88教案網(wǎng)
教案范文: 勾股定理教學(xué)反思范文。
老師在新授課程時(shí),一般會(huì)準(zhǔn)備教案課件,每個(gè)老師都需要將教案課件設(shè)計(jì)得更加完善。寫(xiě)好了完備的教案課件,這樣課堂的教學(xué)效率才能有大的提升。要寫(xiě)好教案課件,需要注意哪些方面呢?下面是由小編為大家整理的“教案范文: 勾股定理教學(xué)反思范文”,供大家參考,希望能幫助到有需要的朋友。
通過(guò)復(fù)習(xí)讓學(xué)生充分回憶前面學(xué)習(xí)的有關(guān)三角形的內(nèi)容,使學(xué)生加深對(duì)知識(shí)的理解,從而為本節(jié)課的學(xué)習(xí)打下良好的基礎(chǔ)。同時(shí),學(xué)生回憶的過(guò)程也是一個(gè)思考的過(guò)程,特別是面積法來(lái)驗(yàn)證勾股定理,是本章教學(xué)的難點(diǎn),對(duì)此學(xué)生應(yīng)該先形成一個(gè)印象、概念,然后才能學(xué)習(xí)掌握好。
已知直角三角形中的兩條直角邊求斜邊,這是上節(jié)課學(xué)習(xí)的內(nèi)容。在上節(jié)課學(xué)習(xí)過(guò)程中,學(xué)生已經(jīng)練習(xí)過(guò)。但為什么本節(jié)課中仍然有部分學(xué)生出錯(cuò)呢?究其原因,是因?yàn)樯瞎?jié)課學(xué)習(xí)的內(nèi)容太多,方法也較多、較靈活,因而學(xué)生對(duì)每一個(gè)內(nèi)容與方法都仍是一種感性的認(rèn)識(shí),而仍沒(méi)達(dá)到理解掌握的程度。因此,當(dāng)讓學(xué)生自己獨(dú)立完成問(wèn)題時(shí),往往就產(chǎn)生了思維上存在的缺點(diǎn),從而出現(xiàn)各種錯(cuò)誤。另一方面,教學(xué)中我們往往會(huì)采用一種“一問(wèn)齊答”的問(wèn)答形式,這樣會(huì)容易掩蓋學(xué)生的真實(shí)想法。其實(shí),在解答此問(wèn)題時(shí),教師很容易就走進(jìn)了這樣的問(wèn)答方式,原因在于我們認(rèn)為這樣的問(wèn)題太簡(jiǎn)單了,上節(jié)課學(xué)生也似學(xué)會(huì)了,于是便產(chǎn)生了一種忽視的教學(xué)。可現(xiàn)實(shí)卻往往不是這樣的,我們認(rèn)為簡(jiǎn)單的知識(shí)對(duì)于學(xué)生(特別是基礎(chǔ)較弱的學(xué)生)來(lái)說(shuō),往往是不簡(jiǎn)單的。因此,教學(xué)中應(yīng)盡量少用“一問(wèn)齊答”的欺騙教師的問(wèn)答方式,讓學(xué)生充分發(fā)表自己的意見(jiàn),同時(shí)引導(dǎo)學(xué)生分析錯(cuò)誤,養(yǎng)成反思的意識(shí),只有這樣,才能真正使學(xué)生學(xué)有所獲。
同一個(gè)問(wèn)題的不同變式,可以讓學(xué)生自我檢查對(duì)知識(shí)與方法是否能真正達(dá)到理解、掌握與運(yùn)用,從而提高學(xué)生學(xué)習(xí)的自信心。解答這個(gè)問(wèn)題的方法其實(shí)就是驗(yàn)證勾股定理所用到的方法——面積法。在課堂教學(xué)之初始讓學(xué)生回憶上一堂課的方法,有了一個(gè)初步的印象,在這里再提出來(lái)時(shí)學(xué)生就不會(huì)感到突然和陌生,達(dá)到承上啟下的作用。另一方面,教師在講解問(wèn)題的解答時(shí),并不是把問(wèn)題的解答方法與過(guò)程全部一下子出來(lái),而是引導(dǎo)學(xué)生經(jīng)過(guò)一步步的思考,讓學(xué)生自己在思考與感悟中得到問(wèn)題的解答,這樣可以培養(yǎng)學(xué)生思考問(wèn)題的方法,提高學(xué)生的思維能力。如果此時(shí)能對(duì)已經(jīng)解答出來(lái)的同學(xué)大力表?yè)P(yáng),并讓學(xué)生引導(dǎo)學(xué)生來(lái)解答余下的問(wèn)題,那么效果會(huì)更好。
數(shù)學(xué)問(wèn)題生活化,用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問(wèn)題,是課程改革后數(shù)學(xué)課堂教學(xué)必須實(shí)施的內(nèi)容。在解答實(shí)際生活中的問(wèn)題時(shí),關(guān)鍵在于把生活問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,讓生活問(wèn)題數(shù)學(xué)化,然后才能得以解決。在這個(gè)過(guò)程中,很多時(shí)候需要教師幫助學(xué)生去理解、轉(zhuǎn)化,而更多時(shí)候需要的是學(xué)生自己探索、嘗試,并在失敗中尋找成功的途徑。本題教學(xué)中,如果能讓學(xué)生自己反思答案與方法的合理性,那么效果會(huì)更好了。課前預(yù)設(shè)與課堂生成,
這是課程改革以來(lái)出現(xiàn)的最多問(wèn)題之一。課堂教學(xué)任務(wù)要完成,而課堂又要還給學(xué)生,充分發(fā)揮學(xué)生的自主性,那么如何處理好這個(gè)問(wèn)題呢?在本課最后的這個(gè)環(huán)節(jié)里,如果能引導(dǎo)學(xué)生歸納本課學(xué)生的方法,特別是面積法,然后再給一個(gè)簡(jiǎn)單的問(wèn)題來(lái)鞏固,那么效果肯定會(huì)比這樣匆匆結(jié)束課堂要好。但是,這部分知識(shí)內(nèi)容又什么時(shí)候來(lái)解決呢?不解決行不行呢?這是課后困擾我的問(wèn)題。“課堂教學(xué)應(yīng)基于自身班級(jí)學(xué)生的具體情況,不論是課前預(yù)設(shè)(備課)還是課堂教學(xué)過(guò)程,都應(yīng)以使絕大部分學(xué)生能真正學(xué)習(xí)掌握好為基礎(chǔ)?!苯?jīng)過(guò)本節(jié)課的教學(xué)后,我自己對(duì)有效的課堂產(chǎn)生了一個(gè)這樣的認(rèn)識(shí)。在以“知識(shí)為中心”還是以“學(xué)生學(xué)習(xí)為中心”的這個(gè)問(wèn)題上,我想應(yīng)以學(xué)生為中心,同時(shí)兼顧教學(xué)內(nèi)容的完成,如果發(fā)生矛盾時(shí),那么我想是不是仍應(yīng)以學(xué)生為中心呢?這樣教學(xué)任務(wù)完成不了怎么辦呢?影響教學(xué)進(jìn)度又怎么辦呢?考試又怎么辦呢?……。其實(shí),歸根到底是:考試了怎么辦呢?課程改革已走到了第七個(gè)年頭,考試始終是一根有形無(wú)形的指揮棒在影響著我們每堂課的教學(xué),在影響著我們的教學(xué)觀念與教學(xué)方法,甚至于影響我們的教學(xué)理想。其實(shí)我們都很清楚,這樣匆匆的進(jìn)行課堂教學(xué),雖然表面上看是完成了教學(xué)內(nèi)容,但實(shí)際上學(xué)生并沒(méi)有掌握好,考試時(shí)真的出現(xiàn)時(shí)學(xué)生仍是無(wú)法解答,那么,這樣的教學(xué)豈不是也是無(wú)效的嗎?無(wú)效的教學(xué)是不是在浪費(fèi)學(xué)生的精力與時(shí)間呢?這樣是不是有點(diǎn)自欺欺人了呢?想到這,我越感不安了
因此,如果有機(jī)會(huì)再上這節(jié)課,就算前面能提高一點(diǎn)效率,節(jié)省一點(diǎn)時(shí)間,我也會(huì)省去后面的那部分內(nèi)容,增加一些有趣味的生活問(wèn)題,總結(jié)與反思本課的方法,從而使學(xué)生對(duì)本課學(xué)習(xí)掌握得更好,對(duì)自身的數(shù)學(xué)學(xué)習(xí)更有自信。
擴(kuò)展閱讀
【最新范文】 勾股定理的逆定理教案篇二
每個(gè)老師在上課前需要規(guī)劃好教案課件,大家在細(xì)心籌備教案課件中。只有寫(xiě)好教案課件計(jì)劃,才能促進(jìn)我們的工作進(jìn)一步發(fā)展!你們到底知道多少優(yōu)秀的教案課件呢?以下是小編為大家收集的“【最新范文】 勾股定理的逆定理教案篇二”但愿對(duì)您的學(xué)習(xí)工作帶來(lái)幫助。
重點(diǎn)、難點(diǎn)分析
本節(jié)內(nèi)容的重點(diǎn)是勾股定理的逆定理及其應(yīng)用.它可用邊的關(guān)系判斷一個(gè)三角形是否為直角三角形.為判斷三角形的形狀提供了一個(gè)有力的依據(jù).
本節(jié)內(nèi)容的難點(diǎn)是勾股定理的逆定理的應(yīng)用.在用勾股定理的逆定理時(shí),分不清哪一條邊作斜邊,因此在用勾股定理的逆定理判斷三角形的形狀時(shí)而出錯(cuò);另外,在解決有關(guān)綜合問(wèn)題時(shí),要將給的邊的數(shù)量關(guān)系經(jīng)過(guò)代數(shù)變化,最后達(dá)到一個(gè)目標(biāo)式,這種“轉(zhuǎn)化”對(duì)學(xué)生來(lái)講也是一個(gè)困難的地方.
教法建議:
本節(jié)課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類(lèi)比”的教學(xué)方法.通過(guò)前面所學(xué)的垂直平分線定理及其逆定理,做類(lèi)比對(duì)象,讓學(xué)生自己提出問(wèn)題并解決問(wèn)題.在課堂教學(xué)中營(yíng)造輕松、活潑的課堂氣氛.通過(guò)師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說(shuō)明如下:
(1)讓學(xué)生主動(dòng)提出問(wèn)題
利用類(lèi)比的學(xué)習(xí)方法,由學(xué)生將上節(jié)課所學(xué)習(xí)的勾股定理的逆命題書(shū)寫(xiě)出來(lái).這里分別找學(xué)生口述文字;用符號(hào)、圖形的形式板書(shū)逆命題的內(nèi)容.所有這些都由學(xué)生自己完成,估計(jì)學(xué)生不會(huì)感到困難.這樣設(shè)計(jì)主要是培養(yǎng)學(xué)生善于提出問(wèn)題的習(xí)慣及能力.
(2)讓學(xué)生自己解決問(wèn)題
判斷上述逆命題是否為真命題?對(duì)這一問(wèn)題的解決,學(xué)生會(huì)感到有些困難,這里教師可做適當(dāng)?shù)狞c(diǎn)撥,但要盡可能的讓學(xué)生的發(fā)現(xiàn)和探索,找到解決問(wèn)題的思路.
(3)通過(guò)實(shí)際問(wèn)題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí).
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)理解并會(huì)證明勾股定理的逆定理;
(2)會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;
(3)知道什么叫勾股數(shù),記住一些覺(jué)見(jiàn)的勾股數(shù).
2、能力目標(biāo):
(1)通過(guò)勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;
(2)通過(guò)勾股定理及以前的知識(shí)聯(lián)合起來(lái)綜合運(yùn)用,提高綜合運(yùn)用知識(shí)的能力.
3、情感目標(biāo):
(1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征.
教學(xué)重點(diǎn):勾股定理的逆定理及其應(yīng)用
教學(xué)難點(diǎn):勾股定理的.逆定理及其應(yīng)用
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過(guò)程:
1、新課背景知識(shí)復(fù)習(xí)(投影)
勾股定理的內(nèi)容
文字?jǐn)⑹觯ㄍ队帮@示)
符號(hào)表述
圖形(畫(huà)在黑板上)
2、逆定理的獲得
(1)讓學(xué)生用文字語(yǔ)言將上述定理的逆命題表述出來(lái)
(2)學(xué)生自己證明
逆定理:如果三角形的三邊長(zhǎng) 有下面關(guān)系:
那么這個(gè)三角形是直角三角形
強(qiáng)調(diào)說(shuō)明:(1)勾股定理及其逆定理的區(qū)別
勾股定理是直角三角形的性質(zhì)定理,逆定理是直角三角形的判定定理.
(2)判定直角三角形的方法:
①角為 、②垂直、③勾股定理的逆定理
2、 定理的應(yīng)用(投影顯示題目上)
例1 如果一個(gè)三角形的三邊長(zhǎng)分別為
則這三角形是直角三角形
例2 如圖,已知:CD⊥AB于D,且有
求證:△ACB為直角三角形。
以上例題,分別由學(xué)生先思考,然后回答.師生共同補(bǔ)充完善.(教師做總結(jié))
4、課堂小結(jié):
(1)逆定理應(yīng)用時(shí)易出現(xiàn)的錯(cuò)誤:分不清哪一條邊作斜邊(最大邊)
(2)判定是否為直角三角形的一種方法:結(jié)合勾股定理和代數(shù)式、方程綜合運(yùn)用。
5、布置作業(yè):
a、書(shū)面作業(yè)P131#9
b、上交作業(yè):已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8
求證:△DEF是等腰三角形
最新勾股定理的教學(xué)反思集錦
新入職的老師需要備好上課會(huì)用到的教案課件,就需要我們老師要認(rèn)認(rèn)真真對(duì)待。要知道一份好的教案課件,知識(shí)點(diǎn)的設(shè)計(jì)要有輕重層次。怎樣的教案課件算為優(yōu)秀?經(jīng)過(guò)收集,小編整理了最新勾股定理的教學(xué)反思集錦,強(qiáng)烈建議你能收藏本頁(yè)以方便閱讀!
最新勾股定理的教學(xué)反思 篇1
對(duì)于“勾股定理的應(yīng)用”的反思和小結(jié)有以下幾個(gè)方面:
1、課前準(zhǔn)備不充分:
基礎(chǔ)題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設(shè)計(jì)原理相同),其中兩個(gè)正方形的面積分別是14和18,求最大的正方形的面積。
分析:由勾股定理結(jié)論:直角三角形中兩直角邊的平方和等于斜邊的平方。
其實(shí)質(zhì)即以直角三角形兩直角邊為邊長(zhǎng)的兩個(gè)正方形面積之和等于以斜邊為邊長(zhǎng)的正方形的面積。但學(xué)生竟然不知道。其二是課件準(zhǔn)備不充分,其中有一道例題的答案是跟著例題同時(shí)出現(xiàn)的,再去修改,又浪費(fèi)了一點(diǎn)時(shí)間。其三,用面積法求直角三角形的高,我認(rèn)為是一個(gè)非常簡(jiǎn)單的數(shù)學(xué)問(wèn)題,但在實(shí)際教學(xué)中,發(fā)現(xiàn)很多學(xué)生仍然很難理解,說(shuō)明我在備課時(shí)備學(xué)生不充分,沒(méi)有站在學(xué)生的角度去考慮問(wèn)題。
2、課堂上的語(yǔ)言應(yīng)該簡(jiǎn)練。這是我上課的最大弱點(diǎn),我不敢放手讓學(xué)生去獨(dú)立思考問(wèn)題,會(huì)去重復(fù)題目意思,實(shí)際上不需要的,可以留時(shí)間讓學(xué)生去獨(dú)立思考。教師是無(wú)法代替學(xué)生自己的思考的,更不能代替幾十個(gè)有差異的學(xué)生的思維。課堂上老師放一放,學(xué)生得到的更多,老師放多少,學(xué)生就有多大的自主發(fā)展的空間。但這里的“放多少”是一門(mén)藝術(shù),我要好好向老教師學(xué)習(xí)!
3、鼓勵(lì)學(xué)生的藝術(shù)。教師要鼓勵(lì)學(xué)生嘗試并尊重他們不完善的甚至錯(cuò)誤的意見(jiàn),經(jīng)常鼓勵(lì)他們大膽說(shuō)出自己的想法,大膽發(fā)表自己的見(jiàn)解,真正體現(xiàn)出學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。
4、啟發(fā)學(xué)生的技巧有待提高。啟發(fā)學(xué)生也是一門(mén)藝術(shù),我的課堂上有點(diǎn)啟而不發(fā)。課堂上應(yīng)該多了解學(xué)生。
最新勾股定理的教學(xué)反思 篇2
通過(guò)本節(jié)課的教學(xué),我采用了合作探究、操作體驗(yàn)的教學(xué)方式。在課堂教學(xué)中,首先創(chuàng)設(shè)情境,提出問(wèn)題;再讓學(xué)生通過(guò)做一做、測(cè)量、判斷、找規(guī)律,猜想出一般性的結(jié)論;然后由學(xué)生想、做、量一量、猜一猜、去驗(yàn)證結(jié)論……使學(xué)生自始至終感悟、體驗(yàn)、嘗試到了知識(shí)的生成過(guò)程,品嘗著成功后帶來(lái)的樂(lè)趣。這不僅使學(xué)生學(xué)到獲取知識(shí)的思想和方法,同時(shí)也體會(huì)到在解決問(wèn)題的過(guò)程中與他人合作的重要性,而且為學(xué)生今后獲取知識(shí)以及探索、發(fā)現(xiàn)和創(chuàng)造打下了良好的基礎(chǔ),更增強(qiáng)了學(xué)生敢于實(shí)踐、勇于探索、不斷創(chuàng)新和努力學(xué)習(xí)數(shù)學(xué)知識(shí)的信心和勇氣。
要想真正搞好以探究活動(dòng),小組合作為主的課堂教學(xué),必須不斷更新教學(xué)觀念,使課堂真正成為學(xué)生既能自主探究,師生又能合作互動(dòng)的場(chǎng)所,培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能夠適應(yīng)現(xiàn)代社會(huì)發(fā)展的公民
作為教師,在課堂教學(xué)中要始終牢記:學(xué)生才是學(xué)習(xí)的主體,學(xué)生才是課堂的主體;教師只是課堂教學(xué)活動(dòng)的組織者、引導(dǎo)者與合作者。因此,課堂教學(xué)過(guò)程的設(shè)計(jì),也必須體現(xiàn)出學(xué)生的主體性。
最新勾股定理的教學(xué)反思 篇3
本節(jié)課以活動(dòng)為主線,通過(guò)從估算到實(shí)驗(yàn)活動(dòng)結(jié)果的產(chǎn)生讓學(xué)生總結(jié)過(guò)程,最后回到解決生活中實(shí)際問(wèn)題,思路清晰,脈絡(luò)明了。
例如:活動(dòng)1問(wèn)題:據(jù)說(shuō)古埃及人用下圖的方法畫(huà)直角:把一根長(zhǎng)蠅打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié),4個(gè)結(jié)、5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角.
這個(gè)問(wèn)題意味著,如果圍成的三角形的三邊分別為3、4、5.那么圍成的三角形是直角三角形.
2、體現(xiàn)了“數(shù)學(xué)源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考,意義讓學(xué)生概括,結(jié)論讓學(xué)生驗(yàn)證,難點(diǎn)讓學(xué)生突破,以學(xué)生為主體”的教學(xué)思路。同學(xué)們經(jīng)過(guò)操作,觀察,探究,歸納得到直角三角形的判定,由感性認(rèn)識(shí)上升到理性認(rèn)識(shí),能力得到提升。
3、在教學(xué)活動(dòng)過(guò)程中,我經(jīng)常走下講臺(tái),到學(xué)生中去,以學(xué)生身份和學(xué)生一起探討問(wèn)題。用一切可能的方式,激勵(lì)回答問(wèn)題的學(xué)生,激發(fā)學(xué)生的求知欲,使師生在和諧的教學(xué)環(huán)境中零距離的接觸。課堂上學(xué)生們的思維空前活躍,發(fā)言的'人數(shù)不斷增多,學(xué)生能從多角度認(rèn)識(shí)問(wèn)題,爭(zhēng)先恐后地交流不同的意見(jiàn)和方法,收到比較好的效果。
最新勾股定理的教學(xué)反思 篇4
勾股定理的探索和證明蘊(yùn)含著豐富的數(shù)學(xué)思想和數(shù)學(xué)方法,是培養(yǎng)學(xué)生良好思維品質(zhì)的最佳載體。它以簡(jiǎn)潔優(yōu)美的圖形結(jié)構(gòu),豐富深刻的內(nèi)涵刻畫(huà)了自然界的和諧統(tǒng)一的關(guān)系,是數(shù)形結(jié)合的完美典范。著名數(shù)學(xué)家華羅庚就曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次“談話”的語(yǔ)言。為讓學(xué)生通過(guò)對(duì)這節(jié)課的學(xué)習(xí)得到更好的歷練,在教學(xué)時(shí),特別注重從以下幾個(gè)方面入手:
一、注重知識(shí)的自然生發(fā)。
傳統(tǒng)的教學(xué)中,教師往往喜歡壓縮理論傳授過(guò)程,用充足的時(shí)間做練習(xí),以題代講,搞題海戰(zhàn)術(shù)。但從學(xué)生的發(fā)展來(lái)著,如果壓縮數(shù)學(xué)知識(shí)的形成過(guò)程,不講究知識(shí)的自然生發(fā),學(xué)生獲取知識(shí)的過(guò)程是被動(dòng)的,形成的體系也是孤立的,長(zhǎng)此以往,學(xué)生必將錯(cuò)過(guò)或失去思維發(fā)展和能力提高的機(jī)遇。在這節(jié)課上,不刻意追求所謂的進(jìn)度,更沒(méi)有直接給出勾股定理,而是組織學(xué)生開(kāi)展畫(huà)一畫(huà)、看一看、想一想、猜一猜、拼一拼的活動(dòng),學(xué)生在活動(dòng)思考、交流、展示中,逐漸的形成了對(duì)知識(shí)的自我認(rèn)識(shí)和自我感悟。這樣做不僅能幫助學(xué)生牢固掌握勾股定理,更重要的是使學(xué)生體會(huì)用自己所學(xué)的舊知識(shí)而獲取新知識(shí)過(guò)程,使他們獲得成功的喜悅,增強(qiáng)了學(xué)生主動(dòng)性,同時(shí)他們的思維能力在知識(shí)自然形成的過(guò)程中不斷發(fā)展。
二、注重?cái)?shù)學(xué)課上的操作性學(xué)習(xí)
操作性學(xué)習(xí)是自主探究性學(xué)習(xí)有效途徑之一,學(xué)生通過(guò)在實(shí)踐活動(dòng)中的感受和體驗(yàn),有利于幫助學(xué)生理解和掌握抽象的數(shù)學(xué)知識(shí)。在這節(jié)課上,首先讓學(xué)生動(dòng)手畫(huà)直角三角形,得出研究題材,然后又讓學(xué)生利用四個(gè)直角三角形拼一拼,驗(yàn)證猜想。這樣充分的調(diào)動(dòng)了學(xué)生的手、口、腦等多種感官參與數(shù)學(xué)學(xué)習(xí)活動(dòng),既享受了操作的樂(lè)趣,又培養(yǎng)了學(xué)生的動(dòng)手能力,加深了對(duì)知識(shí)的理解。
三、注重問(wèn)題設(shè)計(jì)的開(kāi)放性
課堂教學(xué)是教師組織、引導(dǎo)、參與和學(xué)生自主、合作、探究學(xué)習(xí)的雙邊活動(dòng)。這其中教師的“引導(dǎo)”起著關(guān)鍵作用。這里的“引導(dǎo)”,很大程度上靠設(shè)疑提問(wèn)來(lái)實(shí)現(xiàn)。在教學(xué)實(shí)踐中,問(wèn)題設(shè)計(jì)要具有開(kāi)放性。因?yàn)殚_(kāi)放性問(wèn)題更有利于培養(yǎng)學(xué)生的創(chuàng)造性思維、體現(xiàn)學(xué)生的主體意識(shí)和個(gè)性差異。本節(jié)課在設(shè)計(jì)涂鴉直角三角形時(shí),安排學(xué)生在方格紙上任意涂鴉一個(gè)直角三角形;在設(shè)計(jì)拼圖驗(yàn)證環(huán)節(jié)時(shí),安排學(xué)生任意拼出一個(gè)正方形或直角梯形,有意沒(méi)指定畫(huà)一個(gè)具體邊長(zhǎng)的直角三角形和正方形,就是不想對(duì)學(xué)生的思維給出太多的限制條件,給出更多的想象和創(chuàng)造空間。雖然探究的時(shí)間會(huì)更長(zhǎng),但這更符合實(shí)際知識(shí)的產(chǎn)生環(huán)境,學(xué)生只有在這樣的環(huán)境下進(jìn)行創(chuàng)造、發(fā)現(xiàn)和磨練,能力素養(yǎng)才會(huì)得到更有效的歷練。
四、注重讓學(xué)生經(jīng)歷完整的數(shù)學(xué)知識(shí)的發(fā)現(xiàn)過(guò)程。
新《數(shù)學(xué)課程標(biāo)準(zhǔn)》在關(guān)于課程目標(biāo)的闡述中,首次大量使用了"經(jīng)歷(感受)、體驗(yàn)(體會(huì))、探索"等刻畫(huà)數(shù)學(xué)活動(dòng)水平的過(guò)程性目標(biāo)動(dòng)詞,就是要求在數(shù)學(xué)學(xué)習(xí)的過(guò)程中,讓學(xué)生經(jīng)歷知識(shí)與技能形成與鞏固過(guò)程,經(jīng)歷數(shù)學(xué)思維的發(fā)展過(guò)程,經(jīng)歷應(yīng)用數(shù)學(xué)能力解決問(wèn)題的過(guò)程,從而形成積極的數(shù)學(xué)情感與態(tài)度。教學(xué)從學(xué)生感興趣的涂鴉開(kāi)始,再經(jīng)歷觀察、分析、猜想、驗(yàn)證的全過(guò)程,讓學(xué)生充分的經(jīng)歷了完整的數(shù)學(xué)知識(shí)的發(fā)現(xiàn)過(guò)程,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在知識(shí)技能、思維能力以及情感態(tài)度等多方面都得到了進(jìn)步和發(fā)展。
如果有機(jī)會(huì)再上這節(jié)課,我想我會(huì)投入更多的精力對(duì)學(xué)生可能會(huì)給出的答案進(jìn)行預(yù)想,以便在課堂上給予學(xué)生更多的啟迪,讓他們走的更遠(yuǎn)。一堂課,雖已結(jié)束,但對(duì)于生命課堂的領(lǐng)悟這條路,還有很長(zhǎng)的路要走,我將繼續(xù)上下求索,做學(xué)生更好的支點(diǎn)。
最新勾股定理的教學(xué)反思 篇5
本學(xué)期我們學(xué)習(xí)了人教版第十八章《勾股定理》這一章節(jié),現(xiàn)在總結(jié)如下:
一、 變學(xué)生被動(dòng)學(xué)為主動(dòng)學(xué)
節(jié)課前一個(gè)星期教師布置給學(xué)生任務(wù):查有關(guān)勾股定理的資料(可上網(wǎng)查,也可查閱報(bào)刊、書(shū)籍)。提前兩三天由幾位學(xué)生匯總(教師可適當(dāng)指導(dǎo))。這樣可使學(xué)生在上這節(jié)課前就對(duì)勾股定理歷史背景有全面的理解,從而使學(xué)生認(rèn)識(shí)到勾股定理的重要性,學(xué)習(xí)勾股定理是非常必要的,激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)學(xué)生也是一次愛(ài)國(guó)主義教育,培養(yǎng)民族自豪感,特別是“趙爽弦圖”激勵(lì)他們奮發(fā)向上。同時(shí)培養(yǎng)學(xué)生的自學(xué)能力及歸類(lèi)總結(jié)能力。
二、注重學(xué)生自主探究學(xué)習(xí)模式
首先,創(chuàng)設(shè)情境,由實(shí)例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,然后通過(guò)動(dòng)手操作、大膽猜想、勇于驗(yàn)證等一系列自主探究、合作交流活動(dòng)得出定理,并運(yùn)用定理進(jìn)一步鞏固提高。體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,人人學(xué)有價(jià)值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展。對(duì)于拼圖驗(yàn)證,學(xué)生還沒(méi)有接觸過(guò),所以在教學(xué)中教師給予學(xué)生適當(dāng)指導(dǎo)與鼓勵(lì)。充分體現(xiàn)了教師是學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。
三、培養(yǎng)學(xué)生多種能力,教會(huì)學(xué)生多種思維
課前查資料,培養(yǎng)學(xué)生的自學(xué)能力及歸類(lèi)總結(jié)能力;課上的探究培養(yǎng)學(xué)生的動(dòng)手動(dòng)腦的能力、觀察能力、猜想歸納總結(jié)的能力、合作交流的能力。課后加強(qiáng)學(xué)生自學(xué)能力,總結(jié)的能力。
四、培養(yǎng)數(shù)學(xué)應(yīng)用意識(shí)
數(shù)學(xué)來(lái)源于生活,而又應(yīng)用于生活。因此必須從實(shí)例引入,最后通過(guò)定理解決引例中的問(wèn)題,并在定理的應(yīng)用中,讓學(xué)生舉生活中的例子,充分體現(xiàn)了數(shù)學(xué)的應(yīng)用價(jià)值。整節(jié)課都是在生生互動(dòng)、師生互動(dòng)的和諧氣氛中進(jìn)行的,在教師的鼓勵(lì)、引導(dǎo)下學(xué)生進(jìn)行了自主學(xué)習(xí)。學(xué)生上講臺(tái)表達(dá)自己的思路、解法,體驗(yàn)了數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)了細(xì)心觀察、認(rèn)真思考的態(tài)度。
五、不足之處:
本節(jié)課拼圖驗(yàn)證的方法以前學(xué)生沒(méi)接觸過(guò),稍嫌吃力。舉勾股定理在生活中的例子時(shí),學(xué)生思路不夠開(kāi)闊。實(shí)際問(wèn)題中,學(xué)生難將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題來(lái)解決,使得學(xué)過(guò)的知識(shí)和實(shí)際問(wèn)題有點(diǎn)脫離,所以在后面的教學(xué)過(guò)程中要多培養(yǎng)學(xué)生實(shí)驗(yàn)操作能力及應(yīng)用拓展能力,使學(xué)生思路更開(kāi)闊。
新課程改革要求我們:將數(shù)學(xué)教學(xué)置身于學(xué)生自主探究與合作交流的數(shù)學(xué)活動(dòng)中;將知識(shí)的獲取與能力的培養(yǎng)置身于學(xué)生形式各異的探索經(jīng)歷中;關(guān)注學(xué)生探索過(guò)程中的情感體驗(yàn),并發(fā)展實(shí)踐能力及創(chuàng)新意識(shí)。為學(xué)生的終身學(xué)習(xí)及可持續(xù)發(fā)展奠定堅(jiān)實(shí)的基礎(chǔ)??傊虒W(xué)中要多思考,多反思,真真切切讓我們的學(xué)生學(xué)好數(shù)學(xué),將數(shù)學(xué)學(xué)好。
最新勾股定理的教學(xué)反思 篇6
本節(jié)課的數(shù)學(xué)設(shè)計(jì)主要是從面對(duì)全體學(xué)生,針對(duì)學(xué)生知識(shí)水平、生活環(huán)境、思維特點(diǎn)、認(rèn)知風(fēng)格的差異等方面進(jìn)行編寫(xiě)講學(xué)稿的;它的主要目的是讓學(xué)生應(yīng)用所學(xué)的勾定理解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題。由于學(xué)生才剛剛掌握勾股定理,根據(jù)教材,單刀直入,要求學(xué)生運(yùn)用其定理解決生活中的實(shí)際問(wèn)題,對(duì)部分學(xué)生來(lái)說(shuō)還存在著一定的困難。故我們初二級(jí)組全體數(shù)學(xué)老師,對(duì)教材知識(shí)內(nèi)容進(jìn)行了有效的整合,從中提煉教學(xué)資源,把本章的教學(xué)內(nèi)容進(jìn)行了重建組合,使之符合我們的學(xué)生的認(rèn)知特點(diǎn),心理特點(diǎn)級(jí)學(xué)習(xí)特點(diǎn),讓學(xué)生學(xué)起來(lái)輕松,運(yùn)用起來(lái)靈活。本節(jié)課主要是圍繞“設(shè)置問(wèn)題情境――建立教學(xué)模型――解釋――應(yīng)用及拓展”這一主線展開(kāi)教學(xué)工作的。其閃光點(diǎn)主要有:
一、創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生積極思考,激發(fā)其探究欲望。
激發(fā)學(xué)生探究問(wèn)題、解決問(wèn)題,首先要激發(fā)其探究的興趣,欲想要學(xué)生感興趣,首先教師必須先創(chuàng)設(shè)與學(xué)習(xí)內(nèi)容緊密相關(guān)的問(wèn)題情境,能引導(dǎo)學(xué)生進(jìn)行“數(shù)學(xué)思考”。本節(jié)課一開(kāi)始,教師拿來(lái)一塊木板表演從一間小小的門(mén)框穿過(guò),橫著進(jìn)不了,豎著也過(guò)不了,問(wèn)學(xué)生怎么辦?瞬間,木板過(guò)門(mén)框問(wèn)題成了大家討論的焦點(diǎn);同時(shí)引導(dǎo)學(xué)生,建立數(shù)學(xué)模型,突破將形轉(zhuǎn)化為數(shù)這一思想轉(zhuǎn)變難點(diǎn)。
二、能調(diào)動(dòng)全體學(xué)生參與教學(xué)活動(dòng)。
課堂教學(xué)活動(dòng)形式多樣化,有個(gè)人思考,有小組活動(dòng),有全班交流,讓學(xué)生進(jìn)行分析歸納,教師鼓勵(lì)學(xué)生盡量用自己的語(yǔ)言表達(dá)自己的發(fā)現(xiàn)。感悟“圖形”與“數(shù)量”之間的相互關(guān)系,將教學(xué)內(nèi)容生活化,動(dòng)態(tài)化,使學(xué)生更真切地感受到勾股定理的使用性,整節(jié)課師生之間均處與主動(dòng)狀態(tài)。
三、講學(xué)稿的設(shè)計(jì),不拘泥于教材,吃透教材,敢于創(chuàng)新。
講學(xué)稿中所設(shè)計(jì)的例題或習(xí)題,富于生活氣息。例、木板過(guò)門(mén)框、折斷的樹(shù),電視機(jī)的大少等,都與現(xiàn)實(shí)生活有關(guān)。其實(shí)是告訴學(xué)生數(shù)學(xué)是為生活服務(wù)的,同時(shí),數(shù)學(xué)也是來(lái)自于生活。
四、教學(xué)目標(biāo)明確,能突破教學(xué)重點(diǎn)、難點(diǎn),教學(xué)程序有條不紊,思路清晰,或活而不亂。教師具有一定的調(diào)控能力,能輕松駕御課堂,應(yīng)付自如。學(xué)生在課堂內(nèi)能正確完成預(yù)設(shè)的練習(xí)。
五、注重知識(shí)的前后連貫性,練習(xí)具有一定的層次性,使全體學(xué)生學(xué)有所用,課后拓展題,拓寬了學(xué)生的思路,培養(yǎng)了學(xué)生的審題能力,挖掘?qū)W生的潛能。
上完一節(jié)課下來(lái),總感到有點(diǎn)遺憾。不足之處說(shuō)出來(lái)與大家共同探討。例題的解答板書(shū)教師應(yīng)在黑板上一步一步示范,盡量少用多媒體示范,因?yàn)榛脽羝粫?huì)兒就換了,不利于學(xué)困生學(xué)習(xí);講學(xué)稿的編設(shè)內(nèi)容過(guò)于簡(jiǎn)單基礎(chǔ)化,不適合優(yōu)生的培養(yǎng),課堂中集體回答問(wèn)題較多,學(xué)生單獨(dú)思考、答題、獨(dú)立完成作業(yè)的機(jī)會(huì)不多;課后作業(yè)與堂上練習(xí)拓展不夠深,有待改善。但愿我們能互相學(xué)習(xí),取長(zhǎng)補(bǔ)短,共同進(jìn)取。
最新勾股定理的教學(xué)反思 篇7
本節(jié)課主要通過(guò)勾股定理的證明探索,使學(xué)生進(jìn)一步理解和掌握勾股定理。通過(guò)利用質(zhì)疑、拼圖觀察、思考、猜想、推理論證這一過(guò)程,培養(yǎng)學(xué)生探求未知數(shù)學(xué)知識(shí)的能力和方法,培養(yǎng)學(xué)生求異思維能力、認(rèn)知能力、觀察能力和獨(dú)立實(shí)踐能力。學(xué)生獨(dú)立或分組進(jìn)行拼圖實(shí)驗(yàn),教師組織學(xué)生在實(shí)驗(yàn)過(guò)程中發(fā)現(xiàn)的有價(jià)值的實(shí)驗(yàn)結(jié)果進(jìn)行交流和展示。本節(jié)課的過(guò)程由激趣、質(zhì)疑、實(shí)驗(yàn)、求異、探索、交流、延伸組成。
本節(jié)課的成功之處:
1、創(chuàng)設(shè)情景,實(shí)例導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情。
2、由于實(shí)現(xiàn)了教師角色的轉(zhuǎn)變,教法的創(chuàng)新,師生的平等,氣氛的活躍,學(xué)生積極參加。
3、面向全體學(xué)生,以人為本的教育理念落實(shí)到位。整節(jié)課都是學(xué)生自主實(shí)驗(yàn)、自主探索,自主完成由形到數(shù)的轉(zhuǎn)化。學(xué)生勇于上講臺(tái)展示研究成果,教師只是起到組織、引導(dǎo)作用。
4、通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),上臺(tái)發(fā)言,展示成果,體驗(yàn)了成功的喜悅。學(xué)生的自信心得到培養(yǎng),個(gè)性得到張揚(yáng)。通過(guò)當(dāng)場(chǎng)展示,讓學(xué)生體會(huì)到動(dòng)手實(shí)踐在解決數(shù)學(xué)問(wèn)題中的重要性,同時(shí)也讓學(xué)生體會(huì)到用面積來(lái)驗(yàn)證公式的直觀性、普遍性。
5、學(xué)生的研究成果極大地豐富了學(xué)生對(duì)勾股定理的證明的認(rèn)識(shí),學(xué)生從中獲得利用已知的知識(shí)探求數(shù)學(xué)知識(shí)的能力和方法。這對(duì)學(xué)生今后的學(xué)習(xí)和將來(lái)的發(fā)展是大有裨益的。同時(shí)驗(yàn)證勾股定理的證明的探究,使學(xué)生形成一種等積代換的思想,為今后的學(xué)習(xí)奠定基礎(chǔ)。
本節(jié)課的不足之處及改進(jìn)思路:
1、小部分能力基礎(chǔ)和能力都比較差的學(xué)生在探索過(guò)程中無(wú)所事事,因此教師應(yīng)該在課前對(duì)不同層次的學(xué)生提出不同的要求,讓每個(gè)學(xué)生多清楚地知道這節(jié)課自己的任務(wù)是什么。
2、本節(jié)課拼圖驗(yàn)證的方法是以前學(xué)生很少接觸的,所以在探索過(guò)程中很多學(xué)生都顯得有些吃力。所以教師在講方法一時(shí),應(yīng)該先介紹這種證明方法以及思路,讓學(xué)生模仿第一種方法的基礎(chǔ)上,能輕松地總結(jié)出第二種方法,從而產(chǎn)生去探索更多方法的興趣和動(dòng)力,有利于學(xué)生的數(shù)學(xué)思維的提升。
3、對(duì)學(xué)生的人文教育和愛(ài)國(guó)教育不夠。很多學(xué)生在探索過(guò)程中遇到困難時(shí),選擇放棄或等別人的答案。教師此時(shí)應(yīng)該注意引導(dǎo)學(xué)生要勇于克服困難,主動(dòng)進(jìn)行探索,提高了自身的推理能力和創(chuàng)新精神。同時(shí)教師也要不斷滲透愛(ài)國(guó)教育,培養(yǎng)學(xué)生的民族自豪感和愛(ài)國(guó)熱情。
在我們的數(shù)學(xué)教學(xué)中,活動(dòng)課是不可忽視的內(nèi)容。在這個(gè)探索的過(guò)程中,學(xué)生絕大多數(shù)是不會(huì)創(chuàng)造或發(fā)明什么的,這是一個(gè)素質(zhì)的表現(xiàn)和培養(yǎng)過(guò)程。學(xué)生得到什么結(jié)果是次要的,重要的是使學(xué)生的素質(zhì)和能力得到培養(yǎng)。這是中學(xué)數(shù)學(xué)活動(dòng)課的價(jià)值取向。
最新勾股定理的教學(xué)反思 篇8
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,往往需要進(jìn)行教學(xué)設(shè)計(jì)編寫(xiě)工作,教學(xué)設(shè)計(jì)是對(duì)學(xué)業(yè)業(yè)績(jī)問(wèn)題的解決措施進(jìn)行策劃的過(guò)程。那么問(wèn)題來(lái)了,教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)?下面是小編為大家收集的八年級(jí)數(shù)學(xué)上冊(cè)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)反思,僅供參考,歡迎大家閱讀。
教學(xué)目標(biāo)具體要求:
1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。
2.過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
重點(diǎn):
勾股定理的應(yīng)用
難點(diǎn):
勾股定理的應(yīng)用
教案設(shè)計(jì)
一、知識(shí)點(diǎn)講解
知識(shí)點(diǎn)1:(已知兩邊求第三邊)
1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為_(kāi)____________。
2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是______________。
3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長(zhǎng)?
知識(shí)點(diǎn)2:
利用方程求線段長(zhǎng)
1、如圖,公路上A,B兩點(diǎn)相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車(chē)站E,
(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?
(2)DE與CE的位置關(guān)系
(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?
利用方程解決翻折問(wèn)題
2、如圖,用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長(zhǎng)BC為10cm.當(dāng)折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長(zhǎng)?
3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,求DE的長(zhǎng)。
4.如圖,將一個(gè)邊長(zhǎng)分別為4、8的矩形形紙片ABCD折疊,使C點(diǎn)與A點(diǎn)重合,則EF的長(zhǎng)是多少?
5、折疊矩形ABCD的一邊AD,折痕為AE,且使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8cm,BC=10cm,以B點(diǎn)為原點(diǎn),BC為x軸,BA為y軸建立平面直角坐標(biāo)系。求點(diǎn)F和點(diǎn)E坐標(biāo)。
6、邊長(zhǎng)為8和4的矩形OABC的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對(duì)角線AC折疊后,點(diǎn)B落在第四象限B1處,設(shè)B1C交x軸于點(diǎn)D,求(1)三角形ADC的面積,(2)點(diǎn)B1的坐標(biāo),(3)AB1所在的直線解析式.
知識(shí)點(diǎn)3:判斷一個(gè)三角形是否為直角三角形間接給出三邊的長(zhǎng)度或比例關(guān)系
1.(1).若一個(gè)三角形的周長(zhǎng)12cm,一邊長(zhǎng)為3cm,其他兩邊之差為1cm,則這個(gè)三角形是___________。
(2).將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,得到的三角形是____________。
(3)在ABC中,a:b:c=1:1:,那么ABC的確切形狀是_____________。
2.如圖,正方形ABCD中,邊長(zhǎng)為4,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),CE=BC,你能說(shuō)明∠AFE是直角嗎?
變式:如圖,正方形ABCD中,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),且CE=BC,你能說(shuō)明∠AFE是直角嗎?
3.一位同學(xué)向西南走40米后,又走了50米,再走30米回到原地。問(wèn)這位同學(xué)又走了50米后向哪個(gè)方向走了
二、課堂小結(jié)
談一談你這節(jié)課都有哪些收獲?
應(yīng)用勾股定理解決實(shí)際問(wèn)題
三、課堂練習(xí)以上習(xí)題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。
針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):
一、復(fù)習(xí)引入
對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡(jiǎn)短明了,花費(fèi)時(shí)間短。
二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法
活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問(wèn)題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門(mén)內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書(shū)寫(xiě)板書(shū)。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)。
活動(dòng)二:解決例二梯子滑落的`問(wèn)題。學(xué)生自主討論解決問(wèn)題,書(shū)寫(xiě)過(guò)程,之后投影學(xué)生書(shū)寫(xiě)過(guò)程,教師與學(xué)生一起合作修改解題過(guò)程。
活動(dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,然后利用勾股定理解決問(wèn)題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過(guò)程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。
二、鞏固練習(xí),熟練新知
通過(guò)測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的經(jīng)驗(yàn)和感受。
在教學(xué)設(shè)計(jì)的實(shí)施中,也存在著一些問(wèn)題:
1.由于本班學(xué)生能力的差距,本想著通過(guò)學(xué)生幫帶活動(dòng),使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對(duì)問(wèn)題的分析解決所用時(shí)間短,而在整個(gè)環(huán)節(jié)設(shè)計(jì)中轉(zhuǎn)接的快,未給學(xué)困生充分的時(shí)間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來(lái)。
2.課堂上質(zhì)疑追問(wèn)要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對(duì)學(xué)生課堂展示的評(píng)價(jià)方式應(yīng)體現(xiàn)生評(píng)生,師評(píng)生,及評(píng)價(jià)的針對(duì)性和及時(shí)性。
最新勾股定理的教學(xué)反思 篇9
星期四上午第三節(jié)講了《勾股定理逆定理》第一課時(shí),課后效果和我預(yù)想的一樣,由于探究?jī)?nèi)容偏多,課堂容量大,后半部分感覺(jué)倉(cāng)促,留給學(xué)生的思考時(shí)間顯得不足。
回頭反思,這節(jié)課的設(shè)計(jì)思路比較合理:定理來(lái)源于生活,服務(wù)于生活。我由勾股定理引出一道生活實(shí)際問(wèn)題,引起學(xué)生的求知欲,然后和學(xué)生分三種方法探究,得出“勾股定理逆定理”,經(jīng)過(guò)課堂練習(xí)夯實(shí)基礎(chǔ),最后利用新知解決開(kāi)課時(shí)提出的生活實(shí)際問(wèn)題,首尾呼應(yīng),學(xué)以致用。
怎么避免上述授課時(shí)間緊張問(wèn)題,取得更高的課堂效率呢?我簡(jiǎn)單談兩點(diǎn)建議,希望各位數(shù)學(xué)老師以后教此課時(shí)得到共勉。
一是在設(shè)計(jì)探究時(shí)應(yīng)注重簡(jiǎn)化。我設(shè)計(jì)了三個(gè)探究:探究1是古埃及人用結(jié)繩打樁法得到直角;探究2是師生用尺規(guī)作圖法得到直角;探究3是利用三角形全等的知識(shí)通過(guò)證明得到直角。現(xiàn)在覺(jué)得應(yīng)把探究2簡(jiǎn)化,老師就“勾三股四弦五”給學(xué)生當(dāng)堂做尺規(guī)作圖演示,沒(méi)有必要再讓學(xué)生親自作圖,因?yàn)榻處煹难菔?,效果明顯,學(xué)生已經(jīng)理解,達(dá)到目標(biāo)要求,這樣就可以節(jié)約5分鐘時(shí)間。
二是對(duì)互逆命題,原命題,逆命題,互逆定理,逆定理等概念的講解可隨題點(diǎn)化,而詳細(xì)講解、隨堂練習(xí)可做為第二課時(shí)的重點(diǎn),讓出更多時(shí)間來(lái)做勾股定理逆定理的相應(yīng)練習(xí),特別是應(yīng)加大有靈活度和難度生活習(xí)題的練習(xí),拓寬學(xué)生知識(shí)面,提高學(xué)生的發(fā)散思維能力。
總之,課堂設(shè)計(jì)要做到一個(gè)“狠”字,該刪除的就刪,教學(xué)目標(biāo)不可貪多。我們圍繞授課重點(diǎn)做相應(yīng)探究,練習(xí),次重點(diǎn)可放在下個(gè)課時(shí)重點(diǎn)講解,探究時(shí)間要預(yù)留充足,相應(yīng)練習(xí)寧精勿多,注重雙基才是根本。
最新勾股定理的教學(xué)反思 篇10
勾股定理的探索和證明蘊(yùn)含豐富的數(shù)學(xué)思想和研究方法,是培養(yǎng)學(xué)生思維品質(zhì)的載體。它對(duì)數(shù)學(xué)發(fā)展具有重要作用。勾股定理是一壇陳年佳釀,品之芬芳,余味無(wú)窮,以簡(jiǎn)潔優(yōu)美的形式,豐富深刻的內(nèi)涵刻畫(huà)了自然界和諧統(tǒng)一關(guān)系,是數(shù)形結(jié)合的優(yōu)美典范。
教學(xué)中我以教師為主導(dǎo),以學(xué)生為主體,以知識(shí)為載體,以培養(yǎng)能力為重點(diǎn)。為學(xué)生創(chuàng)設(shè)“做數(shù)學(xué)、玩數(shù)學(xué)”的教學(xué)情境,讓學(xué)生從“學(xué)會(huì)”到“會(huì)學(xué)”,從“會(huì)學(xué)”到“樂(lè)學(xué)”。
1、查資料
我讓學(xué)生課前查閱有關(guān)勾股定理資料,學(xué)生對(duì)勾股定理歷史背景有初步了解,學(xué)生充滿自信迎接新知識(shí)《勾股定理》學(xué)習(xí)的挑戰(zhàn)。
學(xué)生查得資料:世界許多科學(xué)家尋找“外星人”。1820年,德國(guó)數(shù)學(xué)家高斯提出,在西伯利亞森林伐出直角三角形空地,在空地種上麥子,以三角形三邊為邊種上三片正方形松樹(shù)林,如果有外星人路過(guò)地球附近,看到這個(gè)巨大數(shù)學(xué)圖形,便知道:這個(gè)星球上有智慧生命。我國(guó)數(shù)學(xué)家華羅庚提出:要溝通兩個(gè)不同星球的信息交往,最好利用太空飛船帶上這個(gè)圖形,并發(fā)射到太空中去。
2、講故事
畢達(dá)哥拉斯是古希臘數(shù)學(xué)家。相傳2500年前,畢達(dá)哥拉斯在朋友家做客,發(fā)現(xiàn)朋友家用地磚鋪成地面反映了直角三角形三邊的數(shù)量關(guān)系。
我講畢達(dá)哥拉斯故事,提出問(wèn)題。學(xué)生獨(dú)立思考,提出猜想。我配合演示,使問(wèn)題形象、具體。教學(xué)活動(dòng)從“數(shù)小方格”開(kāi)始,起點(diǎn)低、趣味性濃。學(xué)生在偉人故事中進(jìn)行數(shù)學(xué)問(wèn)題的討論和探索。平淡無(wú)奇現(xiàn)象中隱藏深刻道理。
3、提問(wèn)題
“問(wèn)題是思維的起點(diǎn)”,一段生動(dòng)有趣的動(dòng)畫(huà),點(diǎn)燃學(xué)生求知欲,以景激情,以情激思,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境,學(xué)生帶著問(wèn)題進(jìn)課堂。
例如:一架長(zhǎng)為10m的梯子AB斜靠在墻上,若梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑2m ,那么它的底端是否也滑動(dòng)2m ?
盡管學(xué)生講的不完全正確,但培養(yǎng)了學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力,學(xué)生經(jīng)歷了應(yīng)用勾股定理解決問(wèn)題的思考過(guò)程,學(xué)生增長(zhǎng)了知識(shí),學(xué)生增長(zhǎng)了智慧。
例如:《九章算術(shù)》記載有趣問(wèn)題:有一個(gè)水池,水面是邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生蘆葦,它高出水面1尺,若把這根蘆葦拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,問(wèn)這個(gè)水池深度和這根蘆葦長(zhǎng)度各是多少?
我通過(guò)“著名問(wèn)題”探究,讓學(xué)生了解勾股定理的古老與神奇。問(wèn)題本身具有極大挑戰(zhàn)性,激發(fā)了學(xué)生強(qiáng)烈求知欲,激發(fā)了學(xué)生探究知識(shí)的愿望。學(xué)生討論交流,發(fā)現(xiàn)用代數(shù)觀點(diǎn)證明幾何問(wèn)題的思路。我配以演示,分散了難點(diǎn),培養(yǎng)了學(xué)生發(fā)散思維、探究數(shù)學(xué)問(wèn)題的能力。
4、講證法
我拋磚引玉介紹趙爽弦圖,趙爽用幾何圖形截、割、拼、補(bǔ)證明代數(shù)恒等關(guān)系,具有嚴(yán)密性,直觀性,是中國(guó)古代以形證數(shù)、形數(shù)統(tǒng)一的典范。趙爽指出:四個(gè)全等直角三角形拼成一個(gè)中空的正方形,大正方形面積等于小正方形面積與4個(gè)三角形面積和。 “趙爽弦圖”表現(xiàn)了我國(guó)古代人對(duì)數(shù)學(xué)的鉆研精神和聰明才智,它是我國(guó)數(shù)學(xué)的驕傲。這個(gè)圖案被選為20xx年北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)會(huì)徽。
隨后展示了美國(guó)總統(tǒng)證法。1876年4月1日,美國(guó)伽菲爾德在《新英格蘭教育日志》發(fā)表勾股定理的證法。1881年,伽菲爾德就任美國(guó)總統(tǒng),為了紀(jì)念他直觀、簡(jiǎn)捷、易懂、明了的證明,這一證法被稱為“總統(tǒng)”證法。
我感覺(jué)學(xué)生是小小發(fā)明家。學(xué)生在建構(gòu)知識(shí)的同時(shí),欣賞作品享受成功的喜悅。
5、巧設(shè)計(jì)
練習(xí)設(shè)計(jì)我立足鞏固,著眼發(fā)展,兼顧差異,滿足學(xué)生渴望發(fā)展要求。練習(xí)有基礎(chǔ)訓(xùn)練,變式訓(xùn)練,中考試題,引出勾股樹(shù),學(xué)生驚嘆奇妙的數(shù)學(xué)美。課內(nèi)知識(shí)向課外知識(shí)延伸,打開(kāi)了學(xué)生思路,給學(xué)生提供了廣闊空間。數(shù)學(xué)教學(xué)變得生機(jī)勃勃,學(xué)生喜歡數(shù)學(xué),熱愛(ài)數(shù)學(xué)。
我讓學(xué)生講解搜集資料,豐富了學(xué)生背景知識(shí),體現(xiàn)了自主學(xué)習(xí)方式。我對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激發(fā)了學(xué)生民族自豪感和奮發(fā)向上學(xué)習(xí)精神。我讓學(xué)生欣賞豐富多彩的數(shù)學(xué)文化,展示五彩斑斕的文化背景,激發(fā)了學(xué)生的愛(ài)國(guó)熱情。
6、善總結(jié)
課堂小結(jié)是對(duì)教學(xué)內(nèi)容的回顧,是對(duì)數(shù)學(xué)思想、方法的總結(jié)。我強(qiáng)調(diào)重點(diǎn)內(nèi)容,注重知識(shí)體系的形成,培養(yǎng)了學(xué)生反思習(xí)慣。
我還想對(duì)同學(xué)們說(shuō):
牛頓——從蘋(píng)果落地最終確立了萬(wàn)有引力定律
我們——從朝夕相處的三角板發(fā)現(xiàn)了勾股定理
雖然兩者尚不可同日而語(yǔ)
但探索和發(fā)現(xiàn)——終有價(jià)值
也許就在身邊
也許就在眼前
還隱藏著無(wú)窮的“萬(wàn)有引力定律”和“勾股定理”……
祝愿同學(xué)們——
修得一個(gè)用數(shù)學(xué)思維思考世界的頭腦
練就一雙用數(shù)學(xué)視角觀察世界的眼睛
開(kāi)啟新的探索——
發(fā)現(xiàn)平凡中的不平凡之謎……
最新勾股定理的教學(xué)反思 篇11
我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾(短直角邊)等于三,股(長(zhǎng)直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國(guó)古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中,在這本書(shū)的另一處,還記載了勾股定理的一般形式。中國(guó)古代的幾何學(xué)家研究幾何是為了實(shí)用,是唯用是尚的。在講完《勾股定理逆定理》這節(jié)課后,我的反思如下:
本節(jié)課的教學(xué)目標(biāo)是:在掌握了勾股定理的基礎(chǔ)上,讓學(xué)生如何從三邊的關(guān)系來(lái)判定一個(gè)三角形是否為直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教學(xué)設(shè)計(jì)說(shuō)明:本教教學(xué)設(shè)計(jì)是圍繞勾股定理的逆定理的證明與應(yīng)用來(lái)展開(kāi),結(jié)合新課標(biāo)的要求,根據(jù)我班學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我做了以下設(shè)計(jì)(也是成功之處):
一、創(chuàng)設(shè)情境,提出猜想達(dá)到直觀性的教學(xué)要求。讓幾個(gè)學(xué)生要全班同學(xué)前面做一個(gè)“數(shù)學(xué)實(shí)驗(yàn)”,三條分別為:3,4,5的三角形是一個(gè)直角三角形。第二步驟是讓學(xué)生畫(huà)已知三邊的一定長(zhǎng)度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關(guān)系條件,同時(shí),引導(dǎo)學(xué)生從特殊到一般提出猜想。
二、將教學(xué)內(nèi)容精簡(jiǎn)化.考慮到我所教班級(jí)的學(xué)生認(rèn)識(shí)水平,做了如下教學(xué)設(shè)計(jì):⑴將教學(xué)目標(biāo)定為讓學(xué)生掌握勾股定理的逆定理.以及逆定理的應(yīng)用,而對(duì)于本課中逆定理的證明.以及其探究都放在一下節(jié)課再進(jìn)行講解.⑵對(duì)于本課中所出現(xiàn)了的逆定理的定義,及其真假性的判斷也簡(jiǎn)單化.本節(jié)課也不詳細(xì)講.本節(jié)課的的重點(diǎn)放在掌握勾股定理的逆定理,及其應(yīng)用.從課堂效果來(lái)看,這樣的教學(xué)設(shè)計(jì)是合理的,學(xué)生較好的掌握了勾股定理的逆定理,所以取得了良好的課堂效果。
三、應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運(yùn)用所學(xué)知識(shí)解決相應(yīng)問(wèn)題,提高學(xué)生的分析解題能力,基于對(duì)我班的學(xué)情分析,為了讓學(xué)生都能動(dòng)起手做,學(xué)案的設(shè)計(jì)上做了很多腳手架,目的就是讓學(xué)生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設(shè)置對(duì)我們的中下水平的學(xué)生是很多幫助的.從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒(méi)有的話,這部分學(xué)生對(duì)一些基本的題都會(huì)束手無(wú)策.
四、實(shí)行分層教學(xué),讓不同水平的學(xué)生在同一課堂都能學(xué)好,為此,我設(shè)計(jì)了三個(gè)層次的問(wèn)題,以達(dá)到分層教學(xué)目標(biāo):第一層次是讓學(xué)生直接運(yùn)用定理判斷三角形是否是直角三角形,掌握定理基本運(yùn)用;第二層次是強(qiáng)調(diào)已知三角形三邊長(zhǎng)或三邊關(guān)系,就有意識(shí)的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個(gè)層次做好了鋪墊;第三層次是靈活運(yùn)用勾股定理與逆定理解決圖形面積的計(jì)算問(wèn)題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會(huì)分割的思想.設(shè)計(jì)的題型前后呼應(yīng),使知識(shí)有序推進(jìn),有助于學(xué)生的理解和掌握;讓學(xué)生通過(guò)合作、交流、反思、感悟的過(guò)程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂(lè)趣,并從中獲得成功的體驗(yàn).真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。將目標(biāo)分層后,我設(shè)計(jì)的學(xué)案里的題目也是相應(yīng)的進(jìn)行了分層設(shè)計(jì),滿足不同層次的學(xué)生的做題要求,達(dá)到鞏固課堂知識(shí)的目的。最后,布置作業(yè),也是分層布置的,分為三層,對(duì)應(yīng)不同的學(xué)生,讓他們的作業(yè)都在他們的能力范圍。
誠(chéng)然,這節(jié)課也存在許多不足第一、新課導(dǎo)入部分:存在如下值得改進(jìn)的地方:①?gòu)?fù)習(xí)舊知部分,復(fù)習(xí)勾股定理的內(nèi)容應(yīng)用了填空的形式,這個(gè)形式不是最佳的.因?yàn)閷W(xué)生書(shū)寫(xiě)勾股定理耗時(shí),既使書(shū)寫(xiě)出來(lái),復(fù)習(xí)效果也不太好。最佳的應(yīng)該是以簡(jiǎn)單的題目形式來(lái)復(fù)習(xí)勾股定理.這樣快而有效;②如何從復(fù)習(xí)勾股定理中巧妙的切入本課的主題,過(guò)渡語(yǔ)的設(shè)置,應(yīng)該將過(guò)渡語(yǔ)言簡(jiǎn)單明了,可設(shè)計(jì)成:怎么從邊的關(guān)系來(lái)判斷一個(gè)三角形是直角三角形呢?這就是本節(jié)課要學(xué)習(xí)的內(nèi)容.③導(dǎo)入部分的課時(shí)分配估計(jì)不足,顯得冗長(zhǎng),也一定程度上造成后面的教學(xué)時(shí)間緊張。應(yīng)該對(duì)導(dǎo)入部分的時(shí)效再進(jìn)行分析簡(jiǎn)化。
第二存在的問(wèn)題是:
(1)腳手架設(shè)計(jì)的太多,本節(jié)課有一定的腳手架是合適的,太多了,反而不利于學(xué)生自己的書(shū)寫(xiě)規(guī)范性,過(guò)程的掌握等,
(2)練習(xí)題題量過(guò)大,本節(jié)課的練習(xí)題大部分都是重復(fù)一些基本的操作,沒(méi)有必要太多簡(jiǎn)單的題目,可以適當(dāng)去掉.對(duì)于數(shù)字的設(shè)計(jì)可以更加科學(xué)化一點(diǎn),應(yīng)該讓學(xué)生方便運(yùn)算和節(jié)省時(shí)間.此外,對(duì)于層次較要的同學(xué)來(lái)說(shuō),應(yīng)該設(shè)計(jì)更多一點(diǎn)綜合性的題目。適當(dāng)?shù)脑黾右恍┨岣哳},以滿足這一層次的學(xué)生的學(xué)習(xí)練習(xí)要求.
在備每一節(jié)課中,對(duì)于課堂的每一個(gè)細(xì)節(jié),第一刻鐘,第一個(gè)教學(xué)設(shè)計(jì)的思考都無(wú)不直接影響著你的這一節(jié)課,影響著你的課堂效果。靜心思考,反思整個(gè)過(guò)程是一種全新的收獲,也是全新的開(kāi)始,讓自己能夠重新起步,向前。
最新勾股定理的教學(xué)反思 篇12
通過(guò)復(fù)習(xí)讓學(xué)生充分回憶前面學(xué)習(xí)的有關(guān)三角形的內(nèi)容,使學(xué)生加深對(duì)知識(shí)的理解,從而為本節(jié)課的學(xué)習(xí)打下良好的基礎(chǔ)。同時(shí),學(xué)生回憶的過(guò)程也是一個(gè)思考的過(guò)程,特別是面積法來(lái)驗(yàn)證勾股定理,是本章教學(xué)的難點(diǎn),對(duì)此學(xué)生應(yīng)該先形成一個(gè)印象、概念,然后才能學(xué)習(xí)掌握好。
已知直角三角形中的兩條直角邊求斜邊,這是上節(jié)課學(xué)習(xí)的內(nèi)容。在上節(jié)課學(xué)習(xí)過(guò)程中,學(xué)生已經(jīng)練習(xí)過(guò)。但為什么本節(jié)課中仍然有部分學(xué)生出錯(cuò)呢?究其原因,是因?yàn)樯瞎?jié)課學(xué)習(xí)的內(nèi)容太多,方法也較多、較靈活,因而學(xué)生對(duì)每一個(gè)內(nèi)容與方法都仍是一種感性的認(rèn)識(shí),而仍沒(méi)達(dá)到理解掌握的程度。因此,當(dāng)讓學(xué)生自己獨(dú)立完成問(wèn)題時(shí),往往就產(chǎn)生了思維上存在的缺點(diǎn),從而出現(xiàn)各種錯(cuò)誤。另一方面,教學(xué)中我們往往會(huì)采用一種“一問(wèn)齊答”的問(wèn)答形式,這樣會(huì)容易掩蓋學(xué)生的真實(shí)想法。其實(shí),在解答此問(wèn)題時(shí),教師很容易就走進(jìn)了這樣的問(wèn)答方式,原因在于我們認(rèn)為這樣的問(wèn)題太簡(jiǎn)單了,上節(jié)課學(xué)生也似學(xué)會(huì)了,于是便產(chǎn)生了一種忽視的教學(xué)。可現(xiàn)實(shí)卻往往不是這樣的,我們認(rèn)為簡(jiǎn)單的知識(shí)對(duì)于學(xué)生(特別是基礎(chǔ)較弱的學(xué)生)來(lái)說(shuō),往往是不簡(jiǎn)單的。因此,教學(xué)中應(yīng)盡量少用“一問(wèn)齊答”的欺騙教師的問(wèn)答方式,讓學(xué)生充分發(fā)表自己的意見(jiàn),同時(shí)引導(dǎo)學(xué)生分析錯(cuò)誤,養(yǎng)成反思的意識(shí),只有這樣,才能真正使學(xué)生學(xué)有所獲。
同一個(gè)問(wèn)題的不同變式,可以讓學(xué)生自我檢查對(duì)知識(shí)與方法是否能真正達(dá)到理解、掌握與運(yùn)用,從而提高學(xué)生學(xué)習(xí)的自信心。解答這個(gè)問(wèn)題的方法其實(shí)就是驗(yàn)證勾股定理所用到的方法——面積法。在課堂教學(xué)之初始讓學(xué)生回憶上一堂課的方法,有了一個(gè)初步的印象,在這里再提出來(lái)時(shí)學(xué)生就不會(huì)感到突然和陌生,達(dá)到承上啟下的作用。另一方面,教師在講解問(wèn)題的解答時(shí),并不是把問(wèn)題的解答方法與過(guò)程全部一下子出來(lái),而是引導(dǎo)學(xué)生經(jīng)過(guò)一步步的思考,讓學(xué)生自己在思考與感悟中得到問(wèn)題的解答,這樣可以培養(yǎng)學(xué)生思考問(wèn)題的方法,提高學(xué)生的思維能力。如果此時(shí)能對(duì)已經(jīng)解答出來(lái)的同學(xué)大力表?yè)P(yáng),并讓學(xué)生引導(dǎo)學(xué)生來(lái)解答余下的問(wèn)題,那么效果會(huì)更好。
數(shù)學(xué)問(wèn)題生活化,用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問(wèn)題,是課程改革后數(shù)學(xué)課堂教學(xué)必須實(shí)施的內(nèi)容。在解答實(shí)際生活中的問(wèn)題時(shí),關(guān)鍵在于把生活問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,讓生活問(wèn)題數(shù)學(xué)化,然后才能得以解決。在這個(gè)過(guò)程中,很多時(shí)候需要教師幫助學(xué)生去理解、轉(zhuǎn)化,而更多時(shí)候需要的是學(xué)生自己探索、嘗試,并在失敗中尋找成功的途徑。本題教學(xué)中,如果能讓學(xué)生自己反思答案與方法的合理性,那么效果會(huì)更好了。課前預(yù)設(shè)與課堂生成,
這是課程改革以來(lái)出現(xiàn)的最多問(wèn)題之一。課堂教學(xué)任務(wù)要完成,而課堂又要還給學(xué)生,充分發(fā)揮學(xué)生的自主性,那么如何處理好這個(gè)問(wèn)題呢?在本課最后的這個(gè)環(huán)節(jié)里,如果能引導(dǎo)學(xué)生歸納本課學(xué)生的方法,特別是面積法,然后再給一個(gè)簡(jiǎn)單的問(wèn)題來(lái)鞏固,那么效果肯定會(huì)比這樣匆匆結(jié)束課堂要好。但是,這部分知識(shí)內(nèi)容又什么時(shí)候來(lái)解決呢?不解決行不行呢?這是課后困擾我的問(wèn)題?!罢n堂教學(xué)應(yīng)基于自身班級(jí)學(xué)生的具體情況,不論是課前預(yù)設(shè)(備課)還是課堂教學(xué)過(guò)程,都應(yīng)以使絕大部分學(xué)生能真正學(xué)習(xí)掌握好為基礎(chǔ)。”經(jīng)過(guò)本節(jié)課的教學(xué)后,我自己對(duì)有效的課堂產(chǎn)生了一個(gè)這樣的認(rèn)識(shí)。在以“知識(shí)為中心”還是以“學(xué)生學(xué)習(xí)為中心”的這個(gè)問(wèn)題上,我想應(yīng)以學(xué)生為中心,同時(shí)兼顧教學(xué)內(nèi)容的完成,如果發(fā)生矛盾時(shí),那么我想是不是仍應(yīng)以學(xué)生為中心呢?這樣教學(xué)任務(wù)完成不了怎么辦呢?影響教學(xué)進(jìn)度又怎么辦呢?考試又怎么辦呢?……。其實(shí),歸根到底是:考試了怎么辦呢?課程改革已走到了第七個(gè)年頭,考試始終是一根有形無(wú)形的指揮棒在影響著我們每堂課的教學(xué),在影響著我們的教學(xué)觀念與教學(xué)方法,甚至于影響我們的教學(xué)理想。其實(shí)我們都很清楚,這樣匆匆的進(jìn)行課堂教學(xué),雖然表面上看是完成了教學(xué)內(nèi)容,但實(shí)際上學(xué)生并沒(méi)有掌握好,考試時(shí)真的出現(xiàn)時(shí)學(xué)生仍是無(wú)法解答,那么,這樣的教學(xué)豈不是也是無(wú)效的嗎?無(wú)效的教學(xué)是不是在浪費(fèi)學(xué)生的精力與時(shí)間呢?這樣是不是有點(diǎn)自欺欺人了呢?想到這,我越感不安了
因此,如果有機(jī)會(huì)再上這節(jié)課,就算前面能提高一點(diǎn)效率,節(jié)省一點(diǎn)時(shí)間,我也會(huì)省去后面的那部分內(nèi)容,增加一些有趣味的生活問(wèn)題,總結(jié)與反思本課的方法,從而使學(xué)生對(duì)本課學(xué)習(xí)掌握得更好,對(duì)自身的數(shù)學(xué)學(xué)習(xí)更有自信。
勾股定理教學(xué)反思1000字系列
教師是人類(lèi)文化科學(xué)知識(shí)的繼承者和傳播者。教案可以寫(xiě)得簡(jiǎn)略,但一定要抓住重點(diǎn)。隨著教育的規(guī)范化,各大學(xué)校對(duì)于老師的教案有了更嚴(yán)格的要求。怎樣為自己的教案潤(rùn)色呢?為滿足你的需求,88教案網(wǎng)編輯特地編輯了“勾股定理教學(xué)反思”,歡迎大家與身邊的朋友分享吧!
勾股定理教學(xué)反思 篇1
本節(jié)課的數(shù)學(xué)設(shè)計(jì)主要是從面對(duì)全體學(xué)生,針對(duì)學(xué)生知識(shí)水平、生活環(huán)境、思維特點(diǎn)、認(rèn)知風(fēng)格的差異等方面進(jìn)行編寫(xiě)講學(xué)稿的;它的主要目的是讓學(xué)生應(yīng)用所學(xué)的勾定理解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題。由于學(xué)生才剛剛掌握勾股定理,根據(jù)教材,單刀直入,要求學(xué)生運(yùn)用其定理解決生活中的實(shí)際問(wèn)題,對(duì)部分學(xué)生來(lái)說(shuō)還存在著一定的困難。故我們初二級(jí)組全體數(shù)學(xué)老師,對(duì)教材知識(shí)內(nèi)容進(jìn)行了有效的整合,從中提煉教學(xué)資源,把本章的教學(xué)內(nèi)容進(jìn)行了重建組合,使之符合我們的學(xué)生的認(rèn)知特點(diǎn),心理特點(diǎn)級(jí)學(xué)習(xí)特點(diǎn),讓學(xué)生學(xué)起來(lái)輕松,運(yùn)用起來(lái)靈活。本節(jié)課主要是圍繞“設(shè)置問(wèn)題情境――建立教學(xué)模型――解釋――應(yīng)用及拓展”這一主線展開(kāi)教學(xué)工作的。其閃光點(diǎn)主要有:
一、創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生積極思考,激發(fā)其探究欲望。
激發(fā)學(xué)生探究問(wèn)題、解決問(wèn)題,首先要激發(fā)其探究的興趣,欲想要學(xué)生感興趣,首先教師必須先創(chuàng)設(shè)與學(xué)習(xí)內(nèi)容緊密相關(guān)的問(wèn)題情境,能引導(dǎo)學(xué)生進(jìn)行“數(shù)學(xué)思考”。本節(jié)課一開(kāi)始,教師拿來(lái)一塊木板表演從一間小小的門(mén)框穿過(guò),橫著進(jìn)不了,豎著也過(guò)不了,問(wèn)學(xué)生怎么辦?瞬間,木板過(guò)門(mén)框問(wèn)題成了大家討論的焦點(diǎn);同時(shí)引導(dǎo)學(xué)生,建立數(shù)學(xué)模型,突破將形轉(zhuǎn)化為數(shù)這一思想轉(zhuǎn)變難點(diǎn)。
二、能調(diào)動(dòng)全體學(xué)生參與教學(xué)活動(dòng)。
課堂教學(xué)活動(dòng)形式多樣化,有個(gè)人思考,有小組活動(dòng),有全班交流,讓學(xué)生進(jìn)行分析歸納,教師鼓勵(lì)學(xué)生盡量用自己的語(yǔ)言表達(dá)自己的發(fā)現(xiàn)。感悟“圖形”與“數(shù)量”之間的相互關(guān)系,將教學(xué)內(nèi)容生活化,動(dòng)態(tài)化,使學(xué)生更真切地感受到勾股定理的使用性,整節(jié)課師生之間均處與主動(dòng)狀態(tài)。
三、講學(xué)稿的設(shè)計(jì),不拘泥于教材,吃透教材,敢于創(chuàng)新。
講學(xué)稿中所設(shè)計(jì)的例題或習(xí)題,富于生活氣息。例、木板過(guò)門(mén)框、折斷的樹(shù),電視機(jī)的大少等,都與現(xiàn)實(shí)生活有關(guān)。其實(shí)是告訴學(xué)生數(shù)學(xué)是為生活服務(wù)的,同時(shí),數(shù)學(xué)也是來(lái)自于生活。
四、教學(xué)目標(biāo)明確,能突破教學(xué)重點(diǎn)、難點(diǎn),教學(xué)程序有條不紊,思路清晰,或活而不亂。教師具有一定的調(diào)控能力,能輕松駕御課堂,應(yīng)付自如。學(xué)生在課堂內(nèi)能正確完成預(yù)設(shè)的練習(xí)。
五、注重知識(shí)的前后連貫性,練習(xí)具有一定的層次性,使全體學(xué)生學(xué)有所用,課后拓展題,拓寬了學(xué)生的思路,培養(yǎng)了學(xué)生的審題能力,挖掘?qū)W生的潛能。
上完一節(jié)課下來(lái),總感到有點(diǎn)遺憾。不足之處說(shuō)出來(lái)與大家共同探討。例題的解答板書(shū)教師應(yīng)在黑板上一步一步示范,盡量少用多媒體示范,因?yàn)榛脽羝粫?huì)兒就換了,不利于學(xué)困生學(xué)習(xí);講學(xué)稿的編設(shè)內(nèi)容過(guò)于簡(jiǎn)單基礎(chǔ)化,不適合優(yōu)生的培養(yǎng),課堂中集體回答問(wèn)題較多,學(xué)生單獨(dú)思考、答題、獨(dú)立完成作業(yè)的機(jī)會(huì)不多;課后作業(yè)與堂上練習(xí)拓展不夠深,有待改善。但愿我們能互相學(xué)習(xí),取長(zhǎng)補(bǔ)短,共同進(jìn)取。
勾股定理教學(xué)反思 篇2
反思之一:教學(xué)觀念的轉(zhuǎn)變。
“教師教,學(xué)生聽(tīng),教師問(wèn),學(xué)生答,教師出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無(wú)法培養(yǎng)學(xué)生的實(shí)踐能力,而且會(huì)造成機(jī)械的學(xué)習(xí)知識(shí),形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,《新課標(biāo)》要求老師一定要改變角色,變主角為配角,把主動(dòng)權(quán)交給學(xué)生,讓學(xué)生提出問(wèn)題,動(dòng)手操作,小組討論,合作交流,把學(xué)生想到的,想說(shuō)的想法和認(rèn)識(shí)都讓他們盡情地表達(dá),然后教師再進(jìn)行點(diǎn)評(píng)與引導(dǎo),這樣做會(huì)有許多意外的收獲,而且能充分發(fā)揮挖掘每個(gè)學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會(huì)與日劇增。上這節(jié)課前教師可以給學(xué)生布置任務(wù):查閱有關(guān)勾股定理的資料(可上網(wǎng)查,也可查閱報(bào)刊、書(shū)籍),提前兩三天由幾位學(xué)生匯總(教師可適當(dāng)指導(dǎo))。這樣可使學(xué)生在上這節(jié)課前就對(duì)勾股定理歷史背景有全面的理解,從而使學(xué)生認(rèn)識(shí)到勾股定理的重要性,學(xué)習(xí)勾股定理是非常必要的,激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)學(xué)生也是一次愛(ài)國(guó)主義教育,培養(yǎng)民族自豪感,激勵(lì)他們奮發(fā)向上,同時(shí)培養(yǎng)學(xué)生的自學(xué)能及歸類(lèi)總結(jié)能力。
反思之二:教學(xué)方式的轉(zhuǎn)變。
學(xué)生學(xué)會(huì)了數(shù)學(xué)知識(shí),卻不會(huì)解決與之有關(guān)的實(shí)際問(wèn)題,造成了知識(shí)學(xué)習(xí)和知識(shí)應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問(wèn)題,對(duì)于學(xué)生實(shí)踐能力的培養(yǎng)非常不利的?,F(xiàn)在的數(shù)學(xué)教學(xué)到處充斥著過(guò)量的、重復(fù)的題目訓(xùn)練。我認(rèn)為真正的教學(xué)方式的轉(zhuǎn)變要體現(xiàn)在這兩個(gè)方面:一是要關(guān)注學(xué)生學(xué)習(xí)的過(guò)程。首先要關(guān)注學(xué)生是否積極參加探索勾股定理的活動(dòng),關(guān)注學(xué)生能否在活動(dòng)中積思考,能夠探索出解決問(wèn)題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動(dòng)過(guò)程和所獲得的結(jié)論等;同時(shí)要關(guān)注學(xué)生的拼圖過(guò)程,鼓勵(lì)學(xué)生結(jié)合自己所拼得的正方形驗(yàn)證勾股定理。二是要關(guān)注學(xué)生學(xué)習(xí)的知識(shí)性及其實(shí)際應(yīng)用。本節(jié)課的主要目的是掌握勾股定理,體會(huì)數(shù)形結(jié)合的思想?,F(xiàn)在往往是學(xué)生知道了勾股定理而不知道在實(shí)際生活中如何運(yùn)用勾股定理,我們?cè)趯W(xué)生了解勾股定理以后可以出一個(gè)類(lèi)似于《九章算術(shù)》中的應(yīng)用題:在平靜的湖面上,有一棵水草,它高出水面3分米,一陣風(fēng)吹來(lái),水草被吹到一邊,草尖與水面平齊,已知水草移動(dòng)的水平距離為6分米,問(wèn)這里的水深是多少?
教學(xué)方式的轉(zhuǎn)變?cè)陉P(guān)注知識(shí)的形成同時(shí),更加關(guān)注知識(shí)的應(yīng)用,特別是所學(xué)知識(shí)在生活中的應(yīng)用,真正起到學(xué)有所用而不是枯燥的理論知識(shí)。這一點(diǎn)上在新課標(biāo)中體現(xiàn)的尤為明顯。
反思之三:多媒體的重要輔助作用。
課堂教學(xué)中要正確地、充分地引導(dǎo)學(xué)生探究知識(shí)的形成過(guò)程,應(yīng)創(chuàng)造讓學(xué)生主動(dòng)參與學(xué)習(xí)過(guò)程的條件,培養(yǎng)學(xué)生的觀察能力、合作能力、探究能力,從而達(dá)到提高學(xué)生數(shù)學(xué)素質(zhì)的目的。多媒體教學(xué)的優(yōu)化組合,在幫助學(xué)生形成知識(shí)的過(guò)程中扮演著重要的角色。通過(guò)面積計(jì)算來(lái)猜想勾股定理或是通過(guò)面積割補(bǔ)來(lái)驗(yàn)證勾股定理并不是所有的學(xué)生都是很清楚,教者可通過(guò)多媒體來(lái)演示其過(guò)程不僅使知識(shí)的形成更加的直觀化,而且可以提高學(xué)生的學(xué)習(xí)興趣。
反思之四:轉(zhuǎn)變教學(xué)的評(píng)價(jià)方式,提高學(xué)生的自信心。
評(píng)價(jià)對(duì)于學(xué)生來(lái)說(shuō)有兩種評(píng)價(jià)的方式。一種是以他人評(píng)價(jià)為基礎(chǔ)的,另一種是以自我評(píng)價(jià)為基礎(chǔ)的。每個(gè)人素質(zhì)生成都經(jīng)歷著這兩種評(píng)價(jià)方式的發(fā)展過(guò)程,經(jīng)歷著一個(gè)從學(xué)會(huì)評(píng)價(jià)他人到學(xué)會(huì)評(píng)價(jià)自己的發(fā)展過(guò)程。實(shí)施他人評(píng)價(jià),完善素質(zhì)發(fā)展的他人監(jiān)控機(jī)制很有必要。每個(gè)人都要以他人為鏡,從他人這面鏡子中照見(jiàn)自我。但發(fā)展的成熟、素質(zhì)的完善主要建立在自我評(píng)價(jià)的基礎(chǔ)上,是以素質(zhì)的自我評(píng)價(jià)、自我調(diào)節(jié)、自我教育為標(biāo)志的。因此要改變單純由教師評(píng)價(jià)的現(xiàn)狀,提倡評(píng)價(jià)主體的多元化,把教師評(píng)價(jià)、同學(xué)評(píng)價(jià)、家長(zhǎng)評(píng)價(jià)及學(xué)生的自評(píng)相結(jié)合。
在本節(jié)課的教學(xué)中,老師可以從多方面對(duì)學(xué)生進(jìn)行合適的評(píng)價(jià)。如以學(xué)生的課前知識(shí)準(zhǔn)備是一種態(tài)度的評(píng)價(jià),上課的拼圖能力是一種動(dòng)手能力的評(píng)價(jià),對(duì)所結(jié)論的分析是對(duì)猜想能力的一種評(píng)價(jià),對(duì)實(shí)際問(wèn)題的分析是轉(zhuǎn)化能力的一種評(píng)價(jià)等等。
勾股定理教學(xué)反思 篇3
勾股定理的探索和證明蘊(yùn)含著豐富的數(shù)學(xué)思想和數(shù)學(xué)方法,是培養(yǎng)學(xué)生良好思維品質(zhì)的最佳載體。它以簡(jiǎn)潔優(yōu)美的圖形結(jié)構(gòu),豐富深刻的內(nèi)涵刻畫(huà)了自然界的和諧統(tǒng)一的關(guān)系,是數(shù)形結(jié)合的完美典范。著名數(shù)學(xué)家華羅庚就曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次“談話”的語(yǔ)言。為讓學(xué)生通過(guò)對(duì)這節(jié)課的學(xué)習(xí)得到更好的歷練,在教學(xué)時(shí),特別注重從以下幾個(gè)方面入手:
一、注重知識(shí)的自然生發(fā)。
傳統(tǒng)的教學(xué)中,教師往往喜歡壓縮理論傳授過(guò)程,用充足的時(shí)間做練習(xí),以題代講,搞題海戰(zhàn)術(shù)。但從學(xué)生的發(fā)展來(lái)著,如果壓縮數(shù)學(xué)知識(shí)的形成過(guò)程,不講究知識(shí)的自然生發(fā),學(xué)生獲取知識(shí)的過(guò)程是被動(dòng)的,形成的體系也是孤立的,長(zhǎng)此以往,學(xué)生必將錯(cuò)過(guò)或失去思維發(fā)展和能力提高的機(jī)遇。在這節(jié)課上,不刻意追求所謂的進(jìn)度,更沒(méi)有直接給出勾股定理,而是組織學(xué)生開(kāi)展畫(huà)一畫(huà)、看一看、想一想、猜一猜、拼一拼的活動(dòng),學(xué)生在活動(dòng)思考、交流、展示中,逐漸的形成了對(duì)知識(shí)的自我認(rèn)識(shí)和自我感悟。這樣做不僅能幫助學(xué)生牢固掌握勾股定理,更重要的是使學(xué)生體會(huì)用自己所學(xué)的舊知識(shí)而獲取新知識(shí)過(guò)程,使他們獲得成功的喜悅,增強(qiáng)了學(xué)生主動(dòng)性,同時(shí)他們的思維能力在知識(shí)自然形成的過(guò)程中不斷發(fā)展。
二、注重?cái)?shù)學(xué)課上的操作性學(xué)習(xí)
操作性學(xué)習(xí)是自主探究性學(xué)習(xí)有效途徑之一,學(xué)生通過(guò)在實(shí)踐活動(dòng)中的感受和體驗(yàn),有利于幫助學(xué)生理解和掌握抽象的數(shù)學(xué)知識(shí)。在這節(jié)課上,首先讓學(xué)生動(dòng)手畫(huà)直角三角形,得出研究題材,然后又讓學(xué)生利用四個(gè)直角三角形拼一拼,驗(yàn)證猜想。這樣充分的調(diào)動(dòng)了學(xué)生的手、口、腦等多種感官參與數(shù)學(xué)學(xué)習(xí)活動(dòng),既享受了操作的樂(lè)趣,又培養(yǎng)了學(xué)生的動(dòng)手能力,加深了對(duì)知識(shí)的理解。
三、注重問(wèn)題設(shè)計(jì)的開(kāi)放性
課堂教學(xué)是教師組織、引導(dǎo)、參與和學(xué)生自主、合作、探究學(xué)習(xí)的雙邊活動(dòng)。這其中教師的“引導(dǎo)”起著關(guān)鍵作用。這里的“引導(dǎo)”,很大程度上靠設(shè)疑提問(wèn)來(lái)實(shí)現(xiàn)。在教學(xué)實(shí)踐中,問(wèn)題設(shè)計(jì)要具有開(kāi)放性。因?yàn)殚_(kāi)放性問(wèn)題更有利于培養(yǎng)學(xué)生的創(chuàng)造性思維、體現(xiàn)學(xué)生的主體意識(shí)和個(gè)性差異。本節(jié)課在設(shè)計(jì)涂鴉直角三角形時(shí),安排學(xué)生在方格紙上任意涂鴉一個(gè)直角三角形;在設(shè)計(jì)拼圖驗(yàn)證環(huán)節(jié)時(shí),安排學(xué)生任意拼出一個(gè)正方形或直角梯形,有意沒(méi)指定畫(huà)一個(gè)具體邊長(zhǎng)的直角三角形和正方形,就是不想對(duì)學(xué)生的思維給出太多的限制條件,給出更多的想象和創(chuàng)造空間。雖然探究的時(shí)間會(huì)更長(zhǎng),但這更符合實(shí)際知識(shí)的產(chǎn)生環(huán)境,學(xué)生只有在這樣的環(huán)境下進(jìn)行創(chuàng)造、發(fā)現(xiàn)和磨練,能力素養(yǎng)才會(huì)得到更有效的歷練。
四、注重讓學(xué)生經(jīng)歷完整的數(shù)學(xué)知識(shí)的發(fā)現(xiàn)過(guò)程。
新《數(shù)學(xué)課程標(biāo)準(zhǔn)》在關(guān)于課程目標(biāo)的闡述中,首次大量使用了"經(jīng)歷(感受)、體驗(yàn)(體會(huì))、探索"等刻畫(huà)數(shù)學(xué)活動(dòng)水平的過(guò)程性目標(biāo)動(dòng)詞,就是要求在數(shù)學(xué)學(xué)習(xí)的過(guò)程中,讓學(xué)生經(jīng)歷知識(shí)與技能形成與鞏固過(guò)程,經(jīng)歷數(shù)學(xué)思維的發(fā)展過(guò)程,經(jīng)歷應(yīng)用數(shù)學(xué)能力解決問(wèn)題的過(guò)程,從而形成積極的數(shù)學(xué)情感與態(tài)度。教學(xué)從學(xué)生感興趣的涂鴉開(kāi)始,再經(jīng)歷觀察、分析、猜想、驗(yàn)證的全過(guò)程,讓學(xué)生充分的經(jīng)歷了完整的數(shù)學(xué)知識(shí)的發(fā)現(xiàn)過(guò)程,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在知識(shí)技能、思維能力以及情感態(tài)度等多方面都得到了進(jìn)步和發(fā)展。
如果有機(jī)會(huì)再上這節(jié)課,我想我會(huì)投入更多的精力對(duì)學(xué)生可能會(huì)給出的答案進(jìn)行預(yù)想,以便在課堂上給予學(xué)生更多的啟迪,讓他們走的更遠(yuǎn)。一堂課,雖已結(jié)束,但對(duì)于生命課堂的領(lǐng)悟這條路,還有很長(zhǎng)的路要走,我將繼續(xù)上下求索,做學(xué)生更好的支點(diǎn)。
勾股定理教學(xué)反思 篇4
我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾(短直角邊)等于三,股(長(zhǎng)直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國(guó)古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中,在這本書(shū)的另一處,還記載了勾股定理的一般形式。中國(guó)古代的幾何學(xué)家研究幾何是為了實(shí)用,是唯用是尚的。在講完《勾股定理逆定理》這節(jié)課后,我的反思如下:
本節(jié)課的教學(xué)目標(biāo)是:在掌握了勾股定理的基礎(chǔ)上,讓學(xué)生如何從三邊的關(guān)系來(lái)判定一個(gè)三角形是否為直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教學(xué)設(shè)計(jì)說(shuō)明:本教教學(xué)設(shè)計(jì)是圍繞勾股定理的逆定理的證明與應(yīng)用來(lái)展開(kāi),結(jié)合新課標(biāo)的要求,根據(jù)我班學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我做了以下設(shè)計(jì)(也是成功之處):
一、創(chuàng)設(shè)情境,提出猜想達(dá)到直觀性的教學(xué)要求。讓幾個(gè)學(xué)生要全班同學(xué)前面做一個(gè)“數(shù)學(xué)實(shí)驗(yàn)”,三條分別為:3,4,5的三角形是一個(gè)直角三角形。第二步驟是讓學(xué)生畫(huà)已知三邊的一定長(zhǎng)度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關(guān)系條件,同時(shí),引導(dǎo)學(xué)生從特殊到一般提出猜想。
二、將教學(xué)內(nèi)容精簡(jiǎn)化.考慮到我所教班級(jí)的學(xué)生認(rèn)識(shí)水平,做了如下教學(xué)設(shè)計(jì):⑴將教學(xué)目標(biāo)定為讓學(xué)生掌握勾股定理的逆定理.以及逆定理的應(yīng)用,而對(duì)于本課中逆定理的證明.以及其探究都放在一下節(jié)課再進(jìn)行講解.⑵對(duì)于本課中所出現(xiàn)了的逆定理的定義,及其真假性的判斷也簡(jiǎn)單化.本節(jié)課也不詳細(xì)講.本節(jié)課的的重點(diǎn)放在掌握勾股定理的逆定理,及其應(yīng)用.從課堂效果來(lái)看,這樣的教學(xué)設(shè)計(jì)是合理的,學(xué)生較好的掌握了勾股定理的逆定理,所以取得了良好的課堂效果。
三、應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運(yùn)用所學(xué)知識(shí)解決相應(yīng)問(wèn)題,提高學(xué)生的分析解題能力,基于對(duì)我班的學(xué)情分析,為了讓學(xué)生都能動(dòng)起手做,學(xué)案的設(shè)計(jì)上做了很多腳手架,目的就是讓學(xué)生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設(shè)置對(duì)我們的中下水平的學(xué)生是很多幫助的.從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒(méi)有的話,這部分學(xué)生對(duì)一些基本的題都會(huì)束手無(wú)策.
四、實(shí)行分層教學(xué),讓不同水平的學(xué)生在同一課堂都能學(xué)好,為此,我設(shè)計(jì)了三個(gè)層次的問(wèn)題,以達(dá)到分層教學(xué)目標(biāo):第一層次是讓學(xué)生直接運(yùn)用定理判斷三角形是否是直角三角形,掌握定理基本運(yùn)用;第二層次是強(qiáng)調(diào)已知三角形三邊長(zhǎng)或三邊關(guān)系,就有意識(shí)的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個(gè)層次做好了鋪墊;第三層次是靈活運(yùn)用勾股定理與逆定理解決圖形面積的計(jì)算問(wèn)題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會(huì)分割的思想.設(shè)計(jì)的題型前后呼應(yīng),使知識(shí)有序推進(jìn),有助于學(xué)生的理解和掌握;讓學(xué)生通過(guò)合作、交流、反思、感悟的過(guò)程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂(lè)趣,并從中獲得成功的體驗(yàn).真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。將目標(biāo)分層后,我設(shè)計(jì)的學(xué)案里的題目也是相應(yīng)的進(jìn)行了分層設(shè)計(jì),滿足不同層次的學(xué)生的做題要求,達(dá)到鞏固課堂知識(shí)的目的。最后,布置作業(yè),也是分層布置的,分為三層,對(duì)應(yīng)不同的學(xué)生,讓他們的作業(yè)都在他們的能力范圍。
誠(chéng)然,這節(jié)課也存在許多不足第一、新課導(dǎo)入部分:存在如下值得改進(jìn)的地方:①?gòu)?fù)習(xí)舊知部分,復(fù)習(xí)勾股定理的內(nèi)容應(yīng)用了填空的形式,這個(gè)形式不是最佳的.因?yàn)閷W(xué)生書(shū)寫(xiě)勾股定理耗時(shí),既使書(shū)寫(xiě)出來(lái),復(fù)習(xí)效果也不太好。最佳的應(yīng)該是以簡(jiǎn)單的題目形式來(lái)復(fù)習(xí)勾股定理.這樣快而有效;②如何從復(fù)習(xí)勾股定理中巧妙的切入本課的主題,過(guò)渡語(yǔ)的設(shè)置,應(yīng)該將過(guò)渡語(yǔ)言簡(jiǎn)單明了,可設(shè)計(jì)成:怎么從邊的關(guān)系來(lái)判斷一個(gè)三角形是直角三角形呢?這就是本節(jié)課要學(xué)習(xí)的內(nèi)容.③導(dǎo)入部分的課時(shí)分配估計(jì)不足,顯得冗長(zhǎng),也一定程度上造成后面的教學(xué)時(shí)間緊張。應(yīng)該對(duì)導(dǎo)入部分的時(shí)效再進(jìn)行分析簡(jiǎn)化。
第二存在的問(wèn)題是:
(1)腳手架設(shè)計(jì)的太多,本節(jié)課有一定的腳手架是合適的,太多了,反而不利于學(xué)生自己的書(shū)寫(xiě)規(guī)范性,過(guò)程的掌握等,
(2)練習(xí)題題量過(guò)大,本節(jié)課的練習(xí)題大部分都是重復(fù)一些基本的操作,沒(méi)有必要太多簡(jiǎn)單的題目,可以適當(dāng)去掉.對(duì)于數(shù)字的設(shè)計(jì)可以更加科學(xué)化一點(diǎn),應(yīng)該讓學(xué)生方便運(yùn)算和節(jié)省時(shí)間.此外,對(duì)于層次較要的同學(xué)來(lái)說(shuō),應(yīng)該設(shè)計(jì)更多一點(diǎn)綜合性的題目。適當(dāng)?shù)脑黾右恍┨岣哳},以滿足這一層次的學(xué)生的學(xué)習(xí)練習(xí)要求.
在備每一節(jié)課中,對(duì)于課堂的每一個(gè)細(xì)節(jié),第一刻鐘,第一個(gè)教學(xué)設(shè)計(jì)的思考都無(wú)不直接影響著你的這一節(jié)課,影響著你的課堂效果。靜心思考,反思整個(gè)過(guò)程是一種全新的收獲,也是全新的開(kāi)始,讓自己能夠重新起步,向前。
勾股定理教學(xué)反思 篇5
通過(guò)本節(jié)課的教學(xué),我采用了合作探究、操作體驗(yàn)的教學(xué)方式。在課堂教學(xué)中,首先創(chuàng)設(shè)情境,提出問(wèn)題;再讓學(xué)生通過(guò)做一做、測(cè)量、判斷、找規(guī)律,猜想出一般性的結(jié)論;然后由學(xué)生想、做、量一量、猜一猜、去驗(yàn)證結(jié)論……使學(xué)生自始至終感悟、體驗(yàn)、嘗試到了知識(shí)的生成過(guò)程,品嘗著成功后帶來(lái)的樂(lè)趣。這不僅使學(xué)生學(xué)到獲取知識(shí)的思想和方法,同時(shí)也體會(huì)到在解決問(wèn)題的過(guò)程中與他人合作的重要性,而且為學(xué)生今后獲取知識(shí)以及探索、發(fā)現(xiàn)和創(chuàng)造打下了良好的基礎(chǔ),更增強(qiáng)了學(xué)生敢于實(shí)踐、勇于探索、不斷創(chuàng)新和努力學(xué)習(xí)數(shù)學(xué)知識(shí)的信心和勇氣。
要想真正搞好以探究活動(dòng),小組合作為主的課堂教學(xué),必須不斷更新教學(xué)觀念,使課堂真正成為學(xué)生既能自主探究,師生又能合作互動(dòng)的場(chǎng)所,培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能夠適應(yīng)現(xiàn)代社會(huì)發(fā)展的公民
作為教師,在課堂教學(xué)中要始終牢記:學(xué)生才是學(xué)習(xí)的主體,學(xué)生才是課堂的主體;教師只是課堂教學(xué)活動(dòng)的組織者、引導(dǎo)者與合作者。因此,課堂教學(xué)過(guò)程的設(shè)計(jì),也必須體現(xiàn)出學(xué)生的主體性。
勾股定理教學(xué)反思 篇6
本節(jié)課主要通過(guò)勾股定理的證明探索,使學(xué)生進(jìn)一步理解和掌握勾股定理。通過(guò)利用質(zhì)疑、拼圖觀察、思考、猜想、推理論證這一過(guò)程,培養(yǎng)學(xué)生探求未知數(shù)學(xué)知識(shí)的能力和方法,培養(yǎng)學(xué)生求異思維能力、認(rèn)知能力、觀察能力和獨(dú)立實(shí)踐能力。學(xué)生獨(dú)立或分組進(jìn)行拼圖實(shí)驗(yàn),教師組織學(xué)生在實(shí)驗(yàn)過(guò)程中發(fā)現(xiàn)的有價(jià)值的實(shí)驗(yàn)結(jié)果進(jìn)行交流和展示。本節(jié)課的過(guò)程由激趣、質(zhì)疑、實(shí)驗(yàn)、求異、探索、交流、延伸組成。
本節(jié)課的成功之處:
1、創(chuàng)設(shè)情景,實(shí)例導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情。
2、由于實(shí)現(xiàn)了教師角色的轉(zhuǎn)變,教法的創(chuàng)新,師生的平等,氣氛的活躍,學(xué)生積極參加。
3、面向全體學(xué)生,以人為本的教育理念落實(shí)到位。整節(jié)課都是學(xué)生自主實(shí)驗(yàn)、自主探索,自主完成由形到數(shù)的轉(zhuǎn)化。學(xué)生勇于上講臺(tái)展示研究成果,教師只是起到組織、引導(dǎo)作用。
4、通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),上臺(tái)發(fā)言,展示成果,體驗(yàn)了成功的喜悅。學(xué)生的自信心得到培養(yǎng),個(gè)性得到張揚(yáng)。通過(guò)當(dāng)場(chǎng)展示,讓學(xué)生體會(huì)到動(dòng)手實(shí)踐在解決數(shù)學(xué)問(wèn)題中的重要性,同時(shí)也讓學(xué)生體會(huì)到用面積來(lái)驗(yàn)證公式的直觀性、普遍性。
5、學(xué)生的研究成果極大地豐富了學(xué)生對(duì)勾股定理的證明的認(rèn)識(shí),學(xué)生從中獲得利用已知的知識(shí)探求數(shù)學(xué)知識(shí)的能力和方法。這對(duì)學(xué)生今后的學(xué)習(xí)和將來(lái)的發(fā)展是大有裨益的。同時(shí)驗(yàn)證勾股定理的證明的探究,使學(xué)生形成一種等積代換的思想,為今后的學(xué)習(xí)奠定基礎(chǔ)。
本節(jié)課的不足之處及改進(jìn)思路:
1、小部分能力基礎(chǔ)和能力都比較差的學(xué)生在探索過(guò)程中無(wú)所事事,因此教師應(yīng)該在課前對(duì)不同層次的學(xué)生提出不同的要求,讓每個(gè)學(xué)生多清楚地知道這節(jié)課自己的任務(wù)是什么。
2、本節(jié)課拼圖驗(yàn)證的方法是以前學(xué)生很少接觸的,所以在探索過(guò)程中很多學(xué)生都顯得有些吃力。所以教師在講方法一時(shí),應(yīng)該先介紹這種證明方法以及思路,讓學(xué)生模仿第一種方法的基礎(chǔ)上,能輕松地總結(jié)出第二種方法,從而產(chǎn)生去探索更多方法的興趣和動(dòng)力,有利于學(xué)生的數(shù)學(xué)思維的提升。
3、對(duì)學(xué)生的人文教育和愛(ài)國(guó)教育不夠。很多學(xué)生在探索過(guò)程中遇到困難時(shí),選擇放棄或等別人的答案。教師此時(shí)應(yīng)該注意引導(dǎo)學(xué)生要勇于克服困難,主動(dòng)進(jìn)行探索,提高了自身的推理能力和創(chuàng)新精神。同時(shí)教師也要不斷滲透愛(ài)國(guó)教育,培養(yǎng)學(xué)生的民族自豪感和愛(ài)國(guó)熱情。
在我們的數(shù)學(xué)教學(xué)中,活動(dòng)課是不可忽視的內(nèi)容。在這個(gè)探索的過(guò)程中,學(xué)生絕大多數(shù)是不會(huì)創(chuàng)造或發(fā)明什么的,這是一個(gè)素質(zhì)的表現(xiàn)和培養(yǎng)過(guò)程。學(xué)生得到什么結(jié)果是次要的,重要的是使學(xué)生的素質(zhì)和能力得到培養(yǎng)。這是中學(xué)數(shù)學(xué)活動(dòng)課的價(jià)值取向。
勾股定理教學(xué)反思 篇7
一、教師我的體會(huì):
①、我根據(jù)學(xué)生實(shí)際情況認(rèn)真?zhèn)湔n這節(jié)課,書(shū)本總共兩個(gè)例題,且兩個(gè)例題都很難,如果一節(jié)課就講這兩題難題,那一方面學(xué)生的學(xué)習(xí)效率會(huì)比較低,另一方面會(huì)使學(xué)生畏難情緒增加。所以,我簡(jiǎn)化教材,使教材易于操作,讓學(xué)生易于學(xué)習(xí),有利于學(xué)生學(xué)習(xí)新知識(shí)、接受新知識(shí),降低學(xué)習(xí)難度。
把教材讀薄,
②、除了備教材外,還備學(xué)生。從教案及授課過(guò)程也可以看出,充分考慮到了學(xué)生的年齡特點(diǎn):對(duì)新事物有好奇心,但對(duì)新知識(shí)的鉆研熱情又不夠高,這樣,造成教學(xué)難度較大,為了改變這一狀況,在處理教材時(shí),把某些數(shù)學(xué)語(yǔ)言轉(zhuǎn)換成通俗文字來(lái)表達(dá),把難度大的運(yùn)用能力降低為難度稍細(xì)的理解能力,讓學(xué)生樂(lè)于面對(duì)奧妙而又有一定深度的數(shù)學(xué),樂(lè)于學(xué)習(xí)數(shù)學(xué)。
③、新課選用的例子、練習(xí),都是經(jīng)過(guò)精心挑選的,運(yùn)用性強(qiáng),貼近生活,與生活實(shí)際緊密聯(lián)系,既達(dá)到學(xué)習(xí)、鞏固新知識(shí)的目的,同時(shí),又充分展現(xiàn)出數(shù)學(xué)教學(xué)的重大特征:數(shù)學(xué)源于生活實(shí)際,又服務(wù)于生活實(shí)際。勾股定理源于生活,但同時(shí)它又能極大的為生活服務(wù)。
④、使用多媒體進(jìn)行教學(xué),使知識(shí)顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。
二、學(xué)生體會(huì):
課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應(yīng)用,通過(guò)這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來(lái)源于生活,我們的幾何圖形和幾何計(jì)算對(duì)于勾股定理來(lái)說(shuō)非常廣泛,而且以后更要用好它。對(duì)于勾股定理都應(yīng)用時(shí),我覺(jué)得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機(jī)智地進(jìn)行計(jì)算和一些推理。另外與同學(xué)間在數(shù)學(xué)課上有自主學(xué)習(xí)的機(jī)會(huì),有相互之間的討論、爭(zhēng)辯等協(xié)作的機(jī)會(huì),在合作學(xué)習(xí)的過(guò)程中共同提高我覺(jué)得都是難得的機(jī)會(huì)。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺(jué)得圖形很美,古代的數(shù)學(xué)家已經(jīng)有了很好的研究并作出了很大的貢獻(xiàn),現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時(shí)在課堂中漸漸地培養(yǎng)了我們的數(shù)學(xué)興趣和一定的思維能力。
不過(guò)課堂上老師在最后一題的畫(huà)圖中能放一放,讓我們有時(shí)間去思考怎么畫(huà),那會(huì)更好些,自然思維也得到了發(fā)展。課上老師鼓勵(lì)我們嘗試不完善的甚至錯(cuò)誤的意見(jiàn),大膽發(fā)表自己的見(jiàn)解,體現(xiàn)了我們是學(xué)習(xí)的主人。數(shù)學(xué)課堂里充滿了智慧。
勾股定理教學(xué)反思 篇8
星期三上午第一節(jié)講了《勾股定理逆定理》第一課時(shí),課后效果和我預(yù)想的一樣,由于探究?jī)?nèi)容偏多,課堂容量大,后半部分感覺(jué)倉(cāng)促,留給學(xué)生的思考時(shí)間顯得不足。
回頭反思,這節(jié)課的設(shè)計(jì)思路比較合理:定理來(lái)源于生活,服務(wù)于生活。我由勾股定理引出一道生活實(shí)際問(wèn)題,引起學(xué)生的求知欲,然后和學(xué)生分三種方法探究,得出“勾股定理逆定理”,經(jīng)過(guò)課堂練習(xí)夯實(shí)基礎(chǔ),最后利用新知解決開(kāi)課時(shí)提出的生活實(shí)際問(wèn)題,首尾呼應(yīng),學(xué)以致用。
對(duì)互逆命題,原命題,逆命題,互逆定理,逆定理等概念的講解可隨題點(diǎn)化,而詳細(xì)講解、隨堂練習(xí)可做為第二課時(shí)的重點(diǎn),讓出更多時(shí)間來(lái)做勾股定理逆定理的相應(yīng)練習(xí),特別是應(yīng)加大有靈活度和難度生活習(xí)題的練習(xí),拓寬學(xué)生知識(shí)面,提高學(xué)生的發(fā)散思維能力。
總之,課堂設(shè)計(jì)要做到一個(gè)“狠”字,該刪除的就刪,教學(xué)目標(biāo)不可貪多。我們圍繞授課重點(diǎn)做相應(yīng)探究,練習(xí),次重點(diǎn)可放在下個(gè)課時(shí)重點(diǎn)講解,探究時(shí)間要預(yù)留充足,相應(yīng)練習(xí)寧精勿多,注重雙基才是根本。
勾股定理教學(xué)反思 篇9
通過(guò)復(fù)習(xí)讓學(xué)生充分回憶前面學(xué)習(xí)的有關(guān)三角形的內(nèi)容,使學(xué)生加深對(duì)知識(shí)的理解,從而為本節(jié)課的學(xué)習(xí)打下良好的基礎(chǔ)。同時(shí),學(xué)生回憶的過(guò)程也是一個(gè)思考的過(guò)程,特別是面積法來(lái)驗(yàn)證勾股定理,是本章教學(xué)的難點(diǎn),對(duì)此學(xué)生應(yīng)該先形成一個(gè)印象、概念,然后才能學(xué)習(xí)掌握好。
已知直角三角形中的兩條直角邊求斜邊,這是上節(jié)課學(xué)習(xí)的內(nèi)容。在上節(jié)課學(xué)習(xí)過(guò)程中,學(xué)生已經(jīng)練習(xí)過(guò)。但為什么本節(jié)課中仍然有部分學(xué)生出錯(cuò)呢?究其原因,是因?yàn)樯瞎?jié)課學(xué)習(xí)的內(nèi)容太多,方法也較多、較靈活,因而學(xué)生對(duì)每一個(gè)內(nèi)容與方法都仍是一種感性的認(rèn)識(shí),而仍沒(méi)達(dá)到理解掌握的程度。因此,當(dāng)讓學(xué)生自己獨(dú)立完成問(wèn)題時(shí),往往就產(chǎn)生了思維上存在的缺點(diǎn),從而出現(xiàn)各種錯(cuò)誤。另一方面,教學(xué)中我們往往會(huì)采用一種“一問(wèn)齊答”的問(wèn)答形式,這樣會(huì)容易掩蓋學(xué)生的真實(shí)想法。其實(shí),在解答此問(wèn)題時(shí),教師很容易就走進(jìn)了這樣的問(wèn)答方式,原因在于我們認(rèn)為這樣的問(wèn)題太簡(jiǎn)單了,上節(jié)課學(xué)生也似學(xué)會(huì)了,于是便產(chǎn)生了一種忽視的教學(xué)??涩F(xiàn)實(shí)卻往往不是這樣的,我們認(rèn)為簡(jiǎn)單的知識(shí)對(duì)于學(xué)生(特別是基礎(chǔ)較弱的學(xué)生)來(lái)說(shuō),往往是不簡(jiǎn)單的。因此,教學(xué)中應(yīng)盡量少用“一問(wèn)齊答”的欺騙教師的問(wèn)答方式,讓學(xué)生充分發(fā)表自己的意見(jiàn),同時(shí)引導(dǎo)學(xué)生分析錯(cuò)誤,養(yǎng)成反思的意識(shí),只有這樣,才能真正使學(xué)生學(xué)有所獲。
同一個(gè)問(wèn)題的不同變式,可以讓學(xué)生自我檢查對(duì)知識(shí)與方法是否能真正達(dá)到理解、掌握與運(yùn)用,從而提高學(xué)生學(xué)習(xí)的自信心。解答這個(gè)問(wèn)題的方法其實(shí)就是驗(yàn)證勾股定理所用到的方法——面積法。在課堂教學(xué)之初始讓學(xué)生回憶上一堂課的方法,有了一個(gè)初步的印象,在這里再提出來(lái)時(shí)學(xué)生就不會(huì)感到突然和陌生,達(dá)到承上啟下的作用。另一方面,教師在講解問(wèn)題的解答時(shí),并不是把問(wèn)題的解答方法與過(guò)程全部一下子出來(lái),而是引導(dǎo)學(xué)生經(jīng)過(guò)一步步的思考,讓學(xué)生自己在思考與感悟中得到問(wèn)題的解答,這樣可以培養(yǎng)學(xué)生思考問(wèn)題的方法,提高學(xué)生的思維能力。如果此時(shí)能對(duì)已經(jīng)解答出來(lái)的同學(xué)大力表?yè)P(yáng),并讓學(xué)生引導(dǎo)學(xué)生來(lái)解答余下的問(wèn)題,那么效果會(huì)更好。
數(shù)學(xué)問(wèn)題生活化,用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問(wèn)題,是課程改革后數(shù)學(xué)課堂教學(xué)必須實(shí)施的內(nèi)容。在解答實(shí)際生活中的問(wèn)題時(shí),關(guān)鍵在于把生活問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,讓生活問(wèn)題數(shù)學(xué)化,然后才能得以解決。在這個(gè)過(guò)程中,很多時(shí)候需要教師幫助學(xué)生去理解、轉(zhuǎn)化,而更多時(shí)候需要的是學(xué)生自己探索、嘗試,并在失敗中尋找成功的途徑。本題教學(xué)中,如果能讓學(xué)生自己反思答案與方法的合理性,那么效果會(huì)更好了。課前預(yù)設(shè)與課堂生成,
這是課程改革以來(lái)出現(xiàn)的最多問(wèn)題之一。課堂教學(xué)任務(wù)要完成,而課堂又要還給學(xué)生,充分發(fā)揮學(xué)生的自主性,那么如何處理好這個(gè)問(wèn)題呢?在本課最后的這個(gè)環(huán)節(jié)里,如果能引導(dǎo)學(xué)生歸納本課學(xué)生的方法,特別是面積法,然后再給一個(gè)簡(jiǎn)單的問(wèn)題來(lái)鞏固,那么效果肯定會(huì)比這樣匆匆結(jié)束課堂要好。但是,這部分知識(shí)內(nèi)容又什么時(shí)候來(lái)解決呢?不解決行不行呢?這是課后困擾我的問(wèn)題?!罢n堂教學(xué)應(yīng)基于自身班級(jí)學(xué)生的具體情況,不論是課前預(yù)設(shè)(備課)還是課堂教學(xué)過(guò)程,都應(yīng)以使絕大部分學(xué)生能真正學(xué)習(xí)掌握好為基礎(chǔ)?!苯?jīng)過(guò)本節(jié)課的教學(xué)后,我自己對(duì)有效的課堂產(chǎn)生了一個(gè)這樣的認(rèn)識(shí)。在以“知識(shí)為中心”還是以“學(xué)生學(xué)習(xí)為中心”的這個(gè)問(wèn)題上,我想應(yīng)以學(xué)生為中心,同時(shí)兼顧教學(xué)內(nèi)容的完成,如果發(fā)生矛盾時(shí),那么我想是不是仍應(yīng)以學(xué)生為中心呢?這樣教學(xué)任務(wù)完成不了怎么辦呢?影響教學(xué)進(jìn)度又怎么辦呢?考試又怎么辦呢?……。其實(shí),歸根到底是:考試了怎么辦呢?課程改革已走到了第七個(gè)年頭,考試始終是一根有形無(wú)形的指揮棒在影響著我們每堂課的教學(xué),在影響著我們的教學(xué)觀念與教學(xué)方法,甚至于影響我們的教學(xué)理想。其實(shí)我們都很清楚,這樣匆匆的進(jìn)行課堂教學(xué),雖然表面上看是完成了教學(xué)內(nèi)容,但實(shí)際上學(xué)生并沒(méi)有掌握好,考試時(shí)真的出現(xiàn)時(shí)學(xué)生仍是無(wú)法解答,那么,這樣的教學(xué)豈不是也是無(wú)效的嗎?無(wú)效的教學(xué)是不是在浪費(fèi)學(xué)生的精力與時(shí)間呢?這樣是不是有點(diǎn)自欺欺人了呢?想到這,我越感不安了
因此,如果有機(jī)會(huì)再上這節(jié)課,就算前面能提高一點(diǎn)效率,節(jié)省一點(diǎn)時(shí)間,我也會(huì)省去后面的那部分內(nèi)容,增加一些有趣味的生活問(wèn)題,總結(jié)與反思本課的方法,從而使學(xué)生對(duì)本課學(xué)習(xí)掌握得更好,對(duì)自身的數(shù)學(xué)學(xué)習(xí)更有自信。
勾股定理逆定理教案1000字精選
88教案網(wǎng)相關(guān)欄目推薦:“勾股定理逆定理教案”。
師以質(zhì)疑,友以折疑,師友者,學(xué)問(wèn)之資也,教案是教師的教學(xué)設(shè)計(jì)和設(shè)想。教案有助于教研活動(dòng)的開(kāi)展。如何完成一份完美的教案?下面,小編為大家整理的“勾股定理逆定理教案”,僅供參考,歡迎閱讀。
勾股定理逆定理教案(篇1)
一、教材分析:
(一)、本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、教學(xué)目標(biāo):
根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。
知識(shí)技能:
1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形
過(guò)程與方法:
1、通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成的過(guò)程
2、通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用
3、通過(guò)勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題。
情感態(tài)度:
1、通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系
2、在探究勾股定理的逆定理的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神
(三)、學(xué)情分析:
盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):勾股定理逆定理的應(yīng)用
難點(diǎn):勾股定理逆定理的證明
關(guān)鍵:輔助線的添法探索
二、教學(xué)過(guò)程:
本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。
(一)、復(fù)習(xí)回顧:復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。
(二)、創(chuàng)設(shè)問(wèn)題情境
一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問(wèn)題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?……。這個(gè)問(wèn)題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái),創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問(wèn)題,總結(jié)規(guī)律(包括難點(diǎn)突破)
因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。
在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書(shū)的作用,養(yǎng)成學(xué)生看書(shū)的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(四)、組織變式訓(xùn)練
本著由淺入深的原則,安排了三個(gè)題目。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說(shuō)、練結(jié)合的方法,教師通過(guò)觀察、提問(wèn)、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過(guò)程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。
(五)、歸納小結(jié),納入知識(shí)體系
本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過(guò)自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問(wèn)題的方法是培養(yǎng)我們發(fā)現(xiàn)問(wèn)題認(rèn)識(shí)問(wèn)題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。
(六)、作業(yè)布置
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。B組題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。
三、說(shuō)教法、學(xué)法與教學(xué)手段
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。
總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過(guò)程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過(guò)程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過(guò)程中得到能力的培養(yǎng)。
勾股定理逆定理教案(篇2)
重點(diǎn)、難點(diǎn)分析
本節(jié)內(nèi)容的重點(diǎn)是勾股定理的逆定理及其應(yīng)用.它可用邊的關(guān)系判斷一個(gè)三角形是否為直角三角形.為判斷三角形的形狀提供了一個(gè)有力的依據(jù).
本節(jié)內(nèi)容的難點(diǎn)是勾股定理的逆定理的應(yīng)用.在用勾股定理的逆定理時(shí),分不清哪一條邊作斜邊,因此在用勾股定理的逆定理判斷三角形的形狀時(shí)而出錯(cuò);另外,在解決有關(guān)綜合問(wèn)題時(shí),要將給的邊的數(shù)量關(guān)系經(jīng)過(guò)代數(shù)變化,最后達(dá)到一個(gè)目標(biāo)式,這種“轉(zhuǎn)化”對(duì)學(xué)生來(lái)講也是一個(gè)困難的地方.
教法建議:
本節(jié)課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類(lèi)比”的教學(xué)方法.通過(guò)前面所學(xué)的垂直平分線定理及其逆定理,做類(lèi)比對(duì)象,讓學(xué)生自己提出問(wèn)題并解決問(wèn)題.在課堂教學(xué)中營(yíng)造輕松、活潑的課堂氣氛.通過(guò)師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說(shuō)明如下:
(1)讓學(xué)生主動(dòng)提出問(wèn)題
利用類(lèi)比的學(xué)習(xí)方法,由學(xué)生將上節(jié)課所學(xué)習(xí)的勾股定理的逆命題書(shū)寫(xiě)出來(lái).這里分別找學(xué)生口述文字;用符號(hào)、圖形的形式板書(shū)逆命題的內(nèi)容.所有這些都由學(xué)生自己完成,估計(jì)學(xué)生不會(huì)感到困難.這樣設(shè)計(jì)主要是培養(yǎng)學(xué)生善于提出問(wèn)題的習(xí)慣及能力.
(2)讓學(xué)生自己解決問(wèn)題
判斷上述逆命題是否為真命題?對(duì)這一問(wèn)題的解決,學(xué)生會(huì)感到有些困難,這里教師可做適當(dāng)?shù)狞c(diǎn)撥,但要盡可能的讓學(xué)生的發(fā)現(xiàn)和探索,找到解決問(wèn)題的思路.
(3)通過(guò)實(shí)際問(wèn)題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí).
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)理解并會(huì)證明勾股定理的逆定理;
(2)會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;
(3)知道什么叫勾股數(shù),記住一些覺(jué)見(jiàn)的勾股數(shù).
2、能力目標(biāo):
(1)通過(guò)勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;
(2)通過(guò)勾股定理及以前的知識(shí)聯(lián)合起來(lái)綜合運(yùn)用,提高綜合運(yùn)用知識(shí)的能力.
3、情感目標(biāo):
(1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征.
教學(xué)重點(diǎn):勾股定理的逆定理及其應(yīng)用
教學(xué)難點(diǎn):勾股定理的.逆定理及其應(yīng)用
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過(guò)程:
1、新課背景知識(shí)復(fù)習(xí)(投影)
勾股定理的內(nèi)容
文字?jǐn)⑹觯ㄍ队帮@示)
符號(hào)表述
圖形(畫(huà)在黑板上)
2、逆定理的獲得
(1)讓學(xué)生用文字語(yǔ)言將上述定理的逆命題表述出來(lái)
(2)學(xué)生自己證明
逆定理:如果三角形的三邊長(zhǎng) 有下面關(guān)系:
那么這個(gè)三角形是直角三角形
強(qiáng)調(diào)說(shuō)明:(1)勾股定理及其逆定理的區(qū)別
勾股定理是直角三角形的性質(zhì)定理,逆定理是直角三角形的判定定理.
(2)判定直角三角形的方法:
①角為 、②垂直、③勾股定理的逆定理
2、 定理的應(yīng)用(投影顯示題目上)
例1 如果一個(gè)三角形的三邊長(zhǎng)分別為
則這三角形是直角三角形
例2 如圖,已知:CD⊥AB于D,且有
求證:△ACB為直角三角形。
以上例題,分別由學(xué)生先思考,然后回答.師生共同補(bǔ)充完善.(教師做總結(jié))
4、課堂小結(jié):
(1)逆定理應(yīng)用時(shí)易出現(xiàn)的錯(cuò)誤:分不清哪一條邊作斜邊(最大邊)
(2)判定是否為直角三角形的一種方法:結(jié)合勾股定理和代數(shù)式、方程綜合運(yùn)用。
5、布置作業(yè):
a、書(shū)面作業(yè)P131#9
b、上交作業(yè):已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8
求證:△DEF是等腰三角形
勾股定理逆定理教案(篇3)
一、內(nèi)容和內(nèi)容解析
1。內(nèi)容
應(yīng)用勾股定理及勾股定理的逆定理解決實(shí)際問(wèn)題。
2。內(nèi)容解析
運(yùn)用勾股定理的逆定理可以從三角形邊的數(shù)量關(guān)系來(lái)識(shí)別三角形的形狀,它是用代數(shù)方法來(lái)研究幾何圖形,也是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。綜合運(yùn)用勾股定理及其逆定理能幫助我們解決實(shí)際問(wèn)題。
基于以上分析,可以確定本課的教學(xué)重點(diǎn)是靈活運(yùn)用勾股定理的逆定理解決實(shí)際問(wèn)題。
二、目標(biāo)和目標(biāo)解析
1。目標(biāo)
(1)靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。
(2)進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí)。
2。目標(biāo)解析
達(dá)成目標(biāo)(1)的標(biāo)志是學(xué)生通過(guò)合作、討論、動(dòng)手實(shí)踐等方式,在應(yīng)用題中建立數(shù)學(xué)模型,準(zhǔn)確畫(huà)出幾何圖形,再熟練運(yùn)用勾股定理逆定理判斷三角形狀及求邊長(zhǎng)、面積、角度等;
目標(biāo)(2)能先用勾股定理的逆定理判斷一個(gè)三角形是直角三角形,再用勾股定理及直角三角形的性質(zhì)進(jìn)行有關(guān)的計(jì)算和證明。
三、教學(xué)問(wèn)題診斷分析
對(duì)于大部分學(xué)生將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解析與應(yīng)用,有一定的困難,所以在教學(xué)時(shí)應(yīng)該注意啟發(fā)引導(dǎo)學(xué)生從實(shí)際生活中所遇到的問(wèn)題出發(fā),鼓勵(lì)學(xué)生以勾股定理及逆定理的知識(shí)為載體建立數(shù)學(xué)模型,利用數(shù)學(xué)模型去解決實(shí)際問(wèn)題。
本課的教學(xué)難點(diǎn)是靈活運(yùn)用勾股定理及逆定理解決實(shí)際問(wèn)題。
四、教學(xué)過(guò)程設(shè)計(jì)
1。復(fù)習(xí)反思,引出課題
問(wèn)題1 通過(guò)前面的學(xué)習(xí),我們對(duì)勾股定理及其逆定理的知識(shí)有一定的了解,請(qǐng)說(shuō)出勾股定理及其逆定理的內(nèi)容。
師生活動(dòng):學(xué)生回答勾股定理的內(nèi)容“如果直角三角形的兩條直角邊長(zhǎng)分別為,斜邊長(zhǎng)為,那么;勾股定理的逆定理“如果三角形的三邊長(zhǎng)滿足,那么這個(gè)三角形是直角三角形。
追問(wèn):你能用勾股定理及逆定理解決哪些問(wèn)題?
師生活動(dòng):學(xué)生通過(guò)思考舉手回答,教師板書(shū)課題。
【設(shè)計(jì)意圖】通過(guò)復(fù)習(xí)勾股定理及其逆定理來(lái)引入本課時(shí)的學(xué)習(xí)任務(wù)——應(yīng)用勾股定理及逆定理解決有關(guān)實(shí)際問(wèn)題。
2。 點(diǎn)擊范例,以練促思
問(wèn)題2 某港口位于東西方向的海岸線上?!斑h(yuǎn)航”號(hào)、“海天”號(hào)輪船同時(shí)離開(kāi)港口,各自沿一固定方向航行,“遠(yuǎn)航”號(hào)每小時(shí)航行16海里,“海天”號(hào)每小時(shí)航行12海里。它們離開(kāi)港口一個(gè)半小時(shí)后相距30海里。如果知道“遠(yuǎn)航”號(hào)沿東北方向航行,能知道“海天”號(hào)沿哪個(gè)方向航行嗎?
師生活動(dòng):學(xué)生讀題,理解題意,弄清楚已知條件和需解決的問(wèn)題,教師通過(guò)梯次性問(wèn)題的展示,適時(shí)點(diǎn)撥,學(xué)生嘗試畫(huà)圖、估測(cè)、交流中分化難點(diǎn)完成解答。
追問(wèn)1:請(qǐng)同學(xué)們認(rèn)真審題,弄清已知是什么?解決的問(wèn)題是什么?
師生活動(dòng):學(xué)生通過(guò)思考舉手回答,教師在黑板上列出:已知兩種船的航速,它們的航行時(shí)間以及相距的路程, “遠(yuǎn)航”號(hào)的航向——東北方向;解決的問(wèn)題是“海天”號(hào)的航向。
追問(wèn)2:你能根據(jù)題意畫(huà)出圖形嗎?
師生活動(dòng):學(xué)生嘗試畫(huà)圖,教師在黑板上或多媒體中畫(huà)出示意圖。
追問(wèn)3:在所畫(huà)的圖中哪個(gè)角可以表示“海天”號(hào)的航向?圖中知道哪個(gè)角的度數(shù)?
師生活動(dòng):學(xué)生小組討論交流回答問(wèn)題“海天”號(hào)的航向只要能確定∠QPR的大小即可。組內(nèi)討論解答,小組代表展示解答過(guò)程,教師適時(shí)點(diǎn)評(píng),多媒體展示規(guī)范解答過(guò)程。
解:根據(jù)題意,
因?yàn)?/p>
,即
,所以
由“遠(yuǎn)航”號(hào)沿東北方向航行可知
。因此
,即“海天”號(hào)沿西北方向航行。
課堂練習(xí)1。 課本33頁(yè)練習(xí)第3題。
課堂練習(xí)2。 在
港有甲、乙兩艘漁船,若甲船沿北偏東
方向以每小時(shí)8海里速度前進(jìn),乙船沿南偏東某方向以每小時(shí)15海里速度前進(jìn),1小時(shí)后甲船到達(dá)
島,乙船到達(dá)
島,且
島與
島相距17海里,你能知道乙船沿哪個(gè)方向航行嗎?
【設(shè)計(jì)意圖】學(xué)生在規(guī)范化的解答過(guò)程及練習(xí)中,提升對(duì)勾股定理逆定理的認(rèn)識(shí)以及實(shí)際應(yīng)用的能力。
3。 補(bǔ)充訓(xùn)練,鞏固新知
問(wèn)題3 實(shí)驗(yàn)中學(xué)有一塊四邊形的空地
若每平方米草皮需要200元,問(wèn)學(xué)校需要投入多少資金購(gòu)買(mǎi)草皮?
師生活動(dòng):先由學(xué)生獨(dú)立思考。若學(xué)生有想法,則由學(xué)生先說(shuō)思路,然后教師追問(wèn):你是怎么想到的?對(duì)學(xué)生思路中的合理成分進(jìn)行總結(jié);若學(xué)生沒(méi)有思路,教師可引導(dǎo)學(xué)生分析:從所要求的結(jié)果出發(fā)是要知道四邊形的面積,而四邊形被它的一條對(duì)角線分成兩個(gè)三角形,求出兩個(gè)三角形的面積和即可。啟發(fā)學(xué)生形成思路,最后由學(xué)生演板完成。
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生利用輔助線解決問(wèn)題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí)。
4。 反思小結(jié),觀點(diǎn)提煉
教師引導(dǎo)學(xué)生參照下面兩個(gè)方面,回顧本節(jié)課所學(xué)的主要內(nèi)容,進(jìn)行相互交流:
(1)知識(shí)總結(jié):勾股定理以及逆定理的實(shí)際應(yīng)用;
(2)方法歸納:數(shù)學(xué)建模的思想。
【設(shè)計(jì)意圖】通過(guò)小結(jié),梳理本節(jié)課所學(xué)內(nèi)容,總結(jié)方法,體會(huì)思想。
5。布置作業(yè)
教科書(shū)34頁(yè)習(xí)題17。2第3題,第4題,第5題,第6題。
五、目標(biāo)檢測(cè)設(shè)計(jì)
1。小明在學(xué)校運(yùn)動(dòng)會(huì)上負(fù)責(zé)聯(lián)絡(luò),他先從檢錄處走了75米到達(dá)起點(diǎn),又從起點(diǎn)向東走了100米到達(dá)終點(diǎn),最后從終點(diǎn)走了125米,回到檢錄處,則他開(kāi)始走的方向是(假設(shè)小明走的每段都是直線) ( )
A。南北 B。東西 C。東北 D。西北
【設(shè)計(jì)意圖】考查運(yùn)用勾股定理的逆定理解決實(shí)際生活問(wèn)題。
2。甲、乙兩船同時(shí)從
港出發(fā),甲船沿北偏東
的方向,以每小時(shí)9海里的速度向
島駛?cè)ィ掖亓硪粋€(gè)方向,以每小時(shí)12海里的速度向
島駛?cè)ィ?小時(shí)后兩船同時(shí)到達(dá)了目的地。如果兩船航行的速度不變,且
兩島相距45海里,那么乙船航行的方向是南偏東多少度?
【設(shè)計(jì)意圖】考查建立數(shù)學(xué)模型,準(zhǔn)確畫(huà)出幾何圖形,運(yùn)用勾股定理的逆定理解決實(shí)際生活問(wèn)題。
3。如圖是一塊四邊形的菜地,已知
求這塊菜地的面積。
【設(shè)計(jì)意圖】考查利用勾股定理及逆定理將不規(guī)則圖形轉(zhuǎn)化為直角三角形,巧妙地求解。
勾股定理逆定理教案(篇4)
一、創(chuàng)設(shè)問(wèn)屬情境,引入新課
活動(dòng)1(1)總結(jié)直角三角形有哪些性質(zhì).(2)一個(gè)三角形,滿足什么條件是直角三角形?
設(shè)計(jì)意圖:通過(guò)對(duì)前面所學(xué)知識(shí)的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個(gè)三角形為直角三角形,提高學(xué)生發(fā)現(xiàn)反思問(wèn)題的能力.
師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶.
本活動(dòng),教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極主動(dòng)地回憶,總結(jié)前面學(xué)過(guò)的舊知識(shí);②能否“溫故知新”.
生:直角三角形有如下性質(zhì):(1)有一個(gè)角是直角;(2)兩個(gè)銳角互余,(3)兩直角邊的平方和等于斜邊的平方:(4)在含30°角的直角三角形中,30°的角所對(duì)的直角邊是斜邊的一半.
師:那么,一個(gè)三角形滿足什么條件,才能是直角三角形呢?
生:有一個(gè)內(nèi)角是90°,那么這個(gè)三角形就為直角三角形.
生:如果一個(gè)三角形,有兩個(gè)角的和是90°,那么這個(gè)三角形也是直角三角形.
師:前面我們剛學(xué)習(xí)了勾股定理,知道一個(gè)直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來(lái)判定它是否為直角三角形呢?我們來(lái)看一下古埃及人如何做?
二、講授新課
活動(dòng)2問(wèn)題:據(jù)說(shuō)古埃及人用下圖的方法畫(huà)直角:把一根長(zhǎng)蠅打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié),4個(gè)結(jié)、5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角.
這個(gè)問(wèn)題意味著,如果圍成的三角形的三邊分別為3、4、5.有下面的關(guān)系“32+42=52”.那么圍成的三角形是直角三角形.
畫(huà)畫(huà)看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫(huà)出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.
設(shè)計(jì)意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形就為直免三角形的結(jié)論,培養(yǎng)學(xué)生動(dòng)手操作能力和尋求解決數(shù)學(xué)問(wèn)題的一般方法.
師生行為讓學(xué)生在小組內(nèi)共同合作,協(xié)手完成此活動(dòng).教師參與此活動(dòng),并給學(xué)生以提示、啟發(fā).在本活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極動(dòng)手參與.②能否從操作活動(dòng)中,用數(shù)學(xué)語(yǔ)言歸納、猜想出結(jié)論.③學(xué)生是否有克服困難的勇氣.
生:我們不難發(fā)現(xiàn)上圖中,第(1)個(gè)結(jié)到第(4)個(gè)結(jié)是3個(gè)單位長(zhǎng)度即AC=3;同理BC=4,AB=5.因?yàn)?2+42=52.我們圍成的三角形是直角三角形.
生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過(guò)測(cè)量后,發(fā)現(xiàn)6.5cm的邊所對(duì)的角是直角,并且2.52+62=6.52.
再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標(biāo)可以發(fā)現(xiàn)8.5cm的邊所對(duì)的角是直角,且也有42+7.52=8.52.
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個(gè)直角三角形呢?
活動(dòng)3下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)?
勾股定理逆定理教案(篇5)
尊敬的各位評(píng)委,各位老師,大家好:
我今天說(shuō)課的內(nèi)容是《勾股定理的逆定理》第一課時(shí)。下面我將從教材、目標(biāo)、重點(diǎn)難點(diǎn)、教法、教學(xué)流程等幾個(gè)方面向各位專(zhuān)家闡述我對(duì)本節(jié)課的教學(xué)設(shè)想。
一、說(shuō)教材。
這節(jié)內(nèi)容選自《蘇科版》義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)八年級(jí)上冊(cè)第三章《勾股定理》中的第二節(jié)。勾股定理的逆定理是幾何中一個(gè)非常重要的定理,它是對(duì)直角三角形的再認(rèn)識(shí),也是判斷一個(gè)三角形是不是直角三角形的一種重要方法。還是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。八年級(jí)正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過(guò)渡的重要時(shí)期,通過(guò)對(duì)勾股定理逆定理的探究,培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力。在教學(xué)中滲透類(lèi)比、轉(zhuǎn)化,從特殊到一般的思想方法。
二、說(shuō)教學(xué)目標(biāo)。
教學(xué)目標(biāo)支配著教學(xué)過(guò)程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵??紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實(shí)際情況,我制定了如下教學(xué)目標(biāo):
1、知識(shí)與技能:探索并掌握直角三角形判別思想,會(huì)應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。
2、過(guò)程與方法:通過(guò)對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過(guò)程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。
3、情感、態(tài)度、價(jià)值觀:培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系。
三、說(shuō)教學(xué)重點(diǎn)、難點(diǎn),關(guān)鍵。
本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)及關(guān)鍵。
重點(diǎn):理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。
難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。
關(guān)鍵:動(dòng)手驗(yàn)證,體驗(yàn)勾股定理的逆定理。
四、說(shuō)教法。
在本節(jié)課中,我設(shè)計(jì)了以下幾種教法學(xué)法:
情景教學(xué)法,啟發(fā)教學(xué)法,分層導(dǎo)學(xué)法。
讓學(xué)生實(shí)踐活動(dòng),動(dòng)手操作,看自己畫(huà)的三角形是否為一個(gè)直角三角形。體會(huì)觀察,作出合理的推測(cè)。同時(shí)通過(guò)引入,讓學(xué)生了解古代都用這種方法來(lái)確定直角的。對(duì)學(xué)生進(jìn)行動(dòng)手能力培養(yǎng)的同時(shí),引導(dǎo)命題的形成過(guò)程,自然地得出勾股定理的逆定理。既鍛煉了學(xué)生的實(shí)踐、觀察能力,又滲透了人文和探究精神。
五、說(shuō)教學(xué)流程。
1、動(dòng)手實(shí)踐,檢測(cè)猜測(cè)。引導(dǎo)學(xué)生分別以3cm,4cm,5cm , 2.5cm,6cm,6.5cm和4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm為邊畫(huà)出兩個(gè)三角形,觀察猜測(cè)三角形的形狀。再引導(dǎo)啟發(fā)學(xué)生從這兩個(gè)活動(dòng)中歸納思考:如果三角形的三邊長(zhǎng)a、b、c滿足,那么此三角形是什么三角形?在整個(gè)過(guò)程的活動(dòng)中,盡量給學(xué)生充足的時(shí)間和空間,以平等的身份參與到學(xué)生活動(dòng)中來(lái),幫助指導(dǎo)學(xué)生的實(shí)踐活動(dòng)。
2、探索歸納,證明猜測(cè)。
勾股定理逆定理的證明不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,構(gòu)造直角三角形就成為解決問(wèn)題的關(guān)鍵。如果此時(shí)直接將問(wèn)題拋給學(xué)生證明,學(xué)生定會(huì)覺(jué)得無(wú)從下手。我就采用分層導(dǎo)進(jìn)的方法,讓學(xué)生從具體的例子中感受總結(jié),再歸納到中抽象中來(lái)。于是我就設(shè)計(jì)了這樣的兩個(gè)步驟:
先補(bǔ)充一道例題:三邊長(zhǎng)度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請(qǐng)簡(jiǎn)單說(shuō)明理由。
然后再更改上面的例題,變?yōu)椤鰽BC三邊長(zhǎng)為a、b、c,滿足,與以a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說(shuō)明理由。通過(guò)推理證明得出勾股定理的逆定理。
在這個(gè)過(guò)程中,要努力引導(dǎo)學(xué)生聯(lián)想到“全等”,進(jìn)而設(shè)法構(gòu)造直角三角形,讓學(xué)生在不斷的嘗試、探究的過(guò)程中,總結(jié)出勾股定理的逆定理。有效地突破本節(jié)的難點(diǎn)。同時(shí)提出原命題與逆命題及其關(guān)系。培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣對(duì)學(xué)生的可持續(xù)發(fā)展是非常重要的,歸納出定理后,與學(xué)生一起分析定理的題設(shè)與結(jié)論,并與勾股定理進(jìn)行對(duì)比,明白兩定理是互逆定理。
3、嘗試運(yùn)用,熟悉定理。
課本中的例題是讓學(xué)生進(jìn)一步熟練掌握勾股定理的逆定理及其運(yùn)用的步驟。
4、分層訓(xùn)練,能力升級(jí)。有針對(duì)性有層次性地布置練習(xí),及時(shí)反饋教學(xué)效果,查缺被漏,并對(duì)有困難的學(xué)生給予指導(dǎo)。
5、總結(jié)內(nèi)容,強(qiáng)化認(rèn)識(shí)。使學(xué)生再次感悟勾股定理的逆定理,體會(huì)定理的互逆性,加深對(duì)“數(shù)形結(jié)合”的理解,更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
6、布置作業(yè)。有代表性地布置不同層次的作業(yè),尊重學(xué)生的個(gè)體差異,滿足多樣化學(xué)習(xí)的需要。
結(jié)束語(yǔ):我的說(shuō)課完了,非常感謝各位領(lǐng)導(dǎo)和專(zhuān)家給了我這次學(xué)習(xí)、聆聽(tīng)、參與、鍛煉的機(jī)會(huì)。謝謝大家!
勾股定理逆定理教案(篇6)
教學(xué)目標(biāo)
1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。
2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí)。
重難點(diǎn)
1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。
2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。
一、自主學(xué)習(xí)
1、若三角形的三邊是 ⑴1、、2; ⑵; ⑶32,42,52⑷9,40,41;
⑸(m+n)2-1,2(m+n),(m+n)2+1;則構(gòu)成的是直角三角形的有( )
A.2個(gè) B.3個(gè)?????C.4個(gè)??????D.5個(gè)
2、已知:在△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,分別為下列長(zhǎng)度,判斷該三角形是否是直角三角形?并指出那一個(gè)角是直角?
⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6; ⑶a=2,b=,c=4;
二、交流展示
例1(P33例2)某港口P位于東西方向的海岸線上.“遠(yuǎn)航”號(hào)、“海天”號(hào)輪船同時(shí)離開(kāi)港口,各自沿一固定方向航行,“遠(yuǎn)航”號(hào)每小時(shí)航行16海里,“海天”號(hào)每小時(shí)航行12海里,它們離開(kāi)港口一個(gè)半小時(shí)后分別位于Q、R處,并相距30海里. 如果知道“遠(yuǎn)航”號(hào)沿東北方向航行,能知道“海天”號(hào)沿哪個(gè)方向航行嗎?
分析:⑴了解方位角,及方位名詞;⑵依題意畫(huà)出圖形;⑶依題意可求PR,PQ,QR;
⑷根據(jù)勾股定理 的逆定理,求∠QPR;⑸求∠RPN。
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí)。
例2、一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀。
分析:⑴若判斷三角形的形狀,先求三角形的三邊長(zhǎng);
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng);
⑶根據(jù)勾股定理的逆定理,判斷三角形是否為直角三角形。
三、合作探究
例3.如圖,小明的爸爸在魚(yú)池邊開(kāi)了一塊四邊形土地種了一些蔬菜,爸爸讓小明計(jì)算一下土地的面積,以便計(jì)算一下產(chǎn)量。小明找了一卷米尺,測(cè)得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
四、達(dá)標(biāo)測(cè)試
1.一根24米繩子,折成三邊為三個(gè)連續(xù)偶數(shù)的三角形,則三邊長(zhǎng)分別為,此三角形的形狀為。
2.小強(qiáng)在操場(chǎng)上向東走80m后,又走了60m,再走100m回到原地。小強(qiáng)在操場(chǎng)上向東走了80m后,又走60m的方向是。
3.一根12米的電線桿AB,用鐵絲AC、AD固定,現(xiàn)已知用去鐵絲AC=15米,AD=13米,又測(cè)得地面上B、C兩點(diǎn)之間距離是9米,B、D兩點(diǎn)之間距離是5米,
則電線桿和地面是否垂直,為什么?
4.如圖,在我國(guó)沿海有一艘不明國(guó)籍的輪船進(jìn)入我國(guó)海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個(gè)基地前去攔截,六分鐘后同時(shí)到達(dá)C地將其攔截。已知甲巡邏艇每小時(shí)航行120海里,乙巡邏艇每小時(shí)航行50海里,航向?yàn)楸逼?0°,問(wèn):甲巡邏艇的航向?
五、教學(xué)反思
勾股定理逆定理教案(篇7)
一、教學(xué)目標(biāo)
1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題.
2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí).
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題.
2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題.
3.難點(diǎn)的突破方法:
三、課堂引入
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法.
四、例習(xí)題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫(huà)出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí).
例2(補(bǔ)充)一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長(zhǎng);
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;
⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養(yǎng)學(xué)生利用方程思想解決問(wèn)題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí).
勾股定理逆定理教案(篇8)
教學(xué)目標(biāo):
一知識(shí)技能
1.理解勾股定理的逆定理的證明方法和證明過(guò)程;
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角形;
二數(shù)學(xué)思考
1.通過(guò)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生發(fā)展與形成的過(guò)程;
2.通過(guò)三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合法的應(yīng)用.
三解決問(wèn)題
通過(guò)勾股定理的逆定理的證明及其應(yīng)用,體會(huì)數(shù)形結(jié)合法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題.
四情感態(tài)度
1.通過(guò)三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一關(guān)系;
2.在探究勾股定理的逆定理的證明及應(yīng)用的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流合作的意識(shí)和探究精神.
教學(xué)重難點(diǎn):
一重點(diǎn):勾股定理的逆定理及其應(yīng)用.
二難點(diǎn):勾股定理的逆定理的證明.
教學(xué)方法
啟發(fā)引導(dǎo)分組討論合作交流等。
教學(xué)媒體
多媒體課件演示。
教學(xué)過(guò)程:
一復(fù)習(xí)孕新,引入課題
問(wèn)題:
(1) 勾股定理的內(nèi)容是什么?
(2) 求以線段ab為直角邊的直角三角形的斜邊c的長(zhǎng):
① a=3,b=4
② a=2.5,b=6
③ a=4,b=7.5
(3) 分別以上述abc為邊的三角形的形狀會(huì)是什么樣的呢?
二動(dòng)手實(shí)踐,檢驗(yàn)推測(cè)
1.把準(zhǔn)備好的一根打了13個(gè)等距離結(jié)的繩子,按3個(gè)結(jié)4個(gè)結(jié)5個(gè)結(jié)的長(zhǎng)度為邊擺放成一個(gè)三角形,請(qǐng)觀察并說(shuō)出此三角形的形狀?
學(xué)生分組活動(dòng),動(dòng)手操作,并在組內(nèi)進(jìn)行交流討論的基礎(chǔ)上,作出實(shí)踐性預(yù)測(cè).
教師深入小組參與活動(dòng),并幫助指導(dǎo)部分學(xué)生完成任務(wù),得出勾股定理的逆命題.在此基礎(chǔ)上,介紹:古埃及和我國(guó)古代大禹治水都是用這種方法來(lái)確定直角的.
2.分別以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊畫(huà)出兩個(gè)三角形,請(qǐng)觀察并說(shuō)出此三角形的形狀?
3.結(jié)合三角形三邊長(zhǎng)度的平方關(guān)系,你能猜一猜三角形的三邊長(zhǎng)度與三角形的形狀之間有怎樣的關(guān)系嗎?
三探索歸納,證明猜想
問(wèn)題
1.三邊長(zhǎng)度分別為3 cm4 cm5 cm的三角形與以3 cm4 cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?
2.你能證明以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊長(zhǎng)的三角形是直角三角形嗎?
3.如圖18.2-2,若△ABC的三邊長(zhǎng)
滿足
,試證明△ABC是直角三角形,請(qǐng)簡(jiǎn)要地寫(xiě)出證明過(guò)程.
教師提出問(wèn)題,并適時(shí)誘導(dǎo),指導(dǎo)學(xué)生完成問(wèn)題3的證明.之后,歸納得出勾股定理的逆定理.
四嘗試運(yùn)用,熟悉定理
問(wèn)題
1例1:判斷由線段
組成的三角形是不是直角三角形:
(1)
(2)
2三角形的兩邊長(zhǎng)分別為3和4,要使這個(gè)三角形是直角三角形,則第三條邊長(zhǎng)是多少?
教師巡視,了解學(xué)生對(duì)知識(shí)的掌握情況.
特別關(guān)注學(xué)生在練習(xí)中反映出的問(wèn)題,有針對(duì)性地講解,學(xué)生能否熟練地應(yīng)用勾股定理的逆定理去分析和解決問(wèn)題
五類(lèi)比模仿,鞏固新知
1.練習(xí):練習(xí)題13.
2.思考:習(xí)題18.2第5題.
部分學(xué)生演板,剩余學(xué)生在課堂練習(xí)本上獨(dú)立完成.
小結(jié)梳理,內(nèi)化新知
六1.小結(jié):教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)的知識(shí).
2.作業(yè):
(1)必做題:習(xí)題18.2第1題(2)(4)和第3題;
(2)選做題:習(xí)題18.2第46題.
勾股定理逆定理教案(篇9)
一、例題的意圖分析
例1(P83例2)讓學(xué)生養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí)。
例2(補(bǔ)充)培養(yǎng)學(xué)生利用方程思想解決問(wèn)題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí)。
二、課堂引入
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法。
三、例習(xí)題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫(huà)出圖形;
⑶依題意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;
⑷因?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR-∠QPS=45°。
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí)。
例2(補(bǔ)充)一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀。
分析:⑴若判斷三角形的形狀,先求三角形的三邊長(zhǎng);
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;
⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形。
解略。
四、課堂練習(xí)
1.小強(qiáng)在操場(chǎng)上向東走80m后,又走了60m,再走100m回到原地。小強(qiáng)在操場(chǎng)上向東走了80m后,又走60m的方向是。
2.如圖,在操場(chǎng)上豎直立著一根長(zhǎng)為2米的測(cè)影竿,早晨測(cè)得它的影長(zhǎng)為4米,中午測(cè)得它的影長(zhǎng)為1米,則A、B、C三點(diǎn)能否構(gòu)成直角三角形?為什么?
3.如圖,在我國(guó)沿海有一艘不明國(guó)籍的輪船進(jìn)入我國(guó)海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個(gè)基地前去攔截,六分鐘后同時(shí)到達(dá)C地將其攔截。已知甲巡邏艇每小時(shí)航行120海里,乙巡邏艇每小時(shí)航行50海里,航向?yàn)楸逼?0°,問(wèn):甲巡邏艇的航向
勾股定理逆定理教案(篇10)
一、教學(xué)目標(biāo)
1.體會(huì)勾股定理的逆定理得出過(guò)程,掌握勾股定理的逆定理.
2.探究勾股定理的逆定理的證明方法.
3.理解原命題、逆命題、逆定理的概念及關(guān)系.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):掌握勾股定理的逆定理及證明.
2.難點(diǎn):勾股定理的逆定理的證明.
3.難點(diǎn)的突破方法:
先讓學(xué)生動(dòng)手操作,畫(huà)好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,再探究理論證明方法.充分利用這道題鍛煉學(xué)生的動(dòng)手操作能力,由實(shí)踐到理論學(xué)生更容易接受.
為學(xué)生搭好臺(tái)階,掃清障礙.
⑴如何判斷一個(gè)三角形是直角三角形,現(xiàn)在只知道若有一個(gè)角是直角的三角形是直角三角形,從而將問(wèn)題轉(zhuǎn)化為如何判斷一個(gè)角是直角.
⑵利用已知條件作一個(gè)直角三角形,再證明和原三角形全等,使問(wèn)題得以解決.
⑶先做直角,再截取兩直角邊相等,利用勾股定理計(jì)算斜邊A1B1=c,則通過(guò)三邊對(duì)應(yīng)相等的兩個(gè)三角形全等可證.
三、課堂引入
創(chuàng)設(shè)情境:⑴怎樣判定一個(gè)三角形是等腰三角形?
⑵怎樣判定一個(gè)三角形是直角三角形?和等腰三角形的判定進(jìn)行對(duì)比,從勾股定理的逆命題進(jìn)行猜想.
四、例習(xí)題分析
例1(補(bǔ)充)說(shuō)出下列命題的逆命題,這些命題的逆命題成立嗎?
⑴同旁內(nèi)角互補(bǔ),兩條直線平行.
⑵如果兩個(gè)實(shí)數(shù)的平方相等,那么兩個(gè)實(shí)數(shù)平方相等.
⑶線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等.
⑷直角三角形中30°角所對(duì)的直角邊等于斜邊的一半.
分析:⑴每個(gè)命題都有逆命題,說(shuō)逆命題時(shí)注意將題設(shè)和結(jié)論調(diào)換即可,但要分清題設(shè)和結(jié)論,并注意語(yǔ)言的運(yùn)用.
⑵理順?biāo)麄冎g的關(guān)系,原命題有真有假,逆命題也有真有假,可能都真,也可能一真一假,還可能都假.
解略.
本題意圖在于使學(xué)生了解命題,逆命題,逆定理的概念,及它們之間的關(guān)系.
例2(P82探究)證明:如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形.
分析:⑴注意命題證明的格式,首先要根據(jù)題意畫(huà)出圖形,然后寫(xiě)已知求證.
⑵如何判斷一個(gè)三角形是直角三角形,現(xiàn)在只知道若有一個(gè)角是直角的三角形是直角三角形,從而將問(wèn)題轉(zhuǎn)化為如何判斷一個(gè)角是直角.
⑶利用已知條件作一個(gè)直角三角形,再證明和原三角形全等,使問(wèn)題得以解決.
⑷先做直角,再截取兩直角邊相等,利用勾股定理計(jì)算斜邊A1B1=c,則通過(guò)三邊對(duì)應(yīng)相等的兩個(gè)三角形全等可證.
⑸先讓學(xué)生動(dòng)手操作,畫(huà)好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,再探究理論證明方法.充分利用這道題鍛煉學(xué)生的動(dòng)手操作能力,由實(shí)踐到理論學(xué)生更容易接受.
證明略.
通過(guò)讓學(xué)生動(dòng)手操作,畫(huà)好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,鍛煉學(xué)生的動(dòng)手操作能力,再通過(guò)探究理論證明方法,使實(shí)踐上升到理論,提高學(xué)生的理性思維.
例3(補(bǔ)充)已知:在△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)
求證:∠C=90°.
分析:⑴運(yùn)用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:①先判斷那條邊最大.②分別用代數(shù)方法計(jì)算出a2+b2和c2的值.③判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形.
⑵要證∠C=90°,只要證△ABC是直角三角形,并且c邊最大.根據(jù)勾股定理的逆定理只要證明a2+b2=c2即可.
⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,從而a2+b2=c2,故命題獲證.
本題目的在于使學(xué)生明確運(yùn)用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:①先判斷那條邊最大.②分別用代數(shù)方法計(jì)算出a2+b2和c2的值.③判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形.
數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)之五
老師在新授課程時(shí),一般會(huì)準(zhǔn)備教案課件,按要求,每個(gè)教師都應(yīng)該在準(zhǔn)備教案課件。只有將教案課件提前準(zhǔn)備充分,這樣才不致于在實(shí)際教學(xué)中出現(xiàn)準(zhǔn)備不足的情況。寫(xiě)好教案課件,你目前遇到的問(wèn)題是什么呢?以下是小編收集整理的“數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)之五”,歡迎大家與身邊的朋友分享吧!
課題:
勾股定理
課型:
新授課
課時(shí)安排:
1課時(shí)
教學(xué)目的:
一、知識(shí)與技能目標(biāo)理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
二、過(guò)程與方法目標(biāo)通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
三、情感、態(tài)度與價(jià)值觀目標(biāo)了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛(ài)國(guó)熱情;學(xué)生通過(guò)自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過(guò)程:
(一)情境導(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹(shù),20xx年國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過(guò)圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
2、多媒體課件演示FLASH小動(dòng)畫(huà)片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。
(二)學(xué)習(xí)新課問(wèn)題一是等腰直角三角形的情形(通過(guò)多媒體給出圖形),判斷外圍三個(gè)正方形面積有何關(guān)系?相傳2500年前,畢達(dá)哥拉斯(古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時(shí),發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對(duì)于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對(duì)于一般的直角三角形是否也有這樣的性質(zhì)呢?請(qǐng)大家畫(huà)一個(gè)任意的直角三角形,量一量,算一算。問(wèn)題二是一般直角三角形的情形,判斷這時(shí)外圍三個(gè)正方形的面積是否也存在這種關(guān)系?通過(guò)這個(gè)觀察和驗(yàn)算這個(gè)直角三角形外圍的三個(gè)正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過(guò)前面對(duì)兩個(gè)問(wèn)題的驗(yàn)證,可以得到勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊為c,那么a2+b2=c2。
(三)鞏固練習(xí)1、如果一個(gè)直角三角形的兩條邊長(zhǎng)分別是6厘米和8厘米,那么這個(gè)三角形的周長(zhǎng)是多少厘米?2、解決課程開(kāi)始時(shí)提出的情境問(wèn)題。
(四)小結(jié)
1、背景知識(shí)介紹①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;②康熙數(shù)學(xué)專(zhuān)著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨(dú)創(chuàng)。
2、通過(guò)這節(jié)課的學(xué)習(xí),你會(huì)寫(xiě)方程了嗎?你有什么收獲和體會(huì)?
(五)作業(yè)練習(xí)18.1中的1、2、3題。板書(shū)設(shè)計(jì):勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊為c,那么a2+b2=c2。
值得參考!數(shù)學(xué)勾股定理教案
做好教案課件是老師上好課的前提,是時(shí)候?qū)懡贪刚n件了。我們制定教案課件工作計(jì)劃,才能更好地安排接下來(lái)的工作!有沒(méi)有好的范文是適合教案課件?下面是由小編為大家整理的“值得參考!數(shù)學(xué)勾股定理教案”,歡迎您參考,希望對(duì)您有所助益!
[教學(xué)分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書(shū)所體現(xiàn)的主要思想。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書(shū)從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書(shū)以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國(guó)古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數(shù)學(xué)問(wèn)題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
[教學(xué)目標(biāo)]
一、 知識(shí)與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題
3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說(shuō)理
二、 過(guò)程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
三、 情感與態(tài)度目標(biāo)
通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
四、 重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2熟練運(yùn)用勾股定理
[教學(xué)過(guò)程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。
周公問(wèn):“竊聞乎大夫善數(shù)也,請(qǐng)問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問(wèn)數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”
2、教師展示圖片并介紹第二情景
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問(wèn)題
1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋?zhuān)?由于我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。
第二種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為 的正方形“小洞”。
因?yàn)檫呴L(zhǎng)為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。
這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。
例題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問(wèn)題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過(guò)提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過(guò)數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
[教案]《琥珀》教學(xué)反思范文
老師會(huì)根據(jù)課本中的主要教學(xué)內(nèi)容整理成教案課件,教案課件里的內(nèi)容是老師自己去完善的。老師在寫(xiě)了教案課件后,也能讓老師很好去總結(jié)和反思。怎么樣教案課件才算不錯(cuò)呢?以下是由小編為你整理的《[教案]《琥珀》教學(xué)反思范文》,如果對(duì)這個(gè)話題感興趣的話,請(qǐng)關(guān)注本站。
這篇課文根據(jù)一塊有蒼蠅和蜘蛛的琥珀想象其形成和發(fā)現(xiàn)的過(guò)程,并且判斷它在科學(xué)上的價(jià)值。其中,琥珀的形成過(guò)程是本節(jié)課的教學(xué)重難點(diǎn),而松脂球的形成過(guò)程又是琥珀形成過(guò)程中的重點(diǎn),可謂是重中之重,解決了松脂球形成過(guò)程這一重難點(diǎn),從而就能讓學(xué)生明白科學(xué)家想象推理的合理性,因此,我在教學(xué)時(shí),采用了激情引入?提問(wèn)點(diǎn)撥?入境再現(xiàn)?小組總方法?,F(xiàn)將教學(xué)中的不足及優(yōu)點(diǎn)總結(jié)如下:
一、教學(xué)設(shè)計(jì)的不同
本節(jié)課采用了“篇末入手”、“邏輯提問(wèn)”、“由果溯因”的教學(xué)方法和電化教學(xué)手段,這種方法不但可以營(yíng)造寬松的課堂氣氛,激勵(lì)學(xué)生學(xué)習(xí)興趣,而且使學(xué)生求知心切,積極性高,能引起學(xué)生的思考興趣,對(duì)培養(yǎng)學(xué)生的邏輯推理能力大有好處,既解決難度較大的科學(xué)知識(shí),又降低了坡度,同時(shí)教師適時(shí)的點(diǎn)撥,也為學(xué)生梳理了課堂結(jié)構(gòu),是整節(jié)課的教學(xué)顯得條理清楚,提高了課堂教學(xué)效率。
二、電教手段的運(yùn)用
所設(shè)計(jì)的動(dòng)畫(huà)巧妙。隨著生動(dòng)的解說(shuō)詞與逼真動(dòng)化影像的展現(xiàn),將每個(gè)小讀者引入古老的森林進(jìn)行遨游,小小課堂充滿了生機(jī)和活力,呈現(xiàn)在孩子們眼前的是:有聲有色、有靜有動(dòng)、有字有形、五彩鮮明、形象具體的情景,寓教于樂(lè),充分體現(xiàn)了觀察表達(dá)的教學(xué)要求。能遵循兒童心理學(xué)規(guī)律,運(yùn)用認(rèn)識(shí)論進(jìn)行教學(xué),通過(guò)幻燈投影,讓學(xué)生再現(xiàn)松脂球的形成的過(guò)程,加深感性認(rèn)識(shí),再通過(guò)朗讀上升到理性認(rèn)識(shí)。
這樣的課教學(xué)設(shè)計(jì),既使學(xué)生學(xué)懂了松脂球的形成的過(guò)程這個(gè)重點(diǎn),從而也為學(xué)生理解湖泊形成過(guò)程奠定了基礎(chǔ),而且也突破了琥珀的科學(xué)價(jià)值這個(gè)難點(diǎn)。所以說(shuō),在教學(xué)中,現(xiàn)代化教學(xué)手段的運(yùn)用,在教學(xué)過(guò)程中起到了很大的作用。那么,本節(jié)課中,我是如何確定整合點(diǎn)的呢?
整合點(diǎn)的確立原則:根據(jù)學(xué)生對(duì)于琥珀知識(shí)的匱乏,讓學(xué)生自己搜集有關(guān)琥珀的相關(guān)知識(shí)困難相當(dāng)大,所以,我在設(shè)計(jì)教學(xué)過(guò)程時(shí),在第一環(huán)節(jié),就像學(xué)生們出示了很多關(guān)于化石的圖片。
1、教學(xué)第一環(huán)節(jié),激情,引入新課的時(shí)候應(yīng)用了多媒體
我讓學(xué)生觀看多種多樣的化石圖片,以激起學(xué)生學(xué)習(xí)這課的熱情,在最后重點(diǎn)放在本課所要認(rèn)識(shí)的琥珀身上,從而讓學(xué)生學(xué)習(xí)有重點(diǎn),也為降低教學(xué)難度做好了準(zhǔn)備。
2、在講完松脂球形成的必要的條件之后,為了讓學(xué)生加深對(duì)課文內(nèi)容的理解,也為了讓課文富有生命力,所以在講完之后讓學(xué)生觀看松脂球的形成過(guò)程的flash動(dòng)畫(huà),這樣的話,使得這一篇科學(xué)小品不再枯燥,同時(shí)也使得本課所講的內(nèi)容難度降低,學(xué)生們易于理解。
三、創(chuàng)設(shè)情境活動(dòng)
精心設(shè)計(jì)了活動(dòng)幻燈片,創(chuàng)造情境,為學(xué)生提供生動(dòng)活潑的視聽(tīng)形象,加強(qiáng)語(yǔ)文信息刺激,使學(xué)生眼、耳、口、手協(xié)調(diào)識(shí)記,加深對(duì)所學(xué)知識(shí)的印象理解,提高學(xué)習(xí)興趣,從而提高記憶效果。培養(yǎng)了學(xué)生的邏輯思維能力,并激發(fā)了學(xué)生愛(ài)自然、愛(ài)科學(xué)、學(xué)科學(xué)、用科學(xué)的思想感情。指導(dǎo)學(xué)生朗讀,提高學(xué)生的朗讀能力,采用課前預(yù)習(xí)、檢查預(yù)習(xí)的方法,從今學(xué)生預(yù)習(xí)習(xí)慣的養(yǎng)成,減少教學(xué)用時(shí),提高教學(xué)效果。
四、不足之處
1、首先,因?yàn)橹v課時(shí)間的關(guān)系,在本節(jié)課中我對(duì)學(xué)生朗讀的指導(dǎo)是有的,可是,明顯的學(xué)生的朗讀訓(xùn)練不夠,學(xué)生讀得太少了應(yīng)多指導(dǎo),范讀,就描寫(xiě)蜘蛛和蒼蠅的第3、4、5朗讀到位,后來(lái)因?yàn)闀r(shí)間關(guān)系,我就不那么重視學(xué)生朗讀了,如果不是學(xué)生預(yù)習(xí)很到位的話,學(xué)生對(duì)于課文的理解肯定沒(méi)有這么透徹。
2、其次、在教學(xué)中,學(xué)生的主體地位體現(xiàn)的不是很明顯,不能放手讓學(xué)生們?nèi)プ?,老是不放心,?dān)心學(xué)生完不成交給的任務(wù)。所以,明顯的老師問(wèn)得多,學(xué)生回答得多。
3、如果條件允許,讓學(xué)生自己動(dòng)手上網(wǎng)找資料,課上交流討論,然后觀看制作的動(dòng)畫(huà),教學(xué)效果一定很好,也不至于因?yàn)閾?dān)心講不完課,而讓學(xué)生沒(méi)有過(guò)多的時(shí)間去讀課文。
4、如果能有些實(shí)物展示,我想可能會(huì)更好。不光從文章內(nèi)容上理解,能用手摸一摸,感知以下,就會(huì)拉近琥珀與我們之間的距離。
總之,這堂課是我和學(xué)生的一次大膽嘗試,不管成功與否,對(duì)于我今后的教學(xué)工作都有很大的幫助,在總結(jié)由松脂球變成琥珀的這一過(guò)程中,我采用了小組合作的形式,而且時(shí)間比較充足,這可是我的一大進(jìn)步,體現(xiàn)了自主、合作與探究的教學(xué)理念,收到了較好的教學(xué)效果學(xué)生們能小結(jié)出條件,非常令人高興。有了這一次的歷練,我一定很有很大提高。
[參考]數(shù)學(xué)勾股定理教案(精選5篇)
每個(gè)老師上課需要準(zhǔn)備的東西是教案課件,撰寫(xiě)教案課件是每位老師都要做的事。只有做好教案課件的前期撰寫(xiě),才能讓學(xué)生更加快速地理解各知識(shí)點(diǎn)。你不是否正為教案課件而苦惱呢?考慮到您的需要,小編特地編輯了“[參考]數(shù)學(xué)勾股定理教案(精選5篇)”,希望能對(duì)您有所幫助,請(qǐng)收藏。
數(shù)學(xué)勾股定理教案 篇1
復(fù)習(xí)第一步::
勾股定理的有關(guān)計(jì)算
例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個(gè)正方形,則此正方形的面積為.
析解:圖中陰影是一個(gè)正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長(zhǎng)平方為:172-152=64,故正方形面積為6
勾股定理解實(shí)際問(wèn)題
例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時(shí)的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場(chǎng)上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無(wú)風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時(shí)最低處離地面的最小高度h.
析解:彩旗自然下垂的長(zhǎng)度就是矩形DCEF
的對(duì)角線DE的長(zhǎng)度,連接DE,在Rt△DEF中,根據(jù)勾股定理,
得DE=h=220-150=70(cm)
所以彩旗下垂時(shí)的最低處離地面的最小高度h為70cm
與展開(kāi)圖有關(guān)的計(jì)算
例3、(20xx年青島市中考試題)如圖,在棱長(zhǎng)為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.
析解:正方體是由平面圖形折疊而成,反之,一個(gè)正方體也可以把它展開(kāi)成平面圖形,如圖是正方體展開(kāi)成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點(diǎn)A到點(diǎn)C’的最短距離.而在正方體中,線段AC’變成了折線,但長(zhǎng)度沒(méi)有改變,所以頂點(diǎn)A到頂點(diǎn)C’的最短距離就是在圖2中線段AC’的長(zhǎng)度.
在矩形ACC’A’中,因?yàn)锳C=2,CC’=1
所以由勾股定理得AC’=.
∴從頂點(diǎn)A到頂點(diǎn)C’的最短距離為
復(fù)習(xí)第二步:
1.易錯(cuò)點(diǎn):本節(jié)同學(xué)們的易錯(cuò)點(diǎn)是:在用勾股定理求第三邊時(shí),分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯(cuò)誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時(shí)要弄清楚解題中的三角形是否為直角三角形.
例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長(zhǎng)c.
錯(cuò)解:因?yàn)閍=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細(xì),忽視了∠B=90°,這一條件而導(dǎo)致沒(méi)有分清直角三角形的斜邊和直角邊,錯(cuò)把c當(dāng)成了斜邊.
正解:因?yàn)閍=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運(yùn)用勾股定理時(shí),一定分清斜邊和直角邊,不能機(jī)械套用c2=a2+b2
例5:已知一個(gè)Rt△ABC的兩邊長(zhǎng)分別為3和4,則第三邊長(zhǎng)的平方是
錯(cuò)解:因?yàn)镽t△ABC的兩邊長(zhǎng)分別為3和4,根據(jù)勾股定理得:第三邊長(zhǎng)的平方是32+42=25
剖析:此題并沒(méi)有告訴我們已知的邊長(zhǎng)4一定是直角邊,而4有可能是斜邊,因此要分類(lèi)討論.
正解:當(dāng)4為直角邊時(shí),根據(jù)勾股定理第三邊長(zhǎng)的平方是25;當(dāng)4為斜邊時(shí),第三邊長(zhǎng)的平方為:42-32=7,因此第三邊長(zhǎng)的平方為:25或7.
溫馨提示:在用勾股定理時(shí),當(dāng)斜邊沒(méi)有確定時(shí),應(yīng)進(jìn)行分類(lèi)討論.
例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.
錯(cuò)解:由勾股定理得c=剖析:此題并沒(méi)有告訴你⊿ABC為直角三角形
數(shù)學(xué)勾股定理教案 篇2
課題:
勾股定理
課型:
新授課
課時(shí)安排:
1課時(shí)
教學(xué)目的:
一、知識(shí)與技能目標(biāo)理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
二、過(guò)程與方法目標(biāo)通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
三、情感、態(tài)度與價(jià)值觀目標(biāo)了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛(ài)國(guó)熱情;學(xué)生通過(guò)自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過(guò)程:
(一)情境導(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹(shù),20xx年國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過(guò)圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
2、多媒體課件演示FLASH小動(dòng)畫(huà)片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。
(二)學(xué)習(xí)新課問(wèn)題一是等腰直角三角形的情形(通過(guò)多媒體給出圖形),判斷外圍三個(gè)正方形面積有何關(guān)系?相傳2500年前,畢達(dá)哥拉斯(古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時(shí),發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對(duì)于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對(duì)于一般的直角三角形是否也有這樣的性質(zhì)呢?請(qǐng)大家畫(huà)一個(gè)任意的直角三角形,量一量,算一算。問(wèn)題二是一般直角三角形的情形,判斷這時(shí)外圍三個(gè)正方形的面積是否也存在這種關(guān)系?通過(guò)這個(gè)觀察和驗(yàn)算這個(gè)直角三角形外圍的三個(gè)正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過(guò)前面對(duì)兩個(gè)問(wèn)題的驗(yàn)證,可以得到勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊為c,那么a2+b2=c2。
(三)鞏固練習(xí)1、如果一個(gè)直角三角形的兩條邊長(zhǎng)分別是6厘米和8厘米,那么這個(gè)三角形的周長(zhǎng)是多少厘米?2、解決課程開(kāi)始時(shí)提出的情境問(wèn)題。
(四)小結(jié)
1、背景知識(shí)介紹①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;②康熙數(shù)學(xué)專(zhuān)著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨(dú)創(chuàng)。
2、通過(guò)這節(jié)課的學(xué)習(xí),你會(huì)寫(xiě)方程了嗎?你有什么收獲和體會(huì)?
(五)作業(yè)練習(xí)18.1中的1、2、3題。板書(shū)設(shè)計(jì):勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊為c,那么a2+b2=c2。
數(shù)學(xué)勾股定理教案 篇3
一、回顧交流,合作學(xué)習(xí)
【活動(dòng)方略】
活動(dòng)設(shè)計(jì):教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報(bào),匯報(bào)時(shí)可借助投影儀,要求學(xué)生上臺(tái)匯報(bào),最后教師歸納.
【問(wèn)題探究1】(投影顯示)
飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到小明頭頂正上方4000米處,過(guò)了20秒,飛機(jī)距離小明頭頂5000米,問(wèn):飛機(jī)飛行了多少千米?
思路點(diǎn)撥:根據(jù)題意,可以先畫(huà)出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時(shí)飛行多少千米,就要知道飛機(jī)在20秒時(shí)間里飛行的路程,也就是圖中的BC長(zhǎng),在這個(gè)問(wèn)題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來(lái)計(jì)算出BC的長(zhǎng).(3000千米)
【活動(dòng)方略】
教師活動(dòng):操作投影儀,引導(dǎo)學(xué)生解決問(wèn)題,請(qǐng)兩位學(xué)生上臺(tái)演示,然后講評(píng).
學(xué)生活動(dòng):獨(dú)立完成“問(wèn)題探究1”,然后踴躍舉手,上臺(tái)演示或與同伴交流.
【問(wèn)題探究2】(投影顯示)
一個(gè)零件的形狀如右圖,按規(guī)定這個(gè)零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請(qǐng)你判斷這個(gè)零件符合要求嗎?為什么?
思路點(diǎn)撥:要檢驗(yàn)這個(gè)零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過(guò)勾股定理的逆定理予以解決:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個(gè)零件符合要求.
【活動(dòng)方略】
教師活動(dòng):操作投影儀,關(guān)注學(xué)生的思維,請(qǐng)兩位學(xué)生上講臺(tái)演示之后再評(píng)講.
學(xué)生活動(dòng):思考后,完成“問(wèn)題探究2”,小結(jié)方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD為直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此這個(gè)零件符合要求.
【問(wèn)題探究3】
甲、乙兩位探險(xiǎn)者在沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6千米/時(shí)的速度向東行走,1小時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?
思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
【活動(dòng)方略】
教師活動(dòng):操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請(qǐng)兩位學(xué)生上講臺(tái)“板演”.
學(xué)生活動(dòng):課堂練習(xí),與同伴交流或舉手爭(zhēng)取上臺(tái)演示
數(shù)學(xué)勾股定理教案 篇4
[教學(xué)分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書(shū)所體現(xiàn)的主要思想。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書(shū)從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書(shū)以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國(guó)古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數(shù)學(xué)問(wèn)題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
[教學(xué)目標(biāo)]
一、 知識(shí)與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題
3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說(shuō)理
二、 過(guò)程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
三、 情感與態(tài)度目標(biāo)
通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
四、 重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2熟練運(yùn)用勾股定理
[教學(xué)過(guò)程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。
周公問(wèn):“竊聞乎大夫善數(shù)也,請(qǐng)問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問(wèn)數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>
2、教師展示圖片并介紹第二情景
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問(wèn)題
1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋?zhuān)?由于我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。
第二種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為 的正方形“小洞”。
因?yàn)檫呴L(zhǎng)為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。
這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。
例題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問(wèn)題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過(guò)提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過(guò)數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
數(shù)學(xué)勾股定理教案 篇5
一、全章要點(diǎn)
1、勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)
2、勾股定理的逆定理 如果三角形的三邊長(zhǎng):a、b、c,則有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。
3、勾股定理的證明 常見(jiàn)方法如下:
方法一: , ,化簡(jiǎn)可證.
方法二:
四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積.
四個(gè)直角三角形的面積與小正方形面積的和為
大正方形面積為 所以
方法三: , ,化簡(jiǎn)得證
4、勾股數(shù) 記住常見(jiàn)的勾股數(shù)可以提高解題速度,如 ; ; ; ;8,15,17;9,40,41等
二、經(jīng)典訓(xùn)練
(一)選擇題:
1. 下列說(shuō)法正確的是( )
A.若 a、b、c是△ABC的三邊,則a2+b2=c2;
B.若 a、b、c是Rt△ABC的三邊,則a2+b2=c2;
C.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2;
D.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2.
2. △ABC的三條邊長(zhǎng)分別是 、 、 ,則下列各式成立的是( )
A. B. C. D.
3.直角三角形中一直角邊的長(zhǎng)為9,另兩邊為連續(xù)自然數(shù),則直角三角形的周長(zhǎng)為( )
A.121 B.120 C.90 D.不能確定
4.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長(zhǎng)為( )
A.42 B.32 C.42 或 32 D.37 或 33
(二)填空題:
5.斜邊的邊長(zhǎng)為 ,一條直角邊長(zhǎng)為 的直角三角形的面積是 .
6.假如有一個(gè)三角形是直角三角形,那么三邊 、 、 之間應(yīng)滿足 ,其中 邊是直角所對(duì)的邊;如果一個(gè)三角形的三邊 、 、 滿足 ,那么這個(gè)三角形是 三角形,其中 邊是 邊, 邊所對(duì)的角是 .
7.一個(gè)三角形三邊之比是 ,則按角分類(lèi)它是 三角形.
8. 若三角形的三個(gè)內(nèi)角的比是 ,最短邊長(zhǎng)為 ,最長(zhǎng)邊長(zhǎng)為 ,則這個(gè)三角形三個(gè)角度數(shù)分別是 ,另外一邊的平方是 .
9.如圖,已知 中, , , ,以直角邊 為直徑作半圓,則這個(gè)半圓的面積是 .
10. 一長(zhǎng)方形的一邊長(zhǎng)為 ,面積為 ,那么它的一條對(duì)角線長(zhǎng)是 .
三、綜合發(fā)展:
11.如圖,一個(gè)高 、寬 的大門(mén),需要在對(duì)角線的頂點(diǎn)間加固一個(gè)木條,求木條的長(zhǎng).
12.一個(gè)三角形三條邊的長(zhǎng)分別為 , , ,這個(gè)三角形最長(zhǎng)邊上的高是多少?
13.如圖,小李準(zhǔn)備建一個(gè)蔬菜大棚,棚寬4m,高3m,長(zhǎng)20m,棚的斜面用塑料薄膜遮蓋,不計(jì)墻的厚度,請(qǐng)計(jì)算陽(yáng)光透過(guò)的最大面積.
14.如圖,有一只小鳥(niǎo)在一棵高13m的大樹(shù)樹(shù)梢上捉蟲(chóng)子,它的伙伴在離該樹(shù)12m,高8m的一棵小樹(shù)樹(shù)梢上發(fā)出友好的叫聲,它立刻以2m/s的速度飛向小樹(shù)樹(shù)梢,那么這只小鳥(niǎo)至少幾秒才可能到達(dá)小樹(shù)和伙伴在一起?
15.如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn) 離點(diǎn) 的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn) 爬到點(diǎn) ,需要爬行的最短距離是多少?
16.中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車(chē)在城街路上行駛速度不得超過(guò) km/h.如圖,,一輛小汽車(chē)在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車(chē)速檢測(cè)儀正前方 m處,過(guò)了2s后,測(cè)得小汽車(chē)與車(chē)速檢測(cè)儀間距離為 m,這輛小汽車(chē)超速了嗎?
《勾股定理》優(yōu)秀說(shuō)課稿(合集4篇)
經(jīng)過(guò)篩選欄目小編發(fā)現(xiàn)“《勾股定理》優(yōu)秀說(shuō)課稿”是值得一看的文章之一,僅供參考請(qǐng)大家仔細(xì)閱讀。教師的優(yōu)良品德,在一定程度上會(huì)影響他的學(xué)生,作為教師是相當(dāng)有必要提前準(zhǔn)備好教案的。編寫(xiě)教案能加深教師對(duì)課堂內(nèi)容的反思。
《勾股定理》優(yōu)秀說(shuō)課稿(篇1)
1、知識(shí)與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過(guò)探究能夠發(fā)現(xiàn)直角三角形中兩個(gè)直角邊的平方和等于斜邊的平方和。
2、過(guò)程與方法目標(biāo):經(jīng)歷用測(cè)量和數(shù)格子的辦法探索勾股定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。
3、情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)本節(jié)課的學(xué)習(xí),培養(yǎng)主動(dòng)探究的習(xí)慣,并進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
了解勾股定理的由來(lái),并能用它來(lái)解決一些簡(jiǎn)單的問(wèn)題。
首先出示:投影1(章前的圖文)并介紹我國(guó)古代在勾股定理研究方面的貢獻(xiàn),結(jié)合課本第六頁(yè)談一談我國(guó)是最早了解勾股定理的國(guó)家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示課件觀察后回答:
1、觀察圖1—2,正方形A中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。
正方形B中有_______個(gè)小方格,即B的面積為_(kāi)_____個(gè)單位。
正方形C中有_______個(gè)小方格,即C的面積為_(kāi)_____個(gè)單位。
2、你是怎樣得出上面的結(jié)果的?
3、在學(xué)生交流回答的基礎(chǔ)上教師進(jìn)一步設(shè)問(wèn):圖1—2中,A,B,C面積之間有什么關(guān)系?學(xué)生交流后得到結(jié)論:A+B=C。
提問(wèn):(1)圖1—3中,A,B,C之間有什么關(guān)系?(2)從圖1—2,1—3中你發(fā)現(xiàn)什么?
學(xué)生討論、交流后,得出結(jié)論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。
圖1—2、1—3中,你能用三角形的邊長(zhǎng)表示正方形的面積嗎?
(1)你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間的關(guān)系嗎?在同學(xué)交流的基礎(chǔ)上,共同探討得出:直角三角形兩直角邊的平方和等于斜邊的平方。這就是著名的“勾股定理”。也就是說(shuō)如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國(guó)古代稱直角三角形的較短的直角邊為勾,較長(zhǎng)的為股,斜邊為弦,這就是勾股定理的由來(lái)。
(2)分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度(學(xué)生測(cè)量后回答斜邊長(zhǎng)為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?
我們常見(jiàn)的電視的尺寸:29英寸(74厘米)的電視機(jī),指的是屏幕的長(zhǎng)嗎?還是指的是屏幕的寬?那他指什么呢?能否運(yùn)用剛才所學(xué)的知識(shí),檢驗(yàn)一下電視劇的尺寸是否合格?
三、鞏固練習(xí)。
1、在圖1—1的問(wèn)題中,折斷之前旗桿有多高?
=25即:c=5辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題三角形ABC并未說(shuō)明它是否是直角三角形,所以用勾股定理就沒(méi)有依據(jù)。(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并未交待C是斜邊。
鼓勵(lì)學(xué)生自己總結(jié)、談?wù)勛约罕竟?jié)課的收獲,以及自己對(duì)勾股定理的理解,老師加以糾正和補(bǔ)充。
《勾股定理》優(yōu)秀說(shuō)課稿(篇2)
勾股定理歷史悠久,是初中數(shù)學(xué)中非常重要的一個(gè)結(jié)論,稱為“幾何學(xué)的基石”,在數(shù)學(xué)學(xué)習(xí)中有重要的地位。它是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特征,學(xué)習(xí)勾股定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必要基礎(chǔ)。因而勾股定理具有學(xué)科的基礎(chǔ)性和廣泛的應(yīng)用。
二、學(xué)情分析:
八年級(jí)學(xué)生已經(jīng)學(xué)習(xí)了三角形的一些基本知識(shí);也經(jīng)歷過(guò)利用圖形面積來(lái)探求數(shù)學(xué)公式過(guò)程。如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。本節(jié)課在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,使學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。
但是這個(gè)年齡的孩子的思維偏重于直觀。而勾股定理的探究方法雖然很多,但對(duì)于八年級(jí)的學(xué)生,如果直接讓探究直角三角形三邊之間的關(guān)系,學(xué)生大多會(huì)思考三邊之間的一次關(guān)系,而較難想到三邊之間的平方關(guān)系,可能會(huì)陷入較長(zhǎng)時(shí)間的困惑,而且沒(méi)有教師的指引可能最終都不能走到正確道路上來(lái),為此,從特殊的等腰直角三角形入手,提出問(wèn)題,課堂中,注重學(xué)生的動(dòng)手操,引導(dǎo)學(xué)生從具體到一般,層層遞進(jìn),引導(dǎo)學(xué)生親歷定理的產(chǎn)生和驗(yàn)證過(guò)程,作為以后相關(guān)知識(shí)的繼續(xù)學(xué)習(xí)奠定良好的基礎(chǔ)。
讓學(xué)生經(jīng)歷勾股定理的探究過(guò)程,進(jìn)一步豐富學(xué)生的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展學(xué)生的推理能力,以及分析問(wèn)題、解決問(wèn)題的能力,同時(shí)感受勾股定理的文化價(jià)值。
三、教學(xué)目標(biāo):
1、讓學(xué)生親歷“發(fā)現(xiàn)問(wèn)題—提出問(wèn)題—一解決問(wèn)題”、從“特殊到一般”的過(guò)程,體會(huì)類(lèi)比、轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。
2、讓學(xué)生經(jīng)歷實(shí)踐操作、計(jì)算分析、拼圖實(shí)驗(yàn)的過(guò)程,在過(guò)程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類(lèi)型的學(xué)生在這些過(guò)程中發(fā)揮自己特長(zhǎng),通過(guò)解決問(wèn)題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過(guò)老師的介紹,感受勾股定理的文化價(jià)值。
八、 教學(xué)準(zhǔn)備:已剪好的若干個(gè)邊長(zhǎng)為整數(shù)的直角三角形、方格紙 、幾何畫(huà)板課件
老師:同學(xué)們,我們?cè)谄吣昙?jí)已經(jīng)學(xué)習(xí)過(guò)三角形的一些基本知識(shí),我們也了解了一些特殊的三角形,你知道的特殊的三角形有哪些?
對(duì)于等腰三角形和等邊三角形你知道些什么?直角三角形呢?邊與邊的關(guān)系呢?(課件出示)
老師提出問(wèn)題,學(xué)生獨(dú)立思考,同桌兩人交流討論,再由代表公布。
這是對(duì)特殊的兩類(lèi)三角形的回顧,從學(xué)生從原有的認(rèn)知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo)。
提出問(wèn)題,學(xué)生思考,該如何研究呢?測(cè)量?還是其他方法呢?
以問(wèn)題串的形式,引發(fā)學(xué)生思考,測(cè)量后學(xué)生不能發(fā)現(xiàn)規(guī)律,進(jìn)而引出研究問(wèn)題的方法:可以從簡(jiǎn)單的特殊的入手。
問(wèn)題1.已知Rt△ABC,∠C=90°
若 a=b=1,你能寫(xiě)出含c的等式嗎?
若 a=b=2,你能寫(xiě)出含c的等式嗎?
若 a=1, b=2呢?
思考:
(1)(2)的條件有什么共同點(diǎn)?(3)的條件與(1)(2)有什么區(qū)別?
(1)(2)的結(jié)果有什么共同點(diǎn)?c2=2,c2=8能讓我們想起什么?
學(xué)生難以得出時(shí),老師給予適當(dāng)?shù)奶崾荆梢詮拿娣e入手。
學(xué)生思考,并暢所欲言。
學(xué)生不難得出平方和正方形的面積有關(guān)系,所以引導(dǎo)學(xué)生利用面積來(lái)探求關(guān)系。
當(dāng)老師擁有完美的方法解決問(wèn)題的時(shí)候,學(xué)生好奇的不僅是老師解決問(wèn)題的方法,學(xué)生更加關(guān)心的是老師是如何想到這一方法的,從特殊的簡(jiǎn)單的入手,是學(xué)生容易接受的。
讓學(xué)生體會(huì)到當(dāng)一般性的問(wèn)題不好解決時(shí),可以先將一般問(wèn)題轉(zhuǎn)化為特殊問(wèn)題來(lái)研究。
從學(xué)生認(rèn)知基礎(chǔ)、已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長(zhǎng)之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺(jué)得解決今天問(wèn)題的方法并不陌生,增強(qiáng)探索問(wèn)題的信心和欲望。
問(wèn)題: 如何驗(yàn)證以c為邊長(zhǎng)的正方形的面積是否為2 ?
你能用上述方法驗(yàn)證問(wèn)題(2)的結(jié)論嗎?
教師引導(dǎo),學(xué)生觀察不難得出。
類(lèi)比邊長(zhǎng)為1的等腰直角三角形在網(wǎng)格中得出斜邊的平方為2的方法,學(xué)生不難想到在方格紙中利用面積得到。
當(dāng)學(xué)生在方格紙上畫(huà)出這個(gè)正方形后,采用補(bǔ)、拼、割的辦法得出。
對(duì)于問(wèn)題(3),當(dāng)學(xué)生在方格紙上畫(huà)出這個(gè)正方形后,讓學(xué)生小組討論交流,選代表發(fā)言。學(xué)生類(lèi)比前面方法,采用割或者補(bǔ)的辦法得出。
引導(dǎo)學(xué)生求這個(gè)正方形面積的方法可以又多種,拓展學(xué)生的思維。
讓學(xué)生在問(wèn)題(1)的啟發(fā)下,得出方法,自己動(dòng)手實(shí)踐,體會(huì)成功的喜悅,激發(fā)內(nèi)驅(qū)力。
展示學(xué)生的方法:割的方法,補(bǔ)的方法,平移的方法,旋轉(zhuǎn)的方法,(旋轉(zhuǎn)的方法是正確的,但是它只適應(yīng)于斜邊是整數(shù)的情況,況且學(xué)生在此時(shí)還不會(huì)計(jì)算斜邊的長(zhǎng),因此這種方法沒(méi)有一般性,如果學(xué)生有提到,教師應(yīng)予以解釋。)肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生進(jìn)行總結(jié),把圖形進(jìn)行割和補(bǔ),即把不能利用網(wǎng)格線直接計(jì)算面積的圖形轉(zhuǎn)化為可以利用網(wǎng)格線直接計(jì)算面積的圖形。讓學(xué)生體會(huì)數(shù)學(xué)的轉(zhuǎn)化思想。
問(wèn)題1.(4)若a=2,b=3.你能求c2嗎?
讓學(xué)生自己在方格紙上畫(huà)出直角邊分別為2和3的直角三角形,類(lèi)比前面的方法,得出c的平方。
通過(guò)此活動(dòng)鍛煉了學(xué)生動(dòng)手能力,體現(xiàn)了活動(dòng)數(shù)學(xué)的思想。同時(shí)也是對(duì)割、補(bǔ)方法計(jì)算正方形面積做了加深理解。
問(wèn)題2. 梳理上述四個(gè)問(wèn)題的邊長(zhǎng),并思考a、b、c之間有什么聯(lián)系?
問(wèn)題3.(1)在網(wǎng)格中能驗(yàn)證a2+b2=c2嗎?
活動(dòng):在網(wǎng)格紙上任意畫(huà)一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形,并分別以這個(gè)直角三角形的各邊為邊向外做出三個(gè)正方形,求出此時(shí)三個(gè)正方形的面積。
學(xué)生活動(dòng)時(shí),教師要積極的參與到學(xué)生活動(dòng)中去,其中以斜邊為邊向外作正方形時(shí),另兩個(gè)頂點(diǎn)位置的確定是這一活動(dòng)的難點(diǎn),教師巡視是如果有學(xué)生在這兩處存在問(wèn)題的話,教師就以中國(guó)象棋馬走日,連續(xù)走四次所形成的線路圖給學(xué)生啟發(fā)。
《勾股定理》優(yōu)秀說(shuō)課稿(篇3)
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:
1、 能說(shuō)出勾股定理的內(nèi)容。
2、 會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。
3、 在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察―猜想―歸納―驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。
4、 通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。
二、教法與學(xué)法分析:
教法分析:針對(duì)初二年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題―實(shí)驗(yàn)操作―歸納驗(yàn)證―問(wèn)題解決―課堂小結(jié)―布置作業(yè)六部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
(一)提出問(wèn)題:
首先創(chuàng)設(shè)這樣一個(gè)問(wèn)題情境:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?問(wèn)題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問(wèn)題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問(wèn)題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來(lái)源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程。
(二)實(shí)驗(yàn)操作:
1、投影課本圖1―1,圖1―2的有關(guān)直角三角形問(wèn)題,讓學(xué)生計(jì)算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數(shù)小方格的個(gè)數(shù),還是將C劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。
2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1―3,圖1―4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫(huà)出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問(wèn)題和解決問(wèn)題的能力在無(wú)形中得到了提高,這對(duì)后面的學(xué)習(xí)及有幫助。
3、給出一個(gè)邊長(zhǎng)為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。
(三)歸納驗(yàn)證:
1、歸納 通過(guò)對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語(yǔ)言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。
2、驗(yàn)證 為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過(guò)測(cè)量、計(jì)算來(lái)驗(yàn)證結(jié)論的正確性。這一過(guò)程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育。
(四)問(wèn)題解決:
讓學(xué)生解決開(kāi)頭的實(shí)際問(wèn)題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。
《勾股定理》優(yōu)秀說(shuō)課稿(篇4)
隨著社會(huì)的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識(shí)的學(xué)習(xí),更重要的是體現(xiàn)知識(shí)的認(rèn)知發(fā)展過(guò)程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實(shí)踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課。《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動(dòng)進(jìn)行觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動(dòng)不能單純的依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
本節(jié)知識(shí)是在學(xué)生掌握了直角三角形的三個(gè)性質(zhì):直角三角形兩銳角互余和30°所對(duì)的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為30°的基礎(chǔ)上展開(kāi)的。勾股定理是直角三角形的一個(gè)非常重要的性質(zhì),它揭示了一個(gè)直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計(jì)算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個(gè)幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過(guò)程中,無(wú)論是課前準(zhǔn)備和課上交流以及課下活動(dòng)都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實(shí)際生活中的重要作用,是進(jìn)行愛(ài)國(guó)教育的重要題材!
本節(jié)課的教育對(duì)象是初二下的學(xué)生,共性是思維活躍,參與意識(shí)較強(qiáng)。而且一般家庭都有電腦,對(duì)教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡(jiǎn)單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
教案范文: 授課教學(xué)反思推薦
學(xué)生們有一個(gè)生動(dòng)有趣的課堂也是離不開(kāi)老師提前備好教案課件,每位老師都需要認(rèn)真準(zhǔn)備自己的教案課件。同時(shí)要清楚知道一份優(yōu)秀教案課件,也能快速梳理各個(gè)知識(shí)點(diǎn)。優(yōu)質(zhì)的教案課件是在哪些地方有值得借鑒的地方呢?或許你需要"教案范文: 授課教學(xué)反思推薦"這樣的內(nèi)容,不妨參考一下。希望你喜歡!
收獲:
一、網(wǎng)上教學(xué)抓住學(xué)生是關(guān)鍵。為了把學(xué)生吸引到課堂上,主要采取以下辦法:1、課前用配樂(lè)朗誦或課文相關(guān)視頻增加趣味性,吸引學(xué)生。2、課堂及時(shí)拋出一些問(wèn)題,讓學(xué)生用互動(dòng)面板、連麥及時(shí)互動(dòng),鼓勵(lì)學(xué)生積極參與。3、課下要求學(xué)生上傳課堂筆記,檢驗(yàn)他們的聽(tīng)課狀況。
二、課下通過(guò)作業(yè)及時(shí)鞏固反饋。學(xué)生的學(xué)習(xí)狀效果需要通過(guò)作業(yè)來(lái)進(jìn)行鞏固反饋,我堅(jiān)持做到今日事,今日畢,每天及時(shí)批改反饋學(xué)生的作業(yè)。
困惑:
一、線上課兼顧到和學(xué)生互動(dòng)進(jìn)度就比較慢。
二、部分學(xué)生不上線,不完成作業(yè),想盡辦法但鞭長(zhǎng)莫及。
努力方向:今天教研聽(tīng)到麗麗老師介紹的小組互背的讀書(shū)方法,我覺(jué)得很好,下面準(zhǔn)備嘗試一下。
以上就是《教案范文: 勾股定理教學(xué)反思范文》的全部?jī)?nèi)容,想了解更多內(nèi)容,請(qǐng)點(diǎn)擊查看或關(guān)注本網(wǎng)站內(nèi)容更新,感謝您的關(guān)注!
相關(guān)推薦
更多>-
【最新范文】 勾股定理的逆定理教案篇二 每個(gè)老師在上課前需要規(guī)劃好教案課件,大家在細(xì)心籌備教案課件中。只有寫(xiě)好教案課件計(jì)劃,才能促進(jìn)我們的工作進(jìn)一步發(fā)展!你們到底知道多少優(yōu)秀的教案課件呢?以下是小編為大家收集的“ 勾股定理的逆定理教案篇二”但愿對(duì)您的學(xué)習(xí)工作帶來(lái)幫助。重點(diǎn)、難點(diǎn)分析本節(jié)內(nèi)容的重點(diǎn)是勾股定理的逆定理及其應(yīng)用.它可用邊的關(guān)系判...
-
《勾股定理的逆定理》教學(xué)反思 《勾股定理的逆定理》教學(xué)反思 一、本節(jié)課的成功之處: 1、本節(jié)課以學(xué)生活動(dòng)為主線,通過(guò)學(xué)生回顧舊知識(shí)(勾股定理),然后設(shè)計(jì)練習(xí)題從估算到實(shí)驗(yàn)活動(dòng)結(jié)果的產(chǎn)生讓學(xué)生總結(jié)規(guī)律,最后回到解決生活中實(shí)際問(wèn)題,思...
- 勾股定理11-19
- 最新勾股定理的教學(xué)反思集錦04-19
- 勾股定理教學(xué)反思1000字系列03-26
- 探索勾股定理12-08
- 勾股定理逆定理教案1000字精選11-24
- 《勾股定理的應(yīng)用》教案12-08
- 《勾股定理》復(fù)習(xí)課教學(xué)設(shè)計(jì)12-01
- 從勾股定理談起12-17
一年級(jí)《四季》教學(xué)反思簡(jiǎn)短1000字精選6篇12-01
- 幼兒園《臘八節(jié)》教案1100字(精選6篇)12-01
- 一年級(jí)下冊(cè)語(yǔ)文教案課件及反思精選3篇12-01
- [教案參考] 一年級(jí)數(shù)學(xué)優(yōu)秀教案模板壹篇12-01
- 神奇的指紋教案之四12-01
- [課件必備] 勾股定理說(shuō)課稿篇二08-29
- 小學(xué)憫農(nóng)教學(xué)教案(模板6篇)12-01
- 大班體育教學(xué)設(shè)計(jì):小猴智救白龍馬1篇12-01
- 課件推薦: 《走進(jìn)麗江》教案1500字12-01
- 小班美術(shù)公開(kāi)課教案課件800字系列12-01
- 教學(xué)反思觀后感11-04
- 勾股定理11-19
- 值得參考!數(shù)學(xué)勾股定理教案04-01
- 探索勾股定理12-08
- 數(shù)學(xué)勾股定理教學(xué)設(shè)計(jì)之五12-01
- [參考]數(shù)學(xué)勾股定理教案(精選5篇)11-29