小學(xué)數(shù)學(xué)說(shuō)課教案
發(fā)表時(shí)間:2020-11-19高二數(shù)學(xué)上冊(cè)十五個(gè)重要知識(shí)點(diǎn)匯總。
俗話(huà)說(shuō),居安思危,思則有備,有備無(wú)患。高中教師要準(zhǔn)備好教案,這是高中教師需要精心準(zhǔn)備的。教案可以讓學(xué)生更容易聽(tīng)懂所講的內(nèi)容,幫助授課經(jīng)驗(yàn)少的高中教師教學(xué)。高中教案的內(nèi)容要寫(xiě)些什么更好呢?急您所急,小編為朋友們了收集和編輯了“高二數(shù)學(xué)上冊(cè)十五個(gè)重要知識(shí)點(diǎn)匯總”,僅供參考,大家一起來(lái)看看吧。
高二數(shù)學(xué)上冊(cè)十五個(gè)重要知識(shí)點(diǎn)匯總
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.
二、函數(shù)(30課時(shí),12個(gè))1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.
三、數(shù)列(12課時(shí),5個(gè))1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.
四、三角函數(shù)(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線(xiàn);5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.
五、平面向量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線(xiàn)段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.
六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式.
七、直線(xiàn)和圓的方程(22課時(shí),12個(gè))1.直線(xiàn)的傾斜角和斜率;2.直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;3.直線(xiàn)方程的一般式;4.兩條直線(xiàn)平行與垂直的條件;5.兩條直線(xiàn)的交角;6.點(diǎn)到直線(xiàn)的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線(xiàn)性規(guī)劃問(wèn)題.9.曲線(xiàn)與方程的概念;10.由已知條件列出曲線(xiàn)方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.
八、圓錐曲線(xiàn)(18課時(shí),7個(gè))1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線(xiàn)及其標(biāo)準(zhǔn)方程;5.雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);6.拋物線(xiàn)及其標(biāo)準(zhǔn)方程;7.拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì).
九、(B)直線(xiàn)、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線(xiàn);4.直線(xiàn)和平面平行的判定與性質(zhì);5,直線(xiàn)和平面垂直的判與性質(zhì);6.三垂線(xiàn)定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線(xiàn)的方向向量;12.異面直線(xiàn)所成的角;13.異面直線(xiàn)的公垂線(xiàn);14異面直線(xiàn)的距離;15.直線(xiàn)和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線(xiàn)和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))1.分類(lèi)計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì).
十一、概率(12課時(shí),5個(gè))1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修Ⅱ(24個(gè))
十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線(xiàn)性回歸.
十三、極限(12課時(shí),6個(gè))1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。
十四、導(dǎo)數(shù)(18課時(shí),8個(gè))1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的最大值和最小值.
十五、復(fù)數(shù)(4課時(shí),4個(gè))1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法。
精選閱讀
高二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)匯總(順口溜)
高二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)匯總(順口溜)
《不等等式》
解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無(wú)理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭(zhēng)高下。
直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來(lái)幫助,畫(huà)圖建模構(gòu)造法。
《立體幾何》
點(diǎn)線(xiàn)面三位一體,柱錐臺(tái)球?yàn)榇怼>嚯x都從點(diǎn)出發(fā),角度皆為線(xiàn)線(xiàn)成。
垂直平行是重點(diǎn),證明須弄清概念。線(xiàn)線(xiàn)線(xiàn)面和面面、三對(duì)之間循環(huán)現(xiàn)。
方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫(huà)好移出的圖形。
立體幾何輔助線(xiàn),常用垂線(xiàn)和平面。射影概念很重要,對(duì)于解題最關(guān)鍵。
異面直線(xiàn)二面角,體積射影公式活。公理性質(zhì)三垂線(xiàn),解決問(wèn)題一大片。
《平面解析幾何》
有向線(xiàn)段直線(xiàn)圓,橢圓雙曲拋物線(xiàn),參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱(chēng)典范。
笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者—一來(lái)對(duì)應(yīng),開(kāi)創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說(shuō)待定系數(shù)法,實(shí)為方程組思想。
三種類(lèi)型集大成,畫(huà)出曲線(xiàn)求方程,給了方程作曲線(xiàn),曲線(xiàn)位置關(guān)系判。
四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。
解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)
《排列、組合、二項(xiàng)式定理》
加法乘法兩原理,貫穿始終的法則。與序無(wú)關(guān)是組合,要求有序是排列。
兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問(wèn)題須轉(zhuǎn)化。
排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關(guān)于二項(xiàng)式定理,中國(guó)楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。
《復(fù)數(shù)》
虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。
對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長(zhǎng)即是模,常將數(shù)形來(lái)結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來(lái)轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長(zhǎng)短。
三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開(kāi)方極方便。
輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,
兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。
高二數(shù)學(xué)上冊(cè)《隨機(jī)抽樣》知識(shí)點(diǎn)總結(jié)
高二數(shù)學(xué)上冊(cè)《隨機(jī)抽樣》知識(shí)點(diǎn)總結(jié)
1:簡(jiǎn)單隨機(jī)抽樣
(1)總體和樣本
①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.②把每個(gè)研究對(duì)象叫做個(gè)體.③把總體中個(gè)體的總數(shù)叫做總體容量.
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,xx研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數(shù)稱(chēng)為樣本容量.
(2)簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類(lèi)、排隊(duì)等,完全隨
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
(3)簡(jiǎn)單隨機(jī)抽樣常用的方法:
①抽簽法②隨機(jī)數(shù)表法③計(jì)算機(jī)模擬法③使用統(tǒng)計(jì)軟件直接抽取。
在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
(4)抽簽法:
①給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);②準(zhǔn)備抽簽的工具,實(shí)施抽簽;
③對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查
簡(jiǎn)單隨機(jī)抽樣知識(shí)點(diǎn)的全部?jī)?nèi)容就是這些,更多優(yōu)秀的內(nèi)容希望考生可以學(xué)習(xí)。
高二化學(xué)重要知識(shí)點(diǎn)總結(jié)
古人云,工欲善其事,必先利其器。教師要準(zhǔn)備好教案為之后的教學(xué)做準(zhǔn)備。教案可以讓學(xué)生更好的消化課堂內(nèi)容,有效的提高課堂的教學(xué)效率。那么,你知道教案要怎么寫(xiě)呢?下面是小編幫大家編輯的《高二化學(xué)重要知識(shí)點(diǎn)總結(jié)》,相信能對(duì)大家有所幫助。
高二化學(xué)重要知識(shí)點(diǎn)總結(jié)
顏色的規(guī)律
(1)常見(jiàn)物質(zhì)顏色
①以紅色為基色的物質(zhì)
紅色:難溶于水的Cu,Cu2O,F(xiàn)e2O3,HgO等。
堿液中的酚酞、酸液中甲基橙、石蕊及pH試紙遇到較強(qiáng)酸時(shí)及品紅溶液。
橙紅色:濃溴水、甲基橙溶液、氧化汞等。
棕紅色:Fe(OH)3固體、Fe(OH)3水溶膠體等。
②以黃色為基色的物質(zhì)
黃色:難溶于水的金、碘化銀、磷酸銀、硫磺、黃鐵礦、黃銅礦(CuFeS2)等。
溶于水的FeCl3、甲基橙在堿液中、鈉離子焰色及TNT等。
淺黃色:溴化銀、碳酦銀、硫沉淀、硫在CS2中的溶液,還有黃磷、Na2O2、氟氣。
棕黃色:銅在氯氣中燃燒生成CuCl2的煙。
③以棕或褐色為基色的物質(zhì)
碘水淺棕色、碘酒棕褐色、鐵在氯氣中燃燒生成FeCl3的煙等
④以藍(lán)色為基色的物質(zhì)
藍(lán)色:新制Cu(OH)2固體、膽礬、硝酸銅、溶液中淀粉與碘變藍(lán)、石蕊試液堿變藍(lán)、pH試紙與弱堿變藍(lán)等。
淺藍(lán)色:臭氧、液氧等
藍(lán)色火焰:硫、硫化氫、一氧化碳的火焰。甲烷、氫氣火焰(藍(lán)色易受干擾)。
⑤以綠色為色的物質(zhì)
淺綠色:Cu2(OH)2CO3,F(xiàn)eCl2,F(xiàn)eSO47H2O。
綠色:濃CuCl2溶液、pH試紙?jiān)诩spH=8時(shí)的顏色。
深黑綠色:K2MnO4。
黃綠色:Cl2及其CCl4的萃取液。
⑥以紫色為基色的物質(zhì)
KMnO4為深紫色、其溶液為紅紫色、碘在CCl4萃取液、碘蒸氣、中性pH試紙的顏色、K+離子的焰色等。
⑦以黑色為基色的物質(zhì)
黑色:碳粉、活性碳、木碳、煙耽氧化銅、四氧化三鐵、硫化亞銅(Cu2S)、硫化鉛、硫化汞、硫化銀、硫化亞鐵、氧化銀(Ag2O)。
淺黑色:鐵粉。
棕黑色:二氧化錳。
⑧白色物質(zhì)
無(wú)色晶體的粉末或煙塵;
與水強(qiáng)烈反應(yīng)的P2O5;
難溶于水和稀酸的:AgCl,BaSO3,PbSO4;
難溶于水的但易溶于稀酸:BaSO3,Ba3(PO4)2,BaCO3,CaCO3,Ca3(PO4)2,CaHPO4,Al(OH)3,Al2O3,ZnO,Zn(OH)2,ZnS,F(xiàn)e(OH)2,Ag2SO3,CaSO3等;
微溶于水的:CaSO4,Ca(OH)2,PbCl2,MgCO3,Ag2SO4;
與水反應(yīng)的氧化物:完全反應(yīng)的:BaO,CaO,Na2O;
不完全反應(yīng)的:MgO。
⑨灰色物質(zhì)
石墨灰色鱗片狀、砷、硒(有時(shí)灰紅色)、鍺等。
(2)離子在水溶液或水合晶體的顏色
①水合離子帶色的:
Fe2+:淺綠色;
Cu2+:藍(lán)色;
Fe3+:淺紫色呈黃色因有[FeCl4(H2O)2]2-;
MnO4-:紫色
:血紅色;
:苯酚與FeCl3的反應(yīng)開(kāi)成的紫色。
②主族元素在水溶液中的離子(包括含氧酸根)無(wú)色。
運(yùn)用上述規(guī)律便于記憶溶液或結(jié)晶水合物的顏色。
(3)主族金屬單質(zhì)顏色的特殊性
ⅠA,ⅡA,ⅣA,ⅤA的金屬大多數(shù)是銀白色。
銫:帶微黃色鋇:帶微黃色
鉛:帶藍(lán)白色鉍:帶微紅色
(4)其他金屬單質(zhì)的顏色
銅呈紫紅色(或紅),金為黃色,其他金屬多為銀白色,少數(shù)為灰白色(如鍺)。
(5)非金屬單質(zhì)的顏色
鹵素均有色;氧族除氧外,均有色;氮族除氮外,均有色;碳族除某些同素異形體(金鋼石)外,均有色。
2.物質(zhì)氣味的規(guī)律(常見(jiàn)氣體、揮發(fā)物氣味)
①?zèng)]有氣味的氣體:H2,O2,N2,CO2,CO,稀有氣體,甲烷,乙炔。
②有刺激性氣味:HCl,HBr,HI,HF,SO2,NO2,NH3HNO3(濃液)、乙醛(液)。
③具有強(qiáng)烈刺激性氣味氣體和揮發(fā)物:Cl2,Br2,甲醛,冰醋酸。
④稀有氣味:C2H2。
⑤臭雞蛋味:H2S。
⑥特殊氣味:苯(液)、甲苯(液)、苯酚(液)、石油(液)、煤焦油(液)、白磷。
⑦特殊氣味:乙醇(液)、低級(jí)酯。
⑧芳香(果香)氣味:低級(jí)酯(液)。
⑨特殊難聞氣味:不純的C2H2(混有H2S,PH3等)。
3、氣體的溶解性
(1)氣體的溶解性
①常溫極易溶解的
NH3[1(水):700(氣)]HCl(1:500)
還有HF,HBr,HI,甲醛(40%水溶液—福爾馬林)。
②常溫溶于水的
CO2(1:1)Cl2(1:2)
H2S(1:2.6)SO2(1:40)
③微溶于水的
O2,O3,C2H2等
④難溶于水的
H2,N2,CH4,C2H2,NO,CO等。
高一數(shù)學(xué)上冊(cè)重要知識(shí)點(diǎn):冪函數(shù)
高一數(shù)學(xué)上冊(cè)重要知識(shí)點(diǎn):冪函數(shù)
冪函數(shù)定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱(chēng)為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x0和x0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:
如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(guò)(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。
(6)顯然冪函數(shù)無(wú)界。