88教案網(wǎng)
高中數(shù)學教案優(yōu)秀教案
高中數(shù)學教案優(yōu)秀教案(匯總十篇)。
作為一名無私奉獻的老師,就難以避免地要準備教案,教案是教學藍圖,可以有效提高教學效率。教案要怎么寫呢?以下是小編幫大家整理的高中數(shù)學優(yōu)秀教案(通用10篇),希望能夠幫助到大家。
高中數(shù)學教案優(yōu)秀教案 篇1
教學準備
教學目標
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問題;
4、掌握向量垂直的條件。
教學重難點
教學重點:平面向量的數(shù)量積定義
教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用
教學過程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
并規(guī)定0向量與任何向量的數(shù)量積為0。
×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的`符號什么時候為正?什么時候為負?
2、兩個向量的數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定。
(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴格區(qū)分。符號“· ”在向量運算中不是乘號,既不能省略,也不能用“×”代替。
(3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0。因為其中cosq有可能為0。
高中數(shù)學教案優(yōu)秀教案 篇2
1、集合與函數(shù)概念實習作業(yè)
一、教學內(nèi)容分析
《普通高中課程標準實驗教科書·數(shù)學(1)》(人教A版)第44頁?!秾嵙曌鳂I(yè)》。本節(jié)課程體現(xiàn)數(shù)學文化的特色,學生通過了解函數(shù)的發(fā)展歷史進一步感受數(shù)學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學習方式帶給他們的學習數(shù)學的樂趣。
二、學生學習情況分析
該內(nèi)容在《普通高中課程標準實驗教科書·數(shù)學(1)》(人教A版)第44頁。學生第一次完成《實習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗,所以需要教師精心設(shè)計,做好準備工作,充分體現(xiàn)教師的.“導(dǎo)演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數(shù)學文化的熏陶。
三、設(shè)計思想
《標準》強調(diào)數(shù)學文化的重要作用,體現(xiàn)數(shù)學的文化的價值。數(shù)學教育不僅應(yīng)該幫助學生學習和掌握數(shù)學知識和技能,還應(yīng)該有助于學生了解數(shù)學的價值。讓學生逐步了解數(shù)學的思想方法、理性精神,體會數(shù)學家的創(chuàng)新精神,以及數(shù)學文明的深刻內(nèi)涵。
四、教學目標
1、了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;
2、體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;
3、在合作形式的小組學習活動中培養(yǎng)學生的領(lǐng)導(dǎo)意識、社會實踐技能和民主價值觀。
五、教學重點和難點
重點:了解函數(shù)在數(shù)學中的核心地位,以及在生活里的廣泛應(yīng)用;
難點:培養(yǎng)學生合作交流的能力以及收集和處理信息的能力。
六、教學過程設(shè)計
【課堂準備】
1、分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協(xié)調(diào)工作,確保每位學生都參加。
2、選題:根據(jù)個人興趣初步確定實習作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。
高中數(shù)學教案優(yōu)秀教案 篇3
一、教學內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象,恰當?shù)乩枚x解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導(dǎo)學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率。
四、教學目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學生學習解題的一般方法。
3、借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣。
五、教學重點與難點:
教學重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設(shè)計
【設(shè)計思路】
(一)開門見山,提出問題
一上課,我就直截了當?shù)亟o出例題1:
(1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設(shè)計意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預(yù)設(shè)】
估計多數(shù)學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當?shù)淖冃危D(zhuǎn)化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2:
(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2),求|PA|
【設(shè)計意圖】
運用圓錐曲線定義中的數(shù)量關(guān)系進行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學生的辨析。
【學情預(yù)設(shè)】
根據(jù)以往的經(jīng)驗,多數(shù)學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關(guān)鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學生應(yīng)該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習題將為學生們提供一次數(shù)學猜想、試驗的機會。
練習:
設(shè)點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設(shè)計意圖】練習題設(shè)置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導(dǎo)學生對自己的結(jié)論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的應(yīng)用舉例
1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。
2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F(xiàn)1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。
3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的'方程和點A的坐標。
4、例題:
(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。
七、教學反思
1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節(jié)省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發(fā)揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結(jié)合的教學優(yōu)勢。
2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節(jié)奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質(zhì)教育,培養(yǎng)學生的創(chuàng)新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術(shù),讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學思維能力。
高中數(shù)學教案優(yōu)秀教案 篇4
一、課題:
人教版全日制普通高級中學教科書數(shù)學第一冊(上)《2.7對數(shù)》
二、指導(dǎo)思想與理論依據(jù):
《數(shù)學課程標準》指出:高中數(shù)學課程應(yīng)講清一些基本內(nèi)容的實際背景和應(yīng)用價值,開展“數(shù)學建?!钡膶W習活動,把數(shù)學的應(yīng)用自然地融合在平常的教學中。任何一個數(shù)學概念的引入,總有它的現(xiàn)實或數(shù)學理論發(fā)展的需要。都應(yīng)強調(diào)它的現(xiàn)實背景、數(shù)學理論發(fā)展背景或數(shù)學發(fā)展歷史上的背景,這樣才能使教學內(nèi)容顯得自然和親切,讓學生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學生認識數(shù)學內(nèi)容的`實際背景和應(yīng)用的價值。在教學設(shè)計時,既要關(guān)注學生在數(shù)學情感態(tài)度和科學價值觀方面的發(fā)展,也要幫助學生理解和掌握數(shù)學基礎(chǔ)知識和基本技能,發(fā)展能力。在課程實施中,應(yīng)結(jié)合教學內(nèi)容介紹一些對數(shù)學發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學在人類社會進步、人類文化建設(shè)中的作用,同時反映社會發(fā)展對數(shù)學發(fā)展的促進作用。
三、教材分析:
本節(jié)內(nèi)容主要學習對數(shù)的概念及其對數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識。而對數(shù)的概念是對數(shù)函數(shù)部分教學中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學教學的始終。通過對數(shù)的學習,可以解決數(shù)學中知道底數(shù)和冪值求指數(shù)的問題,以及對數(shù)函數(shù)的相關(guān)問題。
四、學情分析:
在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學習指數(shù)的基礎(chǔ)上學習對數(shù)的概念是水到渠成的事。
五、教學目標:
(一)教學知識點:
1.對數(shù)的概念。
2.對數(shù)式與指數(shù)式的互化。
(二)能力目標:
1.理解對數(shù)的概念。
2.能夠進行對數(shù)式與指數(shù)式的互化。
(三)德育滲透目標:
1.認識事物之間的相互聯(lián)系與相互轉(zhuǎn)化,
2.用聯(lián)系的觀點看問題。
六、教學重點與難點:
重點是對數(shù)定義,難點是對數(shù)概念的理解。
七、教學方法:
講練結(jié)合法八、教學流程:
問題情景(復(fù)習引入)——實例分析、形成概念(導(dǎo)入新課)——深刻認識概念(對數(shù)式與指數(shù)式的互化)——變式分析、深化認識(對數(shù)的性質(zhì)、對數(shù)恒等式,介紹自然對數(shù)及常用對數(shù))——練習小結(jié)、形成反思(例題,小結(jié))
八、教學反思:
對本節(jié)內(nèi)容在進行教學設(shè)計之前,本人反復(fù)閱讀了課程標準和教材,教材內(nèi)容的處理收到了一定的預(yù)期效果,尤其是練習的處理,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設(shè)計中所預(yù)想的目標。然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(yù)(講解)還是太多。在以后的教學中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設(shè)計課堂教學,關(guān)注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。
對于本教學設(shè)計,時間倉促,不足之處在所難免,期待與各位同仁交流。
高中數(shù)學教案優(yōu)秀教案 篇5
重點難點教學:
1.正確理解映射的概念;
2.函數(shù)相等的兩個條件;
3.求函數(shù)的定義域和值域。
教學過程:
1.使學生熟練掌握函數(shù)的概念和映射的定義;
2.使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域;
3.使學生掌握函數(shù)的三種表示方法。
教學內(nèi)容:
1.函數(shù)的定義
設(shè)A、B是兩個非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的'數(shù)fx和它對應(yīng),那么稱:fAB?為從集合A到集合B的一個函數(shù)(function),記作:,yf A其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{|}f A?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x。
2.構(gòu)成函數(shù)的三要素定義域、對應(yīng)關(guān)系和值域。
3、映射的定義
設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的一個映射。
4.區(qū)間及寫法:
設(shè)a、b是兩個實數(shù),且a
(1)滿足不等式axb?的實數(shù)x的集合叫做閉區(qū)間,表示為(a,b);
(2)滿足不等式axb?的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5.函數(shù)的三種表示方法
①解析法
②列表法
③圖像法
高中數(shù)學教案優(yōu)秀教案 篇6
一.教材分析。
( 1)教材的地位與作用:《等比數(shù)列的前n項和》選自《普通高中課程標準數(shù)學教科書·數(shù)學
( 5),是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思
想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。
(2)從知識的體系來看:“等比數(shù)列的前n項和”是“等差數(shù)列及其前n項和”與“等比數(shù)列”內(nèi)容的延續(xù)、不僅加深對函數(shù)思想的理解,也為以后學數(shù)列的求和,數(shù)學歸納法等做好鋪墊
二.學情分析。
( 1)學生的已有的知識結(jié)構(gòu):掌握了等差數(shù)列的概念,等差數(shù)列的通項公式和求和公式與方法,等比數(shù)列的概念與通項公式。
( 2)教學對象:高二理科班的學生,學習興趣比較濃,表現(xiàn)欲較強,邏輯思維能力也初步形成,具有一定的分析問題和解決問題的能力,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因而片面、不夠嚴謹。
(3)從學生的認知角度來看:學生很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q = 1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。
三.教學目標。
根據(jù)教學大綱的要求、本節(jié)教材的特點和本班學生的認知規(guī)律,本節(jié)課的教學目標確定為:(1)知識技能目標————理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上,并能初步應(yīng)用公式解決與之有關(guān)的問題。
(2)過程與方法目標————通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
(3)情感,態(tài)度與價值觀————培養(yǎng)學生勇于探索、敢于創(chuàng)新的精神,從探索中獲得成功的體驗,感受數(shù)學的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美。
四.重點,難點分析。
教學重點:公式的推導(dǎo)、公式的特點和公式的運用。
教學難點:公式的推導(dǎo)方法及公式應(yīng)用中q與1的關(guān)系。
五.教法與學法分析.
培養(yǎng)學生學會學習、學會探究是全面發(fā)展學生能力的重要前提,是高中新課程改革的主要任務(wù)。如何培養(yǎng)學生學會學習、學會探究呢?建構(gòu)主義認為:“知識不是被動吸收的,而是由認知主體主動建構(gòu)的?!边@個觀點從教學的.角度來理解就是:知識不是通過教師傳授得到的,而是學生在一定的情境中,運用已有的學習經(jīng)驗,并通過與他人(在教師指導(dǎo)和學習伙伴的幫助下)協(xié)作,主動建構(gòu)而
獲得的,建構(gòu)主義教學模式強調(diào)以學生為中心,視學生為認知的主體,教師只對學生的意義建構(gòu)起幫助和促進作用。因此,本節(jié)課采用了啟發(fā)式和探究式相結(jié)合的教學方法,讓老師的主導(dǎo)性和學生的主體性有機結(jié)合,使學生能夠愉快地自覺學習,通過學生自己觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學模型,再運用所得理論和方法去解決問題。一句話:還課堂以生命力,還學生以活力。
六.課堂設(shè)計
(一)創(chuàng)設(shè)情境,提出問題。(時間設(shè)定:3分鐘)
[利用投影展示]在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚。為什么呢?
[設(shè)計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點]
提出問題1:同學們,你們知道西薩要的是多少粒小麥嗎?
高中數(shù)學教案優(yōu)秀教案 篇7
教學目標
1.明確等差數(shù)列的定義。
2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題
3.培養(yǎng)學生觀察、歸納能力。
教學重點
1. 等差數(shù)列的概念;
2. 等差數(shù)列的通項公式
教學難點
等差數(shù)列“等差”特點的理解、把握和應(yīng)用
教具準備
投影片1張
教學過程
(I)復(fù)習回顧
師:上兩節(jié)課我們共同學習了數(shù)列的`定義及給出數(shù)列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)
(Ⅱ)講授新課
師:看這些數(shù)列有什么共同的特點?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:積極思考,找上述數(shù)列共同特點。
對于數(shù)列①(1≤n≤6);(2≤n≤6)
對于數(shù)列②-2n(n≥1)(n≥2)
對于數(shù)列③(n≥1)(n≥2)
共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。
師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。
一、定義:
等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。
如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2 。
二、等差數(shù)列的通項公式
師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:
若將這n-1個等式相加,則可得:
即:即:即:……
由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。
如數(shù)列①(1≤n≤6)
數(shù)列②:(n≥1)
數(shù)列③:(n≥1)
由上述關(guān)系還可得:即:則:=如:三、例題講解
例1:(1)求等差數(shù)列8,5,2…的第20項
(2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?
解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。
(Ⅲ)課堂練習
生:(口答)課本P118練習3
(書面練習)課本P117練習1
師:組織學生自評練習(同桌討論)
(Ⅳ)課時小結(jié)
師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。
即(n≥2)
②等差數(shù)列通項公式 (n≥1)
推導(dǎo)出公式:(V)課后作業(yè)
一、課本P118習題3.2 1,2
二、1.預(yù)習內(nèi)容:課本P116例2P117例4
2.預(yù)習提綱:
①如何應(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?
②等差數(shù)列有哪些性質(zhì)?
高中數(shù)學教案優(yōu)秀教案 篇8
教學目標:
1.結(jié)合實際問題情景,理解分層抽樣的必要性和重要性;
2.學會用分層抽樣的方法從總體中抽取樣本;
3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關(guān)系.
教學重點:
通過實例理解分層抽樣的方法.
教學難點:
分層抽樣的步驟.
教學過程:
一、問題情境
1.復(fù)習簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.
2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學生活動
能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?
指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.
由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,
所以在各年級抽取的個體數(shù)依次是,,,即40,32,28.
三、建構(gòu)數(shù)學
1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.
說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;
②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應(yīng)用.
2.三種抽樣方法對照表:
類別
共同點
各自特點
相互聯(lián)系
適用范圍
簡單隨機抽樣
抽樣過程中每個個體被抽取的概率是相同的
從總體中逐個抽取
總體中的個體數(shù)較少
系統(tǒng)抽樣
將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取
在第一部分抽樣時采用簡單隨機抽樣
總體中的個體數(shù)較多
分層抽樣
將總體分成幾層,分層進行抽取
各層抽樣時采用簡單隨機抽樣或系統(tǒng)
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
(1)分層:將總體按某種特征分成若干部分.
(2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.
(3)確定各層應(yīng)抽取的樣本容量.
(4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽?。?,綜合每層抽樣,組成樣本.
四、數(shù)學運用
1.例題.
例1(1)分層抽樣中,在每一層進行抽樣可用_________________.
(2)①教育局督學組到學校檢查工作,臨時在每個班各抽調(diào)2人參加座談;
②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進一步改進教和學;
③某班元旦聚會,要產(chǎn)生兩名“幸運者”.
對這三件事,合適的抽樣方法為()
A.分層抽樣,分層抽樣,簡單隨機抽樣
B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣
C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣
D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣
例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:
很喜愛
喜愛
一般
不喜愛
2435
4567
3926
1072
電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調(diào)查,應(yīng)怎樣進行抽樣?
解:抽取人數(shù)與總的比是60∶12000=1∶200,
則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,
取近似值得各層人數(shù)分別是12,23,20,5.
然后在各層用簡單隨機抽樣方法抽?。?/p>
答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人
數(shù)分別為12,23,20,5.
說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對于不能取整數(shù)的情況,取其近似值.
(3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務(wù)公開方面的某意見,擬抽取一個容量為20的樣本.
分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.
(2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.
(3)由于學校各類人員對這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.
五、要點歸納與方法小結(jié)
本節(jié)課學習了以下內(nèi)容:
1.分層抽樣的概念與特征;
2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.
高中數(shù)學教案優(yōu)秀教案 篇9
教學目標:
1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).
2.能識別和理解簡單的框圖的功能.
3. 能運用三種基本邏輯結(jié)構(gòu)設(shè)計流程圖以解決簡單的問題.
教學方法:
1. 通過模仿、操作、探索,經(jīng)歷設(shè)計流程圖表達求解問題的過程,加深對流程圖的感知.
2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導(dǎo)學生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構(gòu)數(shù)學
1.選擇結(jié)構(gòu)的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種
操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).
如圖:虛線框內(nèi)是一個選擇結(jié)構(gòu),它包含一個判斷框,當條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.
2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判
斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計;
(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)
行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和
兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
高中數(shù)學教案優(yōu)秀教案 篇10
一、教學目標
1.知識與技能
(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀
(1)提高空間想象力與直觀感受。
(2)體會對比在學習中的作用。
(3)感受幾何作圖在生產(chǎn)活動中的應(yīng)用。
二、教學重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學法與教學用具
1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學用具:三角板、圓規(guī)
四、教學思路(作文5000網(wǎng) zw5000.COm)
(一)創(chuàng)設(shè)情景,揭示課題
1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結(jié)果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。
(二)研探新知
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結(jié)這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結(jié)為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
練習反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導(dǎo)學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。
教師組織學生思考、討論和交流,如何構(gòu)造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導(dǎo)學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導(dǎo)學生正確把握圖形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本P16練習1(1),2,3,4
三、歸納整理
學生回顧斜二測畫法的關(guān)鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習第5題
2.課外思考課本P16,探究(1)(2)
高中數(shù)學教案相關(guān)推薦
更多>-
高中數(shù)學教案匯總九篇 上課前準備好課堂用到教案課件很重要,撰寫教案課件是每位老師都要做的事。教師應(yīng)該根據(jù)學生的學習興趣來制定教案,寫好教案課件需要注意哪些方面呢?您是否想了解更多有關(guān)“高中數(shù)學教案”的知識下面是詳細內(nèi)容,下列資料僅供參考具體情況應(yīng)以實際為準!...
-
2024高中數(shù)學備課教案(熱門十篇) 作為一名無私奉獻的老師,就難以避免地要準備教案,教案是教學藍圖,可以有效提高教學效率。教案要怎么寫呢?以下是小編幫大家整理的高中數(shù)學優(yōu)秀教案(通用10篇),希望能夠幫助到大家。2024高中數(shù)學備課教案 篇1一、教學內(nèi)容分析圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象...
- 高中數(shù)學教案優(yōu)秀教案范文大全09-14
- 高中數(shù)學教案02-08
- 高中數(shù)學優(yōu)秀教案設(shè)計(匯總十三篇)10-02
- 高中數(shù)學教案優(yōu)秀教案范文(集錦十二篇)09-28
- 高中數(shù)學教案十二篇04-08
- 高中數(shù)學教案九篇04-28
- 高中數(shù)學教案15篇02-28
- 高中數(shù)學教案分享07-17
高中美術(shù)教案模板范文(精品6篇)10-09
- 入黨積極匯報思想2024大學生范文(分享11篇)10-09
- 重陽節(jié)ppt內(nèi)容課件幼兒園(匯總7篇)10-09
- 對親人感恩的句子短語10-09
- 臘八節(jié)日記三年級簡單又驚艷(優(yōu)質(zhì)五篇)10-09
- 突飛猛進的成語造句(匯總86句)10-09
- 高一數(shù)學教案10-09
- 交通安全標語經(jīng)典200句10-09
- 中秋節(jié)黑板報內(nèi)容主題標題(匯集5篇)10-09
- 學委的工作總結(jié)10-09