)和倍數(shù)。提示注意點:討論的是在整數(shù)的范圍內(nèi),不包括0。
按理說因數(shù)和倍數(shù)的概念差不多了,會模仿說,會舉例。但當(dāng)我出示36和9,說說誰是誰的因數(shù)卻不會做。我卻愣了。這很難嗎?雖然教參中說因數(shù)和倍數(shù)是建立在整除的基礎(chǔ)上,但對于新教材卻不再提起整除這一概念。那我該怎么講呢?
只能講36可以寫成9*幾的形式,再看著乘法算式說誰是誰的因數(shù)。雖然學(xué)生有點明白了。但我說覺得有點繞。
課后反思能否在認(rèn)知因數(shù)和倍數(shù)時,再添個環(huán)節(jié)如:3*4=12還可以寫成除法算式,12/3=4
12/4=3,我們也可以說12是3和4的倍數(shù),3和4是12的因數(shù)。從中你對因數(shù)和倍數(shù)有什么自己的理解,通過讓學(xué)生說,逐步體會到,誰是誰的因數(shù)中的這兩個數(shù)是成倍數(shù)關(guān)系的;且一般情況下這兩個數(shù)中大數(shù)是小數(shù)的倍數(shù),小數(shù)是大數(shù)的因數(shù);被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。如果能這樣深化一下,遇到剛才諸如此類的題目,學(xué)生的判斷方法可能更直接一些,只要這兩個數(shù)除一除商是整數(shù)的,那么小數(shù)是大數(shù)的因數(shù),大數(shù)就是小數(shù)的倍數(shù),可能不會這么淆。
所以通過這堂課我體會到,教學(xué)不能光是按著教材來教,還是要通過自己的深加工,但是有時也只有在上過課以后從學(xué)生作業(yè)當(dāng)中,才會體會到自己在教學(xué)中的成功與失敗之處,也才會體會到什么地方是自己該深入挖掘的地方。
其他人在看
最新因數(shù)倍數(shù)教學(xué)反思1000字精選5篇
88教案網(wǎng)編輯為你收集并整理了因數(shù)倍數(shù)教學(xué)反思。教師的工作是激發(fā)學(xué)生對人生無限的好奇心,即使是老教師,在課前也需要教案的輔助。教案可以減輕教師們在教學(xué)時的教學(xué)壓力。強(qiáng)烈建議你能收藏本頁以方便閱讀!
因數(shù)倍數(shù)教學(xué)反思【篇1】
《倍數(shù)和因數(shù)》這一資料與原先教材比有了很大的不一樣,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù),而此刻是在未認(rèn)識整除的狀況下直接認(rèn)識倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分資料學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的資料。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、決定,需要一個長期的消化理解的過程。
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)帶給足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
(一)操作實踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不一樣的長方形,再讓學(xué)生寫出不一樣的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的好處。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而構(gòu)成因數(shù)與倍數(shù)的好處。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
(二)自主探究,好處建構(gòu),找倍數(shù)和因數(shù)
整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的好處,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。
新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)潛力,初步構(gòu)成合作與競爭的意識。
找一個數(shù)因數(shù)的方法是本節(jié)課的難點,在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流在讓學(xué)生尋找,這樣就用了很多時光,最后就沒有很多的時光去練習(xí),我認(rèn)為雖然時光用的過多,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有必須困難,那里能夠充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自我獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按必須的次序進(jìn)行。之后讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自我剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時老師再給予有效的指導(dǎo)和總結(jié)。
(三)變式拓展,實踐應(yīng)用---—促進(jìn)智能內(nèi)化
練習(xí)的設(shè)計不僅僅緊緊圍繞教學(xué)重點,而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地理解。教學(xué)之前我明白這節(jié)課時光會很緊,所以在備課的時候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時光安排的能夠少一些,所以我在第一部分認(rèn)識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時光,直接出示,,實際效果我認(rèn)為是比較理想的。課上還就應(yīng)及時運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自我的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師就應(yīng)及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。
因數(shù)倍數(shù)教學(xué)反思【篇2】
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。這一單元是本冊教材的重點和難點,說它重要是因為它將是第四單元的基礎(chǔ),說它是因為概念太多——因數(shù)、倍數(shù)、偶數(shù)、奇數(shù)、質(zhì)數(shù)、合數(shù)再加上2的、3的、5的、2和5、2、3和5的倍數(shù)的特征等,讓學(xué)生應(yīng)接不暇,要將這些抽象的知識教給學(xué)生,很難聯(lián)系生活實際,只有舉例說明,歸納總結(jié)、得出結(jié)論,有意識地培養(yǎng)學(xué)生的抽象概念能力。
(1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。
(2)“約數(shù)”一詞被“因數(shù)”所取代。
(3)新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。
自認(rèn)為今天早上第二節(jié)課自己上得挺不錯,至少挺順。從出示乘法算式,如2*6=12,認(rèn)知誰是誰的因數(shù),誰是誰的倍數(shù),然后仿例說說3*4=12,誰是誰的因數(shù),誰是誰的倍數(shù),再找12的其他因數(shù)有哪些?學(xué)生自主舉例說說因數(shù)和倍數(shù)。提示注意點:討論的是在整數(shù)的范圍內(nèi),不包括0。
按理說因數(shù)和倍數(shù)的概念差不多了,會模仿說,會舉例。但當(dāng)我出示36和9,說說誰是誰的因數(shù)卻不會做。我卻愣了。這很難嗎?雖然教參中說因數(shù)和倍數(shù)是建立在整除的基礎(chǔ)上,但對于新教材卻不再提起整除這一概念。那我該怎么講呢?
只能講36可以寫成9*幾的形式,再看著乘法算式說誰是誰的因數(shù)。雖然學(xué)生有點明白了。但我說覺得有點繞。
課后反思能否在認(rèn)知因數(shù)和倍數(shù)時,再添個環(huán)節(jié)如:3*4=12還可以寫成除法算式,12/3=4
12/4=3,我們也可以說12是3和4的倍數(shù),3和4是12的因數(shù)。從中你對因數(shù)和倍數(shù)有什么自己的理解,通過讓學(xué)生說,逐步體會到,誰是誰的因數(shù)中的這兩個數(shù)是成倍數(shù)關(guān)系的;且一般情況下這兩個數(shù)中大數(shù)是小數(shù)的倍數(shù),小數(shù)是大數(shù)的因數(shù);被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。如果能這樣深化一下,遇到剛才諸如此類的題目,學(xué)生的判斷方法可能更直接一些,只要這兩個數(shù)除一除商是整數(shù)的,那么小數(shù)是大數(shù)的因數(shù),大數(shù)就是小數(shù)的倍數(shù),可能不會這么淆。
所以通過這堂課我體會到,教學(xué)不能光是按著教材來教,還是要通過自己的深加工,但是有時也只有在上過課以后從學(xué)生作業(yè)當(dāng)中,才會體會到自己在教學(xué)中的成功與失敗之處,也才會體會到什么地方是自己該深入挖掘的地方。
因數(shù)倍數(shù)教學(xué)反思【篇3】
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。本節(jié)課又是這一單元的的教學(xué)重點。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進(jìn)行。第一課時只讓學(xué)生認(rèn)識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法,效果不錯。
一、設(shè)計情境,引起思考。
改變教材的情境圖,用學(xué)生有興趣的情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎么擺。引起學(xué)生思考,學(xué)生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的意義。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法,使探索有方向。
如何找一個數(shù)的因數(shù)是這節(jié)課的重點,首先放手讓學(xué)生找出24的因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。
根據(jù)學(xué)生的學(xué)習(xí)特點,靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能達(dá)到教學(xué)的目的。
因數(shù)倍數(shù)教學(xué)反思【篇4】
今天和孩子們一起學(xué)習(xí)了新的一節(jié)課《因數(shù)》,對于《因數(shù)》來說是孩子們第一冊接觸的知識,但是對于因數(shù)這個詞來說,孩子們也并不陌生,因為在乘法算式中已經(jīng)有了因數(shù)的一個初步的了解。所以對于本節(jié)課來說自己有如下的感受:
一、初步感知,數(shù)形結(jié)合讓學(xué)生形成表象。
在教學(xué)的時候,我首先通過課本上飛機(jī)圖的情景圖讓學(xué)生看圖列算式,并且用現(xiàn)在自己五年級的思維來用不同的乘法算式來表示,這一環(huán)節(jié)對于學(xué)生列式來說是比較簡單的,基本上所有的學(xué)生都能夠很好的列出算是,然后根據(jù)學(xué)生列出的算式,引出因數(shù)和倍數(shù)的意義。在此環(huán)節(jié)的設(shè)計上由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激發(fā)了學(xué)生的形象思維,而又借助“形”與“數(shù)”的關(guān)系,為接下來研究“因數(shù)與倍數(shù)”概念打下了良好基礎(chǔ),有效地實現(xiàn)了已有知識與新知識之間的聯(lián)系。更好的分化了難點,讓學(xué)生很輕松的接受了知識的形成。
二、自主探究以鄰為師。
在學(xué)生知道了因數(shù)和倍數(shù)的意義上,接下來出示了讓學(xué)生自己動手找18的所有的因數(shù)。為了能夠更好的、全面的找到18的所有因數(shù),讓同桌兩人互相合作來完成。通過教學(xué)發(fā)現(xiàn)學(xué)生的合作能力很強(qiáng),能夠用數(shù)學(xué)語言來準(zhǔn)確的表述,而且大多數(shù)學(xué)生在合作的過程中也能很好的找到、找全18的所有的因數(shù)。
三、在練習(xí)中體驗學(xué)習(xí)的快樂
在最后的環(huán)節(jié)中我設(shè)計了不同層次的練習(xí),先讓學(xué)生說說有關(guān)因數(shù)和倍數(shù)的意義的一些練習(xí)題,加深對知識點的理解,主要是讓學(xué)生明白因數(shù)和倍數(shù)不是單獨存在的,是相互已存的,必須要說清楚是誰是誰的因數(shù)、誰是誰的倍數(shù)。通過教學(xué)來看學(xué)生掌握的還算可以。接著出示了讓學(xué)生找不同數(shù)的因數(shù),在這個環(huán)節(jié)的設(shè)計用了不同的形式,比如:找朋友,你來說我來做,比一比說最快等形式來幫助學(xué)生理解知識,在此過程中學(xué)生很感興趣,激情很好課堂氣氛熱烈,也讓學(xué)生在輕松的氛圍中體驗到學(xué)習(xí)的快樂。
不足之處:
1、在本節(jié)課的教學(xué)上還是存在很多哦不足之處,雖然自己也知道新課標(biāo)提出要以學(xué)生為主體,老師只是引導(dǎo)著和合作者,可是在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。如在教學(xué)找18的因數(shù)這一環(huán)節(jié)時,由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導(dǎo)的過多講解的過細(xì),因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。
2、這堂課我的個人語言過于貧乏和隨意,數(shù)學(xué)是嚴(yán)謹(jǐn)?shù)?,隨意性的語言會對學(xué)生的學(xué)習(xí)理解造成一定的影響。另外課堂評價性的語言也不多,可以說是幾乎沒有。因此在今后的教學(xué)中我要積極向其他老師學(xué)習(xí),多走進(jìn)優(yōu)秀教師的課堂,多學(xué)多問。而且自己也要把握好各種學(xué)習(xí)機(jī)會,不斷的學(xué)習(xí),也要多反思認(rèn)真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。希望自己也能越來越好!
因數(shù)倍數(shù)教學(xué)反思【篇5】
《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運(yùn)用“先學(xué)后教”的模式,達(dá)到課堂的高效,在課堂中我做了以下的嘗試。
一、領(lǐng)會意圖,做到用教材教。
我覺得作為一名教師,重要的是領(lǐng)會教材的編寫意圖,靈活的運(yùn)用教材,讓每個細(xì)節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個簡單的實物圖(2行飛機(jī),每行6架;3行飛機(jī),每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機(jī),你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導(dǎo)??磥盱`活的運(yùn)用教材,深放領(lǐng)會意圖,才能使教學(xué)更為輕松、高效!
二、模式運(yùn)用,做到靈活自然。
模式是一種思想或是引子,面對不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機(jī)械的。只要是能促進(jìn)學(xué)生能力形成的東西,我們不能因為要運(yùn)用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。
如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進(jìn)入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計出兩個“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思合集
厚德,示學(xué)生做人之本,每個老師都應(yīng)該在上課前把教案寫好。教案可以幫助新入職的教師迅速進(jìn)入自己的教學(xué)狀態(tài)。經(jīng)過88教案網(wǎng)的編輯精心整理,推出倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思,僅供參考,我們來看看吧!
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思 篇1
教師在教學(xué)時做了如下一些努力:
(1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解概念間的關(guān)系。數(shù)學(xué)課堂中學(xué)生對數(shù)學(xué)概念的理解和表達(dá),離不開教師的培養(yǎng),今天在教學(xué)前,教師讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。因為今天教學(xué)的倍數(shù)和因數(shù)是講述兩個數(shù)之間的一種相互依存關(guān)系,于是教師利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。
(2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。書上用12個小正方形擺長方形,然后自己用算式把擺法表示出來。由這些乘法算式引出倍數(shù)和因數(shù)的概念。列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時,教師還出示了一個除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但這并不意味著學(xué)生完全被動的接受。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,教師進(jìn)行了設(shè)問:8是4的倍數(shù),那反過來4和8是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到8是4的倍數(shù),反過來4就是8的因數(shù),接下來2和8的關(guān)系,學(xué)生也迎刃而解了。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思 篇2
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。(1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過學(xué)習(xí)了解到以下信息:簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
雖然學(xué)生已接觸過整除與有余數(shù)的除法,但我班學(xué)生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學(xué)時,補(bǔ)充了兩道判斷題請學(xué)生辨析:
11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因為5×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?
特別是第2小題極具價值。價值不僅體現(xiàn)在它幫助學(xué)生通過辨析明確了在研究因數(shù)和倍數(shù)時,我們所說的數(shù)都是指整數(shù)(一般不包括0),及時彌補(bǔ)了未進(jìn)行整除概念教學(xué)的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進(jìn)行了對比。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思 篇3
我執(zhí)教的四年級數(shù)學(xué)拓展平臺《因數(shù)和倍數(shù)》一節(jié),這一內(nèi)容,學(xué)生初次接觸。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先以貼畫為素材,讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
這節(jié)課另一個給我感觸最深的是:在引導(dǎo)學(xué)生找一個數(shù)的因數(shù)和倍數(shù)。我借助學(xué)生開課擺的12個小正方形,寫出的'三個乘法算式。首先引導(dǎo)學(xué)生找12的因數(shù),我給學(xué)生充分的自主探究時間,讓學(xué)生經(jīng)歷知識的形成過程,自主構(gòu)建新知。出乎意料的是學(xué)生竟然用口訣,乘法和除法等等方法找出12的因數(shù),找到兩個因數(shù)非常接近,緊接著師生互動,交流討論出12的所有因數(shù)。學(xué)生在輕松愉快中掌握了找一個數(shù)的所有因數(shù)的方法。再找9的13的因數(shù),一環(huán)扣一環(huán),總結(jié)歸納再能不能找出這些數(shù)的因數(shù)了?學(xué)生說不能,從而引出因數(shù)的個數(shù)是有限的。及時運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師及時跟上個性化的語言評價,激活學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己學(xué)習(xí)找一個數(shù)的倍數(shù)。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時放手,會看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思 篇4
本單元注意以下七個方面的教學(xué),可以促進(jìn)學(xué)生鞏固基礎(chǔ)知識,促進(jìn)學(xué)生發(fā)展基本思維能力。
1.加強(qiáng)概念間相互關(guān)系的梳理
(1)注意因數(shù)與倍數(shù)的相互依存的關(guān)系
(2)質(zhì)數(shù)、合數(shù)與因數(shù)的關(guān)系
(3)2的倍數(shù)與偶數(shù)、奇數(shù)的關(guān)系
(4)與大數(shù)的讀寫相關(guān)聯(lián)
如:一個七位數(shù),最高位是最小的奇數(shù),萬位是最小的質(zhì)數(shù),千位是最小的合數(shù),
最低位是最大的一位合數(shù),其余各位都是最小的偶數(shù)。
這個數(shù)作( ),讀作( )。
(5)2、3、5的倍數(shù)與乘法口訣緊密聯(lián)系。
2.要用“活”教材
(1)教學(xué)中要用好教材,用活教材,教學(xué)實踐證明,從單數(shù)與雙數(shù)入手探究奇數(shù)與偶數(shù);從乘法口訣入手,探究2的倍數(shù),探究5的倍數(shù),探究3的倍數(shù),比教材安排的教學(xué)內(nèi)容進(jìn)行教學(xué),學(xué)生更容易掌握知識。
(2)注意培養(yǎng)學(xué)生的抽象思維能力(本單元知識特點的抽象性)
要用歸納推理:就是從個別性知識推出一般性結(jié)論
(1)偶數(shù)、奇數(shù)
(2)5的倍數(shù):5、10、15、20、25、30——個位是0或5的數(shù)是5的倍數(shù)
2的倍數(shù):2、4、6、8、10、12、14、16、18、20……
3的倍數(shù):
(3)質(zhì)數(shù)、合數(shù):寫出1——20各數(shù)的因數(shù)進(jìn)行歸納推理
3.教給學(xué)生學(xué)習(xí)的方法
列舉法:
如:18因數(shù)6的倍數(shù):
又如:P16一個數(shù)既是42的因數(shù),又是7的倍數(shù),這個數(shù)可能是( )
4.教給學(xué)生養(yǎng)成“有序?qū)W習(xí)”的良好學(xué)習(xí)習(xí)慣
5.注意知識的聯(lián)系,與用字母表示數(shù)的結(jié)合。如:
數(shù)A最小的因數(shù)是(),最大的因數(shù)是()
數(shù)B最小的倍數(shù)是(),()最大的倍數(shù)
6.注意概念的判斷
(1)所有自然數(shù).不是奇數(shù),就是偶數(shù)()
(2)所有自然數(shù)不是質(zhì)數(shù),就是合數(shù)()
(3)所有奇數(shù)都是質(zhì)數(shù)()
(4)所有偶數(shù)都是合數(shù)()
7.注意發(fā)散思維的培養(yǎng)
31□是5的倍數(shù),這個數(shù)可能是( )
75□0是3的倍數(shù),這個有( )種情況,它們是( )
2□6□是25的倍數(shù),也有因數(shù)3,這個有( )種情況,它們是( )
8.在學(xué)習(xí)方法上盡可能讓學(xué)生利用“學(xué)案”進(jìn)行課前探究,課中探究,從探究中學(xué)習(xí)和掌握知識。如質(zhì)數(shù)與合數(shù)
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思 篇5
這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計上的反思和一些初淺的想法。
本單元內(nèi)容在編排上與老教材有較大的差異,比如在認(rèn)識“因數(shù)、倍數(shù)”時,不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運(yùn)用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。特別是用除法找因數(shù)的學(xué)生,正是因為他們意識到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。在這個環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運(yùn)用所學(xué)知識,找到求因數(shù)的方法),如教師一開始就引導(dǎo)學(xué)生:想幾和幾相乘,勢必會造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動?用已有的經(jīng)驗自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨立思考、自主探索、促思(促進(jìn)學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認(rèn)為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實現(xiàn)學(xué)生學(xué)習(xí)的主體地位。
學(xué)生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點,我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思 篇6
在上學(xué)期的白紙備課活動中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時,我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點嗎?能突破重難點嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點,創(chuàng)設(shè)情境、設(shè)計游戲來突出重點、突破難點。在設(shè)計完教學(xué)過程后,我也與同組的老師交流了活動體會。原來在老教材中沒有因數(shù)這個概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因為我是第一次教學(xué)這個內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭?,F(xiàn)在剛好又教了這個內(nèi)容,仔細(xì)參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的新穎所在。
新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式26=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個乘法算式26=12可以同時說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)?!?/p>
這樣的設(shè)計既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,在實際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思 篇7
本節(jié)課的重點是讓學(xué)生掌握因數(shù)、倍數(shù)的概念,以及它們之間的聯(lián)系和區(qū)別,內(nèi)容較為抽象,為讓學(xué)生理清各概念間的前后承接關(guān)系,達(dá)到融會貫通的程度,在學(xué)習(xí)《因數(shù)和倍數(shù)》這節(jié)課時,我注意做到以下幾點:
一、加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念。
因數(shù)和倍數(shù)是最基本的兩個概念,理解了因數(shù)和倍數(shù)的含義對于一個數(shù)的因數(shù)的個數(shù)是有限的、倍數(shù)的個數(shù)是無限的等結(jié)論自然也就掌握了。因此,教學(xué)時,我引導(dǎo)學(xué)生觀察生活中的情景圖引出乘法算式2×6=12,讓學(xué)生在多說中體會、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關(guān)系。學(xué)生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關(guān)系,同時引出12的所有因數(shù),讓孩子感受到用乘法算式找一個數(shù)的因數(shù)的方法,為后面學(xué)習(xí)找一個數(shù)的因數(shù)做好鋪墊。
二,引導(dǎo)孩子在自主探究中學(xué)習(xí)新知
在學(xué)習(xí)找一個數(shù)的因數(shù)時,讓孩子們動腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導(dǎo)中優(yōu)化了方法,孩子們在體驗中逐步掌握了方法,學(xué)得深刻,方法熟練。
三、注意培養(yǎng)學(xué)生的抽象思維能力
教學(xué)中,注重學(xué)生的動腦思考、觀察,讓學(xué)生在自主的探究學(xué)習(xí)中表達(dá)自己的想法,通過一些特殊的例子,引導(dǎo)學(xué)生用數(shù)學(xué)的語言總結(jié)概括一些概念,逐步形成從特殊到一般的歸納推理能力。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思800字11篇
把一切知識交給一切人,抽象思維和抽象認(rèn)知也是教案當(dāng)中的一部分。教案可以直接影響授課的質(zhì)量。為滿足你的需求,88教案網(wǎng)的編輯特地編輯了“倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思”,歡迎大家借鑒與參考,希望對大家有所幫助!
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇1】
簡單的內(nèi)容中蘊(yùn)藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時,對于求一個數(shù)的因數(shù),及理解一個數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個數(shù)的因數(shù)的個數(shù)是有限的,感覺很清楚,明白。在學(xué)倍數(shù)時,對求一個數(shù)的倍數(shù)及理解一個數(shù)的倍數(shù)中最小的是它本身,沒有最大的倍數(shù)也認(rèn)為容易簡單,但有關(guān)因數(shù)、倍數(shù)的綜合練習(xí)不少學(xué)生開始猶豫、混淆。如判斷一個數(shù)的因數(shù)的個數(shù)是無限的,不少學(xué)生判斷為對。練習(xí)中:18是的倍數(shù),個別學(xué)生選擇了18、36、54……。針對這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個問題:
1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。
2、觀察比較,會打消列問題:一個數(shù)的因數(shù)和它本身的關(guān)系,
3、為什么一個數(shù)的因數(shù)的個數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個數(shù)的倍數(shù)的個數(shù)是無限的?最小是它本身,沒有最大的。
通過對這幾個問題的討論,多數(shù)學(xué)生較好的區(qū)分了一個數(shù)的因數(shù)和倍數(shù)
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇2】
《公倍數(shù)和公因數(shù)》的教學(xué)已接近尾聲,但練習(xí)反饋,部分學(xué)生求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)錯誤百出,細(xì)細(xì)思量,用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5。而且去問問學(xué)生找兩個數(shù)公倍數(shù)和最小公倍數(shù),或者兩個數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說煩,很煩,太麻煩了。
在了解了學(xué)生的感受以后,我又重新通過練習(xí)概括出了一些特殊情況:(1)兩個數(shù)是倍數(shù)關(guān)系的,這兩個數(shù)的最小公倍數(shù)是其中較大的一個數(shù),最大公因數(shù)是其中較小的一個數(shù);(2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(互質(zhì)數(shù)這個概念學(xué)生沒有學(xué)到):①兩個不同的素數(shù);②兩個連續(xù)的自然數(shù);③1和任何自然數(shù)。
另外,我又結(jié)合教材后面的你知道嗎?,指導(dǎo)了一下用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。在完成練習(xí)時,讓學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個數(shù)的特點,自主選擇方法的空間,學(xué)生比較喜歡。
想來想去,還是真得很懷念舊教材上的短除法。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇3】
教師在教學(xué)時做了如下一些努力:
(1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解概念間的關(guān)系。數(shù)學(xué)課堂中學(xué)生對數(shù)學(xué)概念的理解和表達(dá),離不開教師的培養(yǎng),今天在教學(xué)前,教師讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。因為今天教學(xué)的倍數(shù)和因數(shù)是講述兩個數(shù)之間的一種相互依存關(guān)系,于是教師利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。
(2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。書上用12個小正方形擺長方形,然后自己用算式把擺法表示出來。由這些乘法算式引出倍數(shù)和因數(shù)的概念。列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時,教師還出示了一個除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但這并不意味著學(xué)生完全被動的接受。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,教師進(jìn)行了設(shè)問:8是4的倍數(shù),那反過來4和8是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到8是4的倍數(shù),反過來4就是8的因數(shù),接下來2和8的關(guān)系,學(xué)生也迎刃而解了。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇4】
在上學(xué)期的白紙備課活動中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時,我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點嗎?能突破重難點嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點,創(chuàng)設(shè)情境、設(shè)計游戲來突出重點、突破難點。在設(shè)計完教學(xué)過程后,我也與同組的老師交流了活動體會。原來在老教材中沒有因數(shù)這個概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因為我是第一次教學(xué)這個內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭?,F(xiàn)在剛好又教了這個內(nèi)容,仔細(xì)參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的新穎所在。
新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式26=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個乘法算式26=12可以同時說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。”
這樣的設(shè)計既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,在實際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇5】
我發(fā)現(xiàn)"倍數(shù)和因數(shù)"這一單元大部分學(xué)生基礎(chǔ)知識及基本概念掌握較好,倍數(shù)與因數(shù)的應(yīng)用相當(dāng)部分學(xué)生應(yīng)用也比較靈活。從學(xué)生的答卷情況來看存存在問題也不少,縱觀本單元的教學(xué),從中得到的反思:
1、創(chuàng)設(shè)了學(xué)生熟悉的生活情境
不論是新課的講授還是知識的實際應(yīng)用,都是從學(xué)生已有的生活經(jīng)驗出發(fā),激發(fā)了學(xué)生主動學(xué)習(xí)與參與的興趣,引導(dǎo)學(xué)生感悟到,生活中處處有數(shù)學(xué),數(shù)學(xué)中的倍數(shù)、因數(shù)就在身邊,從生活中學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)問題。
2、采用了小組合作學(xué)習(xí)的模式
在新課的教學(xué)中,讓學(xué)生通過觀察,發(fā)現(xiàn)現(xiàn)實生活中的數(shù)以及有關(guān)倍數(shù)、因數(shù)的特征及應(yīng)用以后,在學(xué)生獨立嘗試解決問題的基礎(chǔ)上進(jìn)行小組討論:如何合理將分類,2、3、5的倍數(shù)的特征,如何找因數(shù),找質(zhì)數(shù)等等,這些都有以小組討論作為探索新知的起點,在小組合作學(xué)習(xí)中,給學(xué)生搭建自主的活動空間和交流的平臺。
3、充分體現(xiàn)了以學(xué)生為主體的指導(dǎo)思想
在課堂上,努力營造輕松、愉快的學(xué)習(xí)環(huán)境,引導(dǎo)學(xué)生積極參與學(xué)習(xí)過程。重視讓每個學(xué)生都在小組內(nèi)發(fā)表自己的想法,每個知識點的建立、新知識的形成盡量讓學(xué)生從已有知中識討論、尋求,同時也傾聽同伴的觀點,相互學(xué)習(xí)。體現(xiàn)以“以人發(fā)展為本”的新理念,尊重學(xué)生,信任學(xué)生,敢于放手讓學(xué)生自己去學(xué)習(xí)。整個教學(xué)過程學(xué)生從已有的知識經(jīng)驗的實際狀態(tài)出發(fā),通過操作、討論、歸納,經(jīng)歷了知識的發(fā)現(xiàn)和探究過程,從中讓讓學(xué)生體驗了解決問題的喜悅或失敗的情感。
4、重視新知識的應(yīng)用
每學(xué)習(xí)一個新的知識點及時讓學(xué)生運(yùn)用所學(xué)的知識解決實際問題,使學(xué)生感到數(shù)學(xué)就在生活中,并且運(yùn)用新知識靈活解決問題。
5、不足之處
(1)、在教學(xué)中還有一小部分學(xué)生未積極參與到學(xué)習(xí)中來,如何讓全體學(xué)生都參與到數(shù)學(xué)研究中來,仍有待于進(jìn)一步的加強(qiáng)。
(2)、本單元的測驗卷的應(yīng)用部分要求學(xué)生說明解題的理由的比較多,而學(xué)生也失分比較嚴(yán)重,說明學(xué)生在這方面知識較薄弱,今后的教學(xué)中要加強(qiáng)突破這一環(huán)節(jié)。
(3)、也出現(xiàn)了很多教學(xué)的困惑.如在教學(xué)中明知一小部分學(xué)生在某些知識點存在缺陷,但很難抽時間彌補(bǔ)及跟進(jìn)。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇6】
想要上好一節(jié)復(fù)習(xí)課,不是一個容易的事情,既要全面,詳細(xì)的了解學(xué)生的認(rèn)知現(xiàn)狀,又要科學(xué)的安排復(fù)習(xí)程序;既要切實培養(yǎng)學(xué)生建構(gòu)知識網(wǎng)絡(luò)的能力,又要努力提高學(xué)生靈活運(yùn)用知識,解決實際問題的能力。
1、滿意之處
(1)充分關(guān)注了學(xué)生的知識基礎(chǔ)
課前我就組織學(xué)生自主整理,一方面可以確保學(xué)生對將要復(fù)習(xí)的知識進(jìn)行充分的回憶;另一方面通過檢查學(xué)生作業(yè),可以真實的了解到學(xué)生對知識整理的現(xiàn)有水平,從而找準(zhǔn)學(xué)習(xí)的起點,為課上理順知識點之間的聯(lián)系奠定了堅實的基礎(chǔ)。
(2)充分尊重了學(xué)生的認(rèn)知規(guī)律
“因數(shù)與倍數(shù)”這一章的內(nèi)容雜,概念多,所以我采用了小組合作整理的學(xué)習(xí)形式,降低了整理的難度,有效保護(hù)了學(xué)生的整理熱情,在這里選擇小組合作學(xué)習(xí),是想讓學(xué)生在相互啟發(fā),相互補(bǔ)充的過程中,思維得到開拓,智慧得到碰撞。
(3)充分調(diào)動了學(xué)生的參與熱情
整節(jié)課,我覺得學(xué)生們興趣還是很濃的,尤其是破譯老師的手機(jī)號碼這個話題。其實,我認(rèn)為學(xué)生喜歡的課堂才是我們老師最應(yīng)該去追求的課堂。
2、遺憾之處
(1)因為這節(jié)課既要帶領(lǐng)學(xué)生復(fù)習(xí)整理,又要訓(xùn)練一些相對應(yīng)的練習(xí)題,容量是有點大,時間很不寬余,這里安排不夠恰當(dāng)。
(2)、由于學(xué)生人數(shù)有點多,一節(jié)課不可能每個同學(xué)都能上臺展示,所以致使個別學(xué)生的個性沒有充分表現(xiàn)出來。
3、改進(jìn)措施
在今后的工作中,我將需要多讀書,多學(xué)習(xí),多實踐,課堂教學(xué)是一門高深的藝術(shù),我只有不斷的進(jìn)步,否則就論為門外漢了。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇7】
復(fù)習(xí)課是教學(xué)過程中一種非常重要的課型,對夯實學(xué)生的基礎(chǔ)、培養(yǎng)和提高學(xué)生運(yùn)用知識、解決問題的能力起著舉足輕重的作用。復(fù)習(xí)課不是新授課的簡單重復(fù),在教學(xué)過程中起著與新授課同樣重要的作用,但是又與新授課有著本質(zhì)的區(qū)別和聯(lián)系。復(fù)習(xí)課更強(qiáng)調(diào)學(xué)生的自主學(xué)習(xí)、反饋矯正、展示交流等環(huán)節(jié),復(fù)習(xí)時,要引導(dǎo)學(xué)生自己動手整理知識結(jié)構(gòu),把知識系統(tǒng)化、條理化,從而把點狀分布的知識連接成線,如同把散亂的珍珠穿成了漂亮的珍珠鏈,拿起一顆,就能連起一串。如何上好復(fù)習(xí)課值得我們?nèi)パ芯亢吞接憽?/p>
下面是我在復(fù)習(xí)四年級下冊第九單元《倍數(shù)與因數(shù)》時,兩次不同的主要教學(xué)過程及本人對這兩次課的印象和反思。
第一次教學(xué)是這樣的:我先請學(xué)生回憶這個單元學(xué)習(xí)了哪些內(nèi)容;接著讓全體學(xué)生背誦了倍數(shù)、因數(shù)、偶數(shù)、奇數(shù)、合數(shù)、素數(shù)等概念和是2、3、5的倍數(shù)的特征;最后,出示了很多類型的習(xí)題,如找倍數(shù)與因數(shù)的,判斷素數(shù)與合數(shù)的,根據(jù)2、3、5的倍數(shù)特征填數(shù)的……。
整節(jié)課教師忙得不亦樂呼,幻燈片換了一張又一張,看起來似乎什么內(nèi)容都復(fù)習(xí)了;學(xué)生就像趕集一樣,做了這一題又忙哪一題,但收獲甚微。
這次是蘇教版教材的第一輪使用,我這個從事多年人教版教學(xué)的老教師雖在新課改培訓(xùn)中加大了新課程理念的學(xué)習(xí),但因多年產(chǎn)生的教學(xué)習(xí)慣而很難有所真正的改變,是基于傳統(tǒng)的數(shù)學(xué)課堂教學(xué),認(rèn)為單元復(fù)習(xí)就是由教師帶領(lǐng)學(xué)生把知識點再全部掃描一下,多設(shè)計一些習(xí)題,讓學(xué)生反復(fù)操練,只有讓學(xué)生當(dāng)上了熟練工,才能應(yīng)付考試。而這種炒冷飯的復(fù)習(xí)課,忽視了重點、難點,學(xué)生茫然地被教師牽著鼻子走,學(xué)習(xí)沒有了主動性,教學(xué)效果當(dāng)然不樂觀。
第二次教學(xué)時,我在復(fù)習(xí)課前先讓學(xué)生反思自己本單元的哪些知識掌握得比較好、哪些知識還掌握得不好并整理成書面材料。在批閱了學(xué)生整理的書面材料后,發(fā)現(xiàn)比較集中的問題是:寫一個數(shù)的因數(shù)寫不全,判斷一個數(shù)是否同時是2、3、5的倍數(shù)時有困難,對于一些特殊的素數(shù)、合數(shù)與奇數(shù)、偶數(shù)的特征掌握不好。因此,復(fù)習(xí)時,我先請每個學(xué)生任意寫一個兩位數(shù),寫完后觀察這個數(shù)有什么特點,并結(jié)合這一單元學(xué)到的概念說一說。然后出示了一道開放題:“誰能根據(jù)11、15、21、37、45、48、57、60、83、90這些數(shù)提與本單元的知識有關(guān)的問題?’學(xué)生思維活躍。有的提:“請判斷哪些是素數(shù),哪些是合數(shù),哪些是奇數(shù),哪些是偶數(shù)?”有的提:“請寫出這些數(shù)中每個合數(shù)的全部因數(shù)?!庇械奶幔骸斑@10個數(shù)中,哪些數(shù)同時是2和3的倍數(shù)?哪些數(shù)同時有因數(shù)3和5?哪些數(shù)既是2的倍數(shù)又有因數(shù)5?哪些數(shù)同時是2、3、5的倍數(shù)?”每次學(xué)生提出問題后,教師都及時組織學(xué)生完成練習(xí)。接著,教師在黑板上寫下48□,讓學(xué)生繼續(xù)思考:要使48□既有因數(shù)2,又是3的倍數(shù),□里應(yīng)該填多少?有學(xué)生說0、2、4、6、8都可以。有學(xué)生馬上反駁說,2、4、8都不可以,只能填0或者6。教師追問原因,相機(jī)復(fù)習(xí)被3整除的數(shù)的特征,接著出示問題:”如果要使□48既是2的倍數(shù),又是3的倍數(shù),□里應(yīng)該填多少?”學(xué)生討論完后,教師再引導(dǎo)學(xué)生思考:“觀察、比較48□和□48,同樣要填一個數(shù)字,使它既是2的倍數(shù),又是3的倍數(shù),為什么答案不同?”有了前面的對比練習(xí),學(xué)生終于明白在口填數(shù)的訣竅所在:既要考慮整除的特征,又要觀察數(shù)字所處的位置。這時,教師強(qiáng)調(diào)要靈活運(yùn)用所學(xué)的知識解決問題。最后,教師要求每個學(xué)生拿出錯題集,先自己復(fù)習(xí),然后以同桌兩人為一組,出題考對方,教師巡視指導(dǎo)。
課堂上不時有學(xué)生間的爭論,有學(xué)生舉手請教老師、有同學(xué)之間的互助,每個學(xué)生學(xué)的都很積極主動,全然沒有復(fù)習(xí)課的單調(diào)枯燥之感。
這次的復(fù)習(xí)是基于學(xué)生對知識的理解水平,本著尊重學(xué)生的原則,以學(xué)生為主體,先學(xué)后教,抓住重點、難點,設(shè)計有層次的習(xí)題,舉一反三,調(diào)動學(xué)生的學(xué)習(xí)積極性,不求習(xí)題的多樣繁雜,但求激活每個學(xué)生的思維,引導(dǎo)學(xué)生在自學(xué)中學(xué)會發(fā)現(xiàn)、在傾聽中學(xué)會理解、在討論中學(xué)會思辨。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇8】
本節(jié)課是第二單元的第一課時,第二單元的教學(xué)內(nèi)容較為抽象,很難結(jié)合生活實例或具體情境來進(jìn)行教學(xué),學(xué)生理解起來有一定的難度。加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。還有要引導(dǎo)學(xué)生用聯(lián)系的觀點去掌握這些知識,而不是機(jī)械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。
今天這節(jié)課的教學(xué)的倍數(shù)和因數(shù)是講述兩個數(shù)之間的一種相互依存關(guān)系,于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學(xué)生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時,我還出示了一個除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
找出一個數(shù)的因數(shù)要做到不重復(fù)和不遺漏,有些學(xué)生還不能找全,沒有掌握方法,我在今后的教學(xué)中還要注意對學(xué)困生的輔導(dǎo)。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇9】
這段時間我參加省領(lǐng)雁工程數(shù)學(xué)骨干班學(xué)習(xí)活動掛職鍛煉活動。今天是上課實踐,我執(zhí)教了《因數(shù)和倍數(shù)》在完成教學(xué)后總的來說自己還是比較滿意的,但是在與指導(dǎo)師進(jìn)行交流和自己對本課進(jìn)行了反思后,發(fā)覺自己有幾個地方處理得不到位,可以進(jìn)行改進(jìn):
1、課前我認(rèn)為此課的知識點較多,因此認(rèn)識倍數(shù)和因數(shù)、找因數(shù)作為本課的主要知識點,找倍數(shù)則不放進(jìn)去,而是放到下一課。但是根據(jù)課堂教學(xué)的情況來看,完全可以把找倍數(shù)這個知識點放進(jìn)去,因為找倍數(shù)這個知識點不難只要5、6分鐘處理,而且缺少了這一塊內(nèi)容課堂感覺不太完整。因此第二次試教時我將把這個環(huán)節(jié)放進(jìn)去。
2、課堂引入環(huán)節(jié),我采用了純數(shù)學(xué)的引入方式,但是這樣的引入不夠好,其實可以采用張齊華老師曾經(jīng)使用過的圖形結(jié)合的引入:用12個小正方形搭實心長方形,這樣的引入不僅可以圖形結(jié)合地引入因數(shù)倍數(shù),而且可以比較自然地讓學(xué)生感知限制因數(shù)倍數(shù)研究范圍為非0自然數(shù)這個知識點。下次上課我將用張老師的引入方式引入,學(xué)習(xí)比較好的課例中的好的環(huán)節(jié)。
3、在課堂中有一個環(huán)節(jié)我讓學(xué)生同桌互相寫乘法算式說因數(shù)倍數(shù)關(guān)系,有一個學(xué)生寫了1×1=1,我只是簡單地反饋這個算式比較簡單好說,其實這是一個比較特殊的算式,因為1很特殊,他的因數(shù)和倍數(shù)都只有一個,就是他本身。我應(yīng)該要抓住學(xué)生的這個生成,進(jìn)行引導(dǎo)讓他們觀察這些數(shù)的因數(shù)個數(shù),從而為以后教學(xué)質(zhì)數(shù)和合數(shù)進(jìn)行潛在滲透。
4、在這節(jié)課中我例題與例題之間比較離散,練習(xí)不緊密,導(dǎo)致教學(xué)時例題與例題之間跳躍性比較強(qiáng),聽起來比較散,不集中,主線不分明。因此我在下一個例題設(shè)計時把這些知識點整合整合在一個材料中,增強(qiáng)連續(xù)性。
總的來說,今天教學(xué)后我感覺本課還有很多課挖掘的地方,我在下一節(jié)課中將針對這些地方進(jìn)行改進(jìn),使課堂效率更高
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇10】
這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計上的反思和一些初淺的想法。
本單元內(nèi)容在編排上與老教材有較大的差異,比如在認(rèn)識“因數(shù)、倍數(shù)”時,不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運(yùn)用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。特別是用除法找因數(shù)的學(xué)生,正是因為他們意識到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。在這個環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運(yùn)用所學(xué)知識,找到求因數(shù)的方法),如教師一開始就引導(dǎo)學(xué)生:想幾和幾相乘,勢必會造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動?用已有的經(jīng)驗自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨立思考、自主探索、促思(促進(jìn)學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認(rèn)為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實現(xiàn)學(xué)生學(xué)習(xí)的主體地位。
學(xué)生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點,我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的。
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思【篇11】
本節(jié)課的重點是讓學(xué)生掌握因數(shù)、倍數(shù)的概念,以及它們之間的聯(lián)系和區(qū)別,內(nèi)容較為抽象,為讓學(xué)生理清各概念間的前后承接關(guān)系,達(dá)到融會貫通的程度,在學(xué)習(xí)《因數(shù)和倍數(shù)》這節(jié)課時,我注意做到以下幾點:
一、加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念。
因數(shù)和倍數(shù)是最基本的兩個概念,理解了因數(shù)和倍數(shù)的含義對于一個數(shù)的因數(shù)的個數(shù)是有限的、倍數(shù)的個數(shù)是無限的等結(jié)論自然也就掌握了。因此,教學(xué)時,我引導(dǎo)學(xué)生觀察生活中的情景圖引出乘法算式2×6=12,讓學(xué)生在多說中體會、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關(guān)系。學(xué)生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關(guān)系,同時引出12的所有因數(shù),讓孩子感受到用乘法算式找一個數(shù)的因數(shù)的方法,為后面學(xué)習(xí)找一個數(shù)的因數(shù)做好鋪墊。
二,引導(dǎo)孩子在自主探究中學(xué)習(xí)新知
在學(xué)習(xí)找一個數(shù)的因數(shù)時,讓孩子們動腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導(dǎo)中優(yōu)化了方法,孩子們在體驗中逐步掌握了方法,學(xué)得深刻,方法熟練。
三、注意培養(yǎng)學(xué)生的抽象思維能力
教學(xué)中,注重學(xué)生的動腦思考、觀察,讓學(xué)生在自主的探究學(xué)習(xí)中表達(dá)自己的想法,通過一些特殊的例子,引導(dǎo)學(xué)生用數(shù)學(xué)的語言總結(jié)概括一些概念,逐步形成從特殊到一般的歸納推理能力。
倍數(shù)因數(shù)教學(xué)反思1000字通用
教案課件是老師上課的重要部分,認(rèn)真規(guī)劃好自己教案課件是每個老師每天都要做的事情。尤其是新入職老師,教案課件寫好了才會課堂更加生動。應(yīng)該從什么角度去寫教案課件呢?請閱讀由小編為你編輯的倍數(shù)因數(shù)教學(xué)反思1000字通用,大家不妨來參考。希望你能喜歡!
倍數(shù)因數(shù)教學(xué)反思【篇1】
蘇教版課程標(biāo)準(zhǔn)數(shù)學(xué)實驗教材八年級(下冊)“倍數(shù)和因數(shù)”與老教材比較有較大的變化。傳統(tǒng)的教材按除法—整除—約數(shù)和倍數(shù)的順序安排,課程標(biāo)準(zhǔn)數(shù)學(xué)實驗教材是按操作—乘法—倍數(shù)和因數(shù)的順序編寫,倍數(shù)和因數(shù)的概念建立在直觀模型之上。教材的變化呼喚教師教學(xué)理念的更新和教學(xué)方法的改進(jìn)。筆者四次執(zhí)教該課,對教學(xué)內(nèi)容和呈現(xiàn)形式作了微調(diào)處理并重視與學(xué)生平等對話,最終取得了比較好的效果。
1.例3中36的因數(shù)如何書寫?
第一次試上時我采用了從小到大依次書寫的方法,第二次試上時我采用了一對一對書寫的方法:1、36,2、18,3、12、4、9、6。第一種方法便于學(xué)生發(fā)現(xiàn)一個數(shù)的因數(shù)的特征,但書寫時比較麻煩;后一種方法書寫起來比較方便,但由于因數(shù)不是按大小順序排列,所以不利于學(xué)生發(fā)現(xiàn)一個數(shù)因數(shù)的特征。后面的教學(xué)中我對寫法作了微調(diào)處理:即一對一對書寫,但是從兩邊向中間書寫,最后按從小到大的順序排列。實踐證明效果很好,既注重了順序,也兼顧了方法,且有利于學(xué)生發(fā)現(xiàn)一個數(shù)因數(shù)的特征。
2.到底要讓學(xué)生發(fā)現(xiàn)什么?
在教學(xué)完例2、例3及其各自的“試一試”后,教材都呈現(xiàn)問題:“觀察上面幾個例子,你有什么發(fā)現(xiàn)?”不少教師認(rèn)為只要學(xué)生能發(fā)現(xiàn)教材上揭示的幾條一個數(shù)的因數(shù)或倍數(shù)的特征就行了,但我認(rèn)為,發(fā)現(xiàn)的結(jié)果不應(yīng)完全局限于教材上揭示的幾條特征。因為發(fā)現(xiàn)的過程是學(xué)生主動參與的過程,是學(xué)生通過經(jīng)歷、觀察、猜測、概括等活動獲得知識的過程,這一過程是自由的、開放的。我對這一教學(xué)內(nèi)容的微調(diào)處理是:放手讓學(xué)生去探索發(fā)現(xiàn),對于學(xué)生的觀點只作最后的評判,并選擇幾條正確的結(jié)論揭示在黑板上(當(dāng)然包括教材中的結(jié)論)。事實證明,這樣的微調(diào)處理激活了學(xué)生的潛能,彰顯了學(xué)生的個性。
3.“有限”和“無限”的結(jié)論怎樣呈現(xiàn)?
讓學(xué)生認(rèn)識“一個數(shù)的倍數(shù)的個數(shù)是無限的”和“一個數(shù)的因數(shù)的個數(shù)是有限的”,教材是分開編排的,即在學(xué)習(xí)找一個數(shù)的倍數(shù)后學(xué)習(xí)前者,在學(xué)習(xí)完找一個數(shù)的因數(shù)后再學(xué)習(xí)后者。我認(rèn)為在學(xué)生學(xué)會找一個數(shù)的倍數(shù)和因數(shù)以后,結(jié)合板書比較,學(xué)生對“有限”和“無限”的理解更加深刻,教學(xué)的過程也更加順暢。實踐證明,這一微調(diào)處理也更符合學(xué)生的認(rèn)知需求。
與學(xué)生平等對話是一種有效的教學(xué)方式。傳統(tǒng)的問答式教學(xué),學(xué)生大多以被動的方式接受學(xué)習(xí),很難自己確定思考的方向;有時問答的頻度過高,不利于學(xué)生對問題作深度思考。對話的教學(xué)方式則不然。當(dāng)學(xué)生進(jìn)入對話狀態(tài)時,他們能積極主動地與同學(xué)或教師進(jìn)行交流,在思維的碰撞中,對問題的認(rèn)識易于走向深入。現(xiàn)記錄學(xué)生觀察36、15和16這三個數(shù)的因數(shù)后的對話。
生:我認(rèn)為雙數(shù)的因數(shù)中都有2。
師:真聰明!
生:我發(fā)現(xiàn)雙數(shù)的因數(shù)是成對成對出現(xiàn)的,而單數(shù)的因數(shù)個數(shù)也是單數(shù)。
生:我認(rèn)為不對,因為單數(shù)15的因數(shù)個數(shù)是4個,4是雙數(shù)。
生:單數(shù)的因數(shù)全部是單數(shù)。
師:是嗎?大家再找個單數(shù),寫出它的所有因數(shù),看看他的發(fā)現(xiàn)是否正確。
學(xué)生驗證檢查后,發(fā)現(xiàn)是正確的。我及時地表揚(yáng)了這個學(xué)生。
生:我發(fā)現(xiàn)1是任何自然數(shù)的因數(shù)。
師:真了不起,1是任何自然數(shù)的因數(shù)。再看看一個數(shù)的因數(shù)中1的大小怎樣?
生:最小。
師:那么我們可以說一個數(shù)最小的因數(shù)是幾?
生:一個數(shù)最小的因數(shù)是1。
生:一個數(shù)最大的因數(shù)就是它自己。
教師引導(dǎo)學(xué)生觀察后,共同作出肯定的評價。
師:一個數(shù)最大的因數(shù)是它自己,這句話,我們又可以說成,一個數(shù)最大的因數(shù)就是它本身。
生:老師,我還發(fā)現(xiàn)一個數(shù)最大的因數(shù)又是它的倍數(shù)。
學(xué)生的精彩發(fā)言大大出乎我的意料。我想這與教學(xué)中平等的對話氛圍是分不開的。首先,我把自己定位在與學(xué)生平等的話語地位上,用“仰視”的姿態(tài)去欣賞學(xué)生的發(fā)言,讓學(xué)生心理放松,敢想敢說。其次,絕不輕易打斷學(xué)生的發(fā)言。不管學(xué)生的發(fā)現(xiàn)在不在點子上,只要他有觀點要表達(dá),都要讓他把話說完。再次,不失時機(jī)地通過鼓勵和表揚(yáng)等方式肯定學(xué)生的對話成果,即使認(rèn)識上有錯誤,也要肯定他敢于發(fā)表觀點的勇氣。最后,為使對話緊緊圍繞主題,注意及時進(jìn)行適當(dāng)?shù)囊龑?dǎo)點撥(引導(dǎo)點撥不能太多,多則會經(jīng)常打斷學(xué)生的思維)。比如,在學(xué)生發(fā)現(xiàn),1是任何自然數(shù)的因數(shù)后,我及時表揚(yáng)他的發(fā)現(xiàn)“真了不起”,同時,通過引導(dǎo)學(xué)生“看看一個數(shù)的因數(shù)中1的大小怎樣”,把學(xué)生的觀察引向一個數(shù)最小的因數(shù)和最大的因數(shù)。教師的適當(dāng)點撥有益于對話的順利推進(jìn),有益于學(xué)生的認(rèn)識不斷深入。
倍數(shù)因數(shù)教學(xué)反思【篇2】
《因數(shù)和倍數(shù)》是一節(jié)概念課。教學(xué)時我首先以拼圖比賽為素材,讓學(xué)生動手操作快速把12個小正方形擺出一個長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,我緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
最后引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
倍數(shù)因數(shù)教學(xué)反思【篇3】
今天這堂課其實是有點匆忙的。課前的一個小游戲忘了,忘了讓學(xué)生體會因數(shù)和倍數(shù)之間的相互聯(lián)系和依存關(guān)系了。明天的課上補(bǔ)上。
滿意的一點:模式的提練
在讓學(xué)生根據(jù)算式說了誰是誰的倍數(shù),誰是誰的因數(shù)之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學(xué)生用一道算式提練出因數(shù)和倍數(shù)之間的關(guān)系。結(jié)果學(xué)生都不知道如何表達(dá)。我把算式板書上黑板上,是因數(shù)×因數(shù)=倍數(shù)。而后,我又轉(zhuǎn)過去用一道除法算式36÷9=4來讓學(xué)生找一找誰是誰的因數(shù),誰是誰的倍數(shù),學(xué)生的反應(yīng)都不錯,馬上就明白了因數(shù)和倍數(shù)之間的關(guān)系。
不滿意的地方在于:對于找出36所有因數(shù)的有序思考沒有強(qiáng)調(diào)。當(dāng)我讓學(xué)生們自主找出36的所有因數(shù)時,許多學(xué)生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫,所以我在黑板上挑選了一些學(xué)生的作業(yè)加以板書,讓學(xué)生進(jìn)行比較。
如:1、36、2、18、3、12、4、9、6
1、2、3、4、6、9、12、18、36
和36÷1=36,36÷2=18,36÷3=12
36÷4=9,36÷6=6
尤其是最后一種方法,我特別注意讓學(xué)生評價一下這種思考方法的正確性。得出結(jié)論是這樣思考是可行的。那么我接著告訴他們,這樣思考的確是可以,不過,缺少的因數(shù)的提取,由此過渡到評價第一種方案和第二種方案,在這兒,我特別示范了一下寫因數(shù)的方法,即從兩邊向中間包圍。學(xué)生們在比較中找出了寫因數(shù)的方法,明白了寫出因數(shù)的格式。本來可以相機(jī)在這一步讓學(xué)生體會尋找因數(shù)的有序性,結(jié)果一急,只是帶過了一句。今天在補(bǔ)充習(xí)題上出現(xiàn)了問題,我抓了幾個學(xué)生問為什么強(qiáng)調(diào)有序性,學(xué)生告訴我:因為可以看得清楚,因為不會遺漏。看起來班上的學(xué)生有這方面的意識,在做題目的時候還應(yīng)該再稍稍提點一下,應(yīng)該也就不成問題了。
《因數(shù)和倍數(shù)的練習(xí)》教學(xué)反思 4月14日
昨天新學(xué)了因數(shù)和倍數(shù),我覺得課上學(xué)生表現(xiàn)還可以,很會說,但到了家自己做家作時,問題很多。今天進(jìn)行了練習(xí)后,效果截然不同。我在練習(xí)前,首先對昨天的內(nèi)容進(jìn)行了復(fù)習(xí)。讓學(xué)生進(jìn)一步明確:1、講因數(shù)和倍數(shù)時應(yīng)該講清誰是誰的倍數(shù)或因數(shù)。2、找一個數(shù)的倍數(shù)和因數(shù)時,倍數(shù)最小的是它本身,其它都比它大,因數(shù)最大的是它本身,其它都比它小,最小是1。學(xué)生書上練習(xí)時,提醒學(xué)生弄清每題的具體要求,有些題只要寫出一個數(shù)部分的倍數(shù),而有些題需要寫出全部的倍數(shù)。有些符合要求的數(shù)不止1個,要盡可能把這些數(shù)都找出來。但學(xué)生有時找不全,我就教會學(xué)生這樣思考:找一個數(shù)的倍數(shù)時用乘法,找一個數(shù)的因數(shù)時用除法。效果還可以。
今天教學(xué)了因數(shù)和倍數(shù)一課,這節(jié)課的內(nèi)容關(guān)鍵是讓學(xué)生在掌握因數(shù)、倍數(shù)的概念的基礎(chǔ)上學(xué)會找一個數(shù)的因數(shù)和倍數(shù)。就總體情況而言教學(xué)效果還可以,但多少還是存在遺憾。
存在問題:在寫出了算式3*4=12后出示“3是12的因數(shù),4也是12的因數(shù);12是3的倍數(shù),12也是4的倍數(shù)?!焙笞寣W(xué)生閱讀,復(fù)述后讓學(xué)生觀察尋找記憶的方法,學(xué)生總結(jié):像這樣的乘法算式我們可以說兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。再讓學(xué)生用因數(shù)、倍數(shù)同桌復(fù)述算式2*6=12,1*12=12中數(shù)與數(shù)的關(guān)系,全班交流復(fù)述,學(xué)生說的蠻好的,可是在分層練習(xí)時再讓學(xué)生描述其他算式中各數(shù)的關(guān)系時,又部分學(xué)生混淆了因數(shù)、倍數(shù)的概念。看來開始的復(fù)述學(xué)生純粹是無意識的模仿,是為模仿而模仿,教師沒有在學(xué)生模仿復(fù)述后進(jìn)一步讓學(xué)生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說12是2和6的倍數(shù)?……如果加了這層思考,學(xué)生就會理解只要是兩個整數(shù)相乘等于12,12就是這兩個整數(shù)的倍數(shù),這兩個整數(shù)就都是12的因數(shù)。這樣才能讓學(xué)生真正理解乘法算式中各整數(shù)之間的關(guān)系。
滿意之處:學(xué)生在找一個數(shù)的因數(shù)和倍數(shù)時花費的時間不多,但在交流方法時我舍得花費較多的時間讓學(xué)生比較各自的方法,在此基礎(chǔ)上選出不會重復(fù)、遺漏的簡便方便用學(xué)生的名字命名這些方法。再讓學(xué)生分別使用這些方法尋找,真實感受這些方法的好處。學(xué)生郵箱比較深刻,在后面的分層練習(xí)和檢測中沒有學(xué)生出現(xiàn)漏或重復(fù)的,而且速度也很快。學(xué)生的積極性很高,學(xué)生的積極性的大小與他獲得成功的概率的大小有直接關(guān)系的。
倍數(shù)因數(shù)教學(xué)反思【篇4】
《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學(xué)時,我首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作到直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成倍數(shù)與因數(shù)的意義,使學(xué)生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學(xué)生很容易接受,再通過學(xué)生自己舉例和交流,進(jìn)一步加深對倍數(shù)和因數(shù)意義的理解。從學(xué)生的反應(yīng)和課堂氣氛來看,教學(xué)效果還是不錯的。
能不重復(fù)、不遺漏、有序地找出一個數(shù)的倍數(shù)和因數(shù),是本課的教學(xué)難點。教學(xué)時,我先讓學(xué)生自己找3的`倍數(shù),匯報交流后通過對比(一種是沒有順序,一種是有序的)得出如何有序地找一個數(shù)的倍數(shù)的方法。對于倍數(shù),學(xué)生在以前的學(xué)習(xí)中已有所接觸,所以學(xué)生很容易學(xué),用的時間也比較少。
對于找一個數(shù)的因數(shù),學(xué)生最容易犯的錯誤就是漏找,即找不全。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路。學(xué)生通過觀察,發(fā)現(xiàn)當(dāng)找到的兩個自然數(shù)非常接近時,就不需要再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點。
倍數(shù)因數(shù)教學(xué)反思【篇5】
本單元涉及到的因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)以及第四單元中出現(xiàn)的最大公因數(shù)、最小公倍數(shù)都屬于初等數(shù)論的基本內(nèi)容。是學(xué)生通過四年多數(shù)學(xué)學(xué)習(xí),已經(jīng)掌握了大量的整數(shù)知識,包括整數(shù)的認(rèn)識、整數(shù)四則運(yùn)算的基礎(chǔ)上進(jìn)一步探索整數(shù)的性質(zhì)。
在教學(xué)中,通過教授學(xué)生認(rèn)識“因數(shù)和倍數(shù)”,并掌握他們的特征:因數(shù)和倍數(shù)不能單獨存在,并通過觀察比較幾個數(shù)的因數(shù)(或倍數(shù)),知道幾個數(shù)公有的因數(shù)(或倍數(shù))叫做他們的公因數(shù)(或公倍數(shù)),且能夠在幾個數(shù)的因數(shù)(或倍數(shù)還)中找出他們的公因數(shù)(或公倍數(shù))。
接下來學(xué)習(xí)“2、3、5的倍數(shù)的特征”。發(fā)現(xiàn)2、5、3倍數(shù)的規(guī)律和特點。在此之前還要向?qū)W生教學(xué)什么是“奇數(shù)”什么是“偶數(shù)”,只有掌握了奇數(shù)與偶數(shù),學(xué)習(xí)“2、5的倍數(shù)”的特征就會簡單容易得多。而“3的倍數(shù)”的特征就是引導(dǎo)學(xué)生把各個數(shù)位上的數(shù)相加,的到的數(shù)如果是3的倍數(shù)的話,說明這個數(shù)就是3的倍數(shù)。
那么,又如何讓學(xué)生學(xué)習(xí)掌握質(zhì)數(shù)與合數(shù)呢?在教學(xué)中,我主要是讓學(xué)生把1~
20的因數(shù)分別寫出來,并按照奇數(shù)為一列偶數(shù)為一列來讓學(xué)生進(jìn)行觀察比較,然后歸類整理:只有1個因數(shù)的有哪些數(shù)?有兩個因數(shù)的有哪些數(shù)?有3個以上因數(shù)的有哪些數(shù)?學(xué)生分好之后,教師明確:向這樣只有2個因數(shù)的數(shù)叫做質(zhì)數(shù),有2個以上因數(shù)個數(shù)的數(shù)叫合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。那么自然數(shù)按因數(shù)的個數(shù)來分就可以分為“1、質(zhì)數(shù)、合數(shù)”三大類。
為了讓學(xué)生鞏固質(zhì)數(shù)與合數(shù),再讓學(xué)生找出1~100以內(nèi)的所有質(zhì)數(shù):先劃掉除了2以外所有2的倍數(shù),再劃掉3的倍數(shù)、劃掉5的倍數(shù)、最后劃掉7的倍數(shù),所剩下的數(shù)就是質(zhì)數(shù),并且讓學(xué)生數(shù)出、記住100以內(nèi)有25個質(zhì)數(shù)。也可以用同樣的方法去判定100以外的數(shù)是質(zhì)數(shù)還是合數(shù)。
最后,再學(xué)生講解介紹“分解質(zhì)因數(shù)”,知道用短除法來分解質(zhì)因數(shù)。然后對整個單元所學(xué)的知識進(jìn)行梳理、歸類,讓學(xué)生熟記一些特殊的規(guī)律與數(shù)字,多做一些練習(xí),加強(qiáng)的后進(jìn)生的關(guān)注和輔導(dǎo)。
倍數(shù)因數(shù)教學(xué)反思【篇6】
《因數(shù)和倍數(shù)》這一教學(xué)內(nèi)容是一節(jié)概念課。教材在引入因數(shù)和倍數(shù)的概念時是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。同時在練習(xí)中我設(shè)計了其中一道題是猜我的電話號碼,激發(fā)起學(xué)生的興趣,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
這節(jié)課另一個給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時放手,會看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
倍數(shù)因數(shù)教學(xué)反思【篇7】
這個單元課時數(shù)比較多,對于學(xué)生數(shù)感的要求比較高,對于學(xué)生觀察能力,比較能力,推理能力的培養(yǎng)是個很好的訓(xùn)練。通過一個單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識點的學(xué)習(xí)和掌握上還存在一些問題:
1、最大公因數(shù)和最小公倍數(shù)
教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個概念有時還會出現(xiàn)混淆情況,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學(xué)生對找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實,將直接影響到后面的約分和通分。所以我準(zhǔn)備在平時每節(jié)課都有三到五個訓(xùn)練,并進(jìn)行專項過關(guān)。在應(yīng)用這個知識解決實際問題時,有少數(shù)后進(jìn)生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。
2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)
這四個概念按照兩個不同的標(biāo)準(zhǔn)分類所得。學(xué)生在分類思考時對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。
3、235倍數(shù)的特征
如果單獨讓學(xué)生去說去判斷一個數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時就比較遲鈍,特別是用短除法尋找公因數(shù)時,不能很快的進(jìn)行反應(yīng),數(shù)的感覺不佳。
以上是本單元學(xué)生在學(xué)習(xí)過程中的主要障礙,數(shù)感的培養(yǎng)需要一個過程,而概念的理解加深還需要平時不斷的訓(xùn)練。多給學(xué)生一點耐心,再堅持一份恒心,相信學(xué)生們會有提高,會有改變。
以上就是《因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思1000字匯總》的全部內(nèi)容,想了解更多內(nèi)容,請點擊因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思查看或關(guān)注本網(wǎng)站內(nèi)容更新,感謝您的關(guān)注!
因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思相關(guān)推薦
更多>-
最新因數(shù)倍數(shù)教學(xué)反思1000字精選5篇 88教案網(wǎng)編輯為你收集并整理了因數(shù)倍數(shù)教學(xué)反思。教師的工作是激發(fā)學(xué)生對人生無限的好奇心,即使是老教師,在課前也需要教案的輔助。教案可以減輕教師們在教學(xué)時的教學(xué)壓力。強(qiáng)烈建議你能收藏本頁以方便閱讀!...
-
倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思合集 厚德,示學(xué)生做人之本,每個老師都應(yīng)該在上課前把教案寫好。教案可以幫助新入職的教師迅速進(jìn)入自己的教學(xué)狀態(tài)。經(jīng)過88教案網(wǎng)的編輯精心整理,推出倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思,僅供參考,我們來看看吧!...
- 倍數(shù)因數(shù)數(shù)學(xué)教學(xué)反思800字11篇04-29
- 倍數(shù)因數(shù)教學(xué)反思1000字通用01-16
- 因數(shù)倍數(shù)復(fù)習(xí)課教學(xué)反思(合集5篇)05-12
- 因數(shù)倍數(shù)復(fù)習(xí)課教學(xué)反思(模板3篇)04-26
- 五上倍數(shù)與因數(shù)教學(xué)反思1000字11-07
- 最新倍數(shù)因數(shù)教學(xué)反思1000字11篇04-20
- 關(guān)于倍數(shù)與因數(shù)教學(xué)反思1000字精選12-12
- 翠鳥教學(xué)反思1000字匯總12-07
[薦]小班社會活動教案12篇04-28
- 中班語言教案我是中班小朋友合集04-28
- 胖乎乎的小手說課稿模板2500字合集04-28
- 年月日教學(xué)反思1000字模板04-28
- 小學(xué)二年級語文下冊教案及反思匯總04-28
- 圓的認(rèn)識教案系列04-28
- 我的糖果罐小班教案1000字7篇04-28
- 小孩網(wǎng)球教學(xué)計劃1000字01-18
- 有關(guān)小班教案好爸爸壞爸爸900字3篇04-28
- 3倍數(shù)教學(xué)反思反思1000字通用02-04
- 大班語言教案通用04-28