88教案網(wǎng)
高中數(shù)學教案全套模板
高中數(shù)學教案全套模板。
作為一名教師,通常會被要求編寫教案,教案是備課向課堂教學轉(zhuǎn)化的關(guān)節(jié)點。如何把教案做到重點突出呢?以下是小編收集整理的高中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數(shù)學教案全套模板 篇1
教學目標:
1、理解并掌握曲線在某一點處的切線的概念;
2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實際背景,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生轉(zhuǎn)化問題的能力及數(shù)形結(jié)合思想。
教學重點:
理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。
教學難點:
用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的斜率。
教學過程:
一、問題情境
1、問題情境。
如何精確地刻畫曲線上某一點處的變化趨勢呢?
如果將點P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去有點像是直線。
如果將點P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去幾乎成了直線。事實上,如果繼續(xù)放大,那么曲線在點P附近將逼近一條確定的直線,該直線是經(jīng)過點P的所有直線中最逼近曲線的一條直線。
因此,在點P附近我們可以用這條直線來代替曲線,也就是說,點P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動。
如圖所示,直線l1,l2為經(jīng)過曲線上一點P的兩條直線,
(1)試判斷哪一條直線在點P附近更加逼近曲線;
(2)在點P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
(3)在點P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構(gòu)數(shù)學
切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點,直線PQ稱為曲線的`割線。 隨著點Q沿曲線C向點P運動,割線PQ在點P附近逼近曲線C,當點Q無限逼近點P時,直線PQ最終就成為經(jīng)過點P處最逼近曲線的直線l,這條直線l也稱為曲線在點P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
三、數(shù)學運用
例1 試求在點(2,4)處的切線斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當Q沿曲線逼近點P時,割線PQ逼近點P處的切線,從而割線斜率逼近切線斜率;
當Q點橫坐標無限趨近于P點橫坐標時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。
從而曲線f(x)=x2在點(2,4)處的切線斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。
練習 試求在x=1處的切線斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點處的切線斜率的一般步驟:
(1)找到定點P的坐標,設(shè)出動點Q的坐標;
(2)求出割線PQ的斜率;
(3)當時,割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
解 設(shè)
所以,當無限趨近于0時,無限趨近于點處的切線的斜率。
變式訓練
1、已知,求曲線在處的切線斜率和切線方程;
2、已知,求曲線在處的切線斜率和切線方程;
3、已知,求曲線在處的切線斜率和切線方程。
課堂練習
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結(jié)
1、曲線上一點P處的切線是過點P的所有直線中最接近P點附近曲線的直線,則P點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。
五、課外作業(yè)
高中數(shù)學教案全套模板 篇2
一、教學安排
第一輪全面復習已經(jīng)進入尾聲,立體幾何與高三選修內(nèi)容準備在3月20號左右結(jié)束,也就是第一次月考之前結(jié)束第一輪復習。
第一輪結(jié)束之后,就開始專題復習,分三塊內(nèi)容:函數(shù)與導數(shù)、數(shù)列與不等式、解析幾何。主要是一些典型例題和相應(yīng)的配套練習,當然其中也包括其它未復習到的內(nèi)容,如解析幾何專題中的配套練習中包括立體幾何、計數(shù)原理與復數(shù)、概率與統(tǒng)計。5月初開始綜合訓練,做一份與考一份,并且留時間讓學生回顧與總結(jié),看已經(jīng)做過的綜合試卷。5月底是考前指導。
二、學生分析(雙基智能水平、學習態(tài)度、方法、紀律)
離高考還只剩100天左右時間,學生基本上能夠自覺地學習。大多數(shù)學生對基本知識掌握得還可以,但老大難問題還是經(jīng)常出現(xiàn),就是“會而不對,對而不全”。
三、教學目的要求
掌握高中數(shù)學的基本知識與基本技能,能夠解決一些數(shù)學問題。高考的時候大多數(shù)學生可以拿到基礎(chǔ)分,難題也可以嘗試拿點分。提高選擇題與填空題的'得分率,解答題前3題盡量拿到多數(shù)的分數(shù),最后2題也要去得點分,而不能是空白。
四、完成教學任務(wù)和提高教學質(zhì)量的具體措施
加強備課組的集體合作與交流,每周四開一次備課會議。專題復習與綜合訓練結(jié)合,留一定的時間讓學生反思與總結(jié),看已經(jīng)做過的綜合試卷。最后是考前指導。平時還注意與學生心理的溝通,經(jīng)常與學生交流,加強心理輔導。
五、教學進度
略
高中數(shù)學教案全套模板 篇3
一、教學目標
理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式和前n項和公式。
能根據(jù)題目條件判斷數(shù)列是否為等差數(shù)列,并求出等差數(shù)列的首項、公差等參數(shù)。
能運用等差數(shù)列的性質(zhì)解決簡單問題。
二、教學重點
等差數(shù)列的概念、通項公式和前n項和公式。
三、教學難點
等差數(shù)列通項公式和前n項和公式的應(yīng)用。
四、教學過程
導入新課
通過觀察一組數(shù)列(如1,3,5,7,9…),引出等差數(shù)列的概念,強調(diào)等差數(shù)列的特點是每個相鄰兩項的差都相等。
講授新課
詳細解釋等差數(shù)列的概念,包括首項、公差等要素。
推導等差數(shù)列的通項公式和前n項和公式,并通過實例進行說明。
通過練習題讓學生練習判斷數(shù)列是否為等差數(shù)列,并求出等差數(shù)列的首項、公差等參數(shù)。
課堂小結(jié)
總結(jié)等差數(shù)列的`概念、通項公式和前n項和公式,強調(diào)它們在實際問題中的應(yīng)用。
提醒學生注意等差數(shù)列性質(zhì)的靈活運用。
作業(yè)布置
布置相關(guān)練習題,鞏固學生對等差數(shù)列概念及性質(zhì)的理解,并提高他們運用公式解決實際問題的能力。
以上是兩個高中數(shù)學備課教案的示例,旨在幫助學生理解函數(shù)和等差數(shù)列的基本概念及性質(zhì),并能夠應(yīng)用相關(guān)知識解決實際問題。在實際教學中,教師可根據(jù)學生的實際情況和需要進行適當?shù)恼{(diào)整和完善。
高中數(shù)學教案全套模板 篇4
教學目標:
1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).
2.能識別和理解簡單的框圖的功能.
3. 能運用三種基本邏輯結(jié)構(gòu)設(shè)計流程圖以解決簡單的問題.
教學方法:
1. 通過模仿、操作、探索,經(jīng)歷設(shè)計流程圖表達求解問題的過程,加深對流程圖的感知.
2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的'重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導學生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構(gòu)數(shù)學
1.選擇結(jié)構(gòu)的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種
操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).
如圖:虛線框內(nèi)是一個選擇結(jié)構(gòu),它包含一個判斷框,當條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.
2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判
斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計;
(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)
行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和
兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
高中數(shù)學教案全套模板 篇5
一、教學目標
知識與技能:
理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價值觀:
1、提高學生的推理能力;
2、培養(yǎng)學生應(yīng)用意識。
二、教學重點、難點:
教學重點:
任意角概念的理解;區(qū)間角的.集合的書寫。
教學難點:
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學過程
(一)導入新課
回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角。
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
(二)教學新課
1、角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
②角的名稱:
注意:
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;
⑵零角的終邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角。
⑤練習:請說出角α、β、γ各是多少度?
2、象限角的概念:
定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
高中數(shù)學教案全套模板 篇6
教學目標
(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學生掌握組合數(shù)的計算公式;
(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;
教學重點難點
重點是組合的定義、組合數(shù)及組合數(shù)的公式;
難點是解組合的應(yīng)用題.
教學過程設(shè)計
(-)導入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.
設(shè)計意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.
(二)新課講授
[提出問題 創(chuàng)設(shè)情境]
(教師活動)指導學生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區(qū)別?
(學生活動)閱讀回答.
(教師活動)對照課文,逐一評析.
設(shè)計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動)承接上述問題的回答,展示下面知識.
[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.
組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .
[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
(學生活動)傾聽、思索、記錄.
(教師活動)提出思考問題.
[投影] 與 的關(guān)系如何?
(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;
第2步,求每一個組合中 個元素的全排列數(shù)為 .根據(jù)分步計數(shù)原理,得到
[字幕]公式1:
公式2:
(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.
設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.
【例題示范 探求方法】
(教師活動)打出字幕,給出示范,指導訓練.
[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.
例2 計算:(1) ;(2) .
(學生活動)板演、示范.
(教師活動)講評并指出用兩種方法計算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學生活動)思考分析.
解 首先,根據(jù)組合的定義,有
①
其次,由原不等式轉(zhuǎn)化為
即
解得 ②
綜合①、②,得 ,即
[點評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.
設(shè)計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應(yīng)用,從而培養(yǎng)學生的綜合分析能力.
【反饋練習 學會應(yīng)用】
(教師活動)給出練習,學生解答,教師點評.
[課堂練習]課本P99練習第2,5,6題.
[補充練習]
[字幕]1.計算:
2.已知 ,求 .
(學生活動)板演、解答.
設(shè)計意圖:課堂教學體現(xiàn)以學生為本,讓全體學生參與訓練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.
(三)小結(jié)
(師生活動)共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計算的兩個公式.
(四)布置作業(yè)
1.課本作業(yè):習題10 3第1(1)、(4),3題.
2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?
3.研究性題:
在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
在學習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導出組合數(shù)公式,同時調(diào)控進行訓練,從而培養(yǎng)學生分析問題、解決問題的能力.
高中數(shù)學教案全套模板 篇7
【學習目標】
1.了解人的情緒復雜多樣性,知道常見的基本情緒有哪些。
2.認識到情緒隨著周圍環(huán)境的變化也經(jīng)常發(fā)生變化。
3.認識情緒的作用,體會青春期情緒的特點。
4.學會積極面對負面情緒,培養(yǎng)健康的心態(tài)。
【學習重點】
重點:情緒的作用
【學習難點】
難點:積極面對負面情緒
【學習過程】
情景導入
師:遇到下列情境,你會有怎樣的情緒感受?明天我和家人要去野外郊游。下課鈴響了,老師還在拖堂。過生日收到好朋友的禮物。
提醒同學別喝生水,遭同學白眼。在學校住宿,不能經(jīng)常回家。媽媽總想幫我收拾書包,順便檢查我的作業(yè)。學生回答。
師:不同的情境,大家的感受千差萬別,今天我們就情緒這一話題展開學習:青春的情緒。
自學互研,生成能力
(一)自主預習
1.情緒的種類?人們的情緒是復雜多變的,除了常見的喜怒,哀懼等基本情緒,還有害羞,焦慮,厭惡和內(nèi)疚等復雜情緒,各種各樣的情緒豐富了我們的生活。
2.影響情緒的因素?我們的情緒受多方面因素影響,例如,個人的生理周期,對某件事情的預期,周圍的輿論氛圍,自然環(huán)境等,隨著周圍情況的變化,我們的情緒也經(jīng)常發(fā)生變化。
3.情緒的積極作用和消極影響?情緒的作用非常神奇,影響著我們的觀念和行動。它可能激勵我們克服困難,努力向上,也可能讓我們因為某個小小的挫敗而止步不前。積極的情緒,有利于身心健康。
4.青春期的情緒特點?進入青春期,隨著身體發(fā)育加快和生活經(jīng)驗不斷豐富,我們的情緒也發(fā)生著變化,表現(xiàn)出青春期的情緒特點:情緒反應(yīng)強烈,情緒波動與固執(zhí),情緒的細膩性,情緒的閉鎖性,情緒的表現(xiàn)性。
5.如何面對青春期的正面和負面情緒?青春期的情緒特點體現(xiàn)了青春的.活力,他帶給我們不同的感受,善于激發(fā)正面的情緒感受,可以讓我們的生活更加絢爛多彩。青春期的情緒也包括煩惱和擔憂。學習積極面對這些負面情緒,同樣是我們成長過程中需要經(jīng)歷的。
(二)合作探究
探究一:教材P35相關(guān)鏈接“情緒的成分”及下面的探究與分享
1、學生分享教材P35“情緒的成分”,體現(xiàn)不同的情緒。
2、學生分享默默和小沖的事例,探討:
(1)結(jié)合上述情境,說說默默和小沖面對考試的情緒有什么不同。
交流點撥:默默能冷靜分析自己出錯的原因,并及時改正,體現(xiàn)出一種良好的心態(tài);小沖考試緊張導致發(fā)揮失常,表現(xiàn)得憤怒,撕毀試卷,不能冷靜分析自己的不足。
(2)在你的生活經(jīng)歷中,遇到過哪些因情緒影響智力發(fā)揮或身體健康的事情。交流點撥:結(jié)合自己實際情況,據(jù)實回答即可。
探究二:教材P36相關(guān)鏈接“青春期的情緒特點”及P37探究與分享四幅圖片
1、學生閱讀分享教材P36“青春期的情緒特點”。
2、看教材P37四幅圖片,探討:
(1)上述情境分別體現(xiàn)了青春期的哪些情緒特點?
交流點撥:圖一體現(xiàn)了情緒反應(yīng)強烈,富有激情和熱情的特點;圖二體現(xiàn)了情緒的波動與固執(zhí)特點;圖三體現(xiàn)了情緒的細膩性特點;圖四體現(xiàn)了情緒的波動性、表現(xiàn)性的特點。
(2)反思自己在日常生活中的情緒表現(xiàn),說說自己的情緒特點。交流點撥:結(jié)合自己實際情況,據(jù)實回答即可。
探究三:教材P37下面探究與分享及P38探究與分享“陳玲和芳芳的故事”
1、根據(jù)教材P37下面提示編寫故事。
(1)請你根據(jù)以下提示,充分發(fā)揮想象力,編寫出吸引人的小故事。
提示一:我是一個對生活充滿熱情的人。有一天,xxxxxxxxxxxxxx。
提示二:我是一個感情細膩的人。有一天,xxxxxxxxxxxxxxx。
(2)把你編寫的故事與同學分享。
2、閱讀分享教材P38“陳玲和芳芳的故事”,探討:
(1)陳玲為什么會有這樣情緒變化?
交流點撥:在上學路上,芳芳沒理睬陳玲;數(shù)學作業(yè)自己出現(xiàn)了錯誤,而芳芳卻炫耀自己得了滿分;撿文具袋時,又被芳芳踩到了手;剛發(fā)火,又被班主任批評。她感到今天太不順心了,所以會有這樣的情緒變化。
(2)陳玲的這些情緒表現(xiàn),體現(xiàn)了怎樣的青春期情緒特點?
交流點撥:體現(xiàn)了青春期的情緒反應(yīng)強烈和情緒具有波動性的特點。
(3)假如你是陳玲,遇到類似情況會怎么做?
交流點撥:我會冷靜地面對這一切,多反思自己的不足,積極主動地與同學交往,努力學習,等等。
交流展示,生成新知
1、分組分別展示自主預習的內(nèi)容,此部分可以一組展示,另一組負責評價,學生展示完后,必須有一定時間強化記憶,鞏固基本知識點。
2、合作探究部分,組與組之間展開競爭、評比。
教學反思
而且在教學中教師時刻要注意捕捉教育信息,一方面要深入關(guān)注學生的生活,密切聯(lián)系學生的實際,多了解學生的興趣、行為和困惑;另一方面要多留意社會上的一些現(xiàn)象,并把它引入課堂,讓學生去判斷,去分析,去討論,這樣他們才會真正懂得哪些事該做,哪些事不該做,哪些現(xiàn)象值得發(fā)揚,哪些現(xiàn)象要批評,對他們及時進行教育,有助于學生形成正確的品德行為與習慣。
高中數(shù)學教案全套模板 篇8
教學目標:
1。通過生活中優(yōu)化問題的學習,體會導數(shù)在解決實際問題中的作用,促進
學生全面認識數(shù)學的科學價值、應(yīng)用價值和文化價值。
2。通過實際問題的研究,促進學生分析問題、解決問題以及數(shù)學建模能力的提高。
教學重點:
如何建立實際問題的目標函數(shù)是教學的重點與難點。
教學過程:
一、問題情境
問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?
問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個正方形面積之各最?。?/p>
問題3做一個容積為256L的方底無蓋水箱,它的高為多少時材料最???
二、新課引入
導數(shù)在實際生活中有著廣泛的應(yīng)用,利用導數(shù)求最值的方法,可以求出實際生活中的某些最值問題。
1。幾何方面的應(yīng)用(面積和體積等的最值)。
2。物理方面的應(yīng)用(功和功率等最值)。
3。經(jīng)濟學方面的應(yīng)用(利潤方面最值)。
三、知識建構(gòu)
例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?
說明1解應(yīng)用題一般有四個要點步驟:設(shè)——列——解——答。
說明2用導數(shù)法求函數(shù)的'最值,與求函數(shù)極值方法類似,加一步與幾個極
值及端點值比較即可。
例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應(yīng)怎樣選取,才
能使所用的材料最???
變式當圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最???
說明1這種在定義域內(nèi)僅有一個極值的函數(shù)稱單峰函數(shù)。
說明2用導數(shù)法求單峰函數(shù)最值,可以對一般的求法加以簡化,其步驟為:
S1列:列出函數(shù)關(guān)系式。
S2求:求函數(shù)的導數(shù)。
S3述:說明函數(shù)在定義域內(nèi)僅有一個極大(?。┲?,從而斷定為函數(shù)的最大(小)值,必要時作答。
例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動勢為。外電阻為
多大時,才能使電功率最大?最大電功率是多少?
說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應(yīng)的自變量必須有解。
例4強度分別為a,b的兩個光源A,B,它們間的距離為d,試問:在連接這兩個光源的線段AB上,何處照度最???試就a=8,b=1,d=3時回答上述問題(照度與光的強度成正比,與光源的距離的平方成反比)。
例5在經(jīng)濟學中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。
(1)設(shè),生產(chǎn)多少單位產(chǎn)品時,邊際成本最低?
(2)設(shè),產(chǎn)品的單價,怎樣的定價可使利潤最大?
四、課堂練習
1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。
2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當?shù)走吷细邽?時,它的面積最大。
3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應(yīng)為多少?
4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面ABCD的面積為定值S時,使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時的高h和下底邊長b。
五、回顧反思
(1)解有關(guān)函數(shù)最大值、最小值的實際問題,需要分析問題中各個變量之間的關(guān)系,找出適當?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實際意義。
(2)根據(jù)問題的實際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。
(3)相當多有關(guān)最值的實際問題用導數(shù)方法解決較簡單。
六、課外作業(yè)
課本第38頁第1,2,3,4題。
高中數(shù)學教案全套模板 篇9
一、課題:
《學會調(diào)控情緒》
二、課型:
講授
三、教學時間:
一課時
四、教學方法:
講授、討論
五、授課教師:
XXX
六、教學目標
知識目標:
1、讓學生認只到青少年時期情緒是不穩(wěn)定的,明白情緒是可以主觀調(diào)控的
2、學會調(diào)控情緒的方法
情感目標:
1、懂得調(diào)控自己情緒對自己的學習和生活的重要性
2、通過學習合理調(diào)控情緒,讓自己保持積極、健康向上的心態(tài)
3、學會觀注他人的情緒,尊重他人,適時恰當?shù)谋磉_自己的情緒
能力目標:
1、掌握調(diào)控情緒的方法
2、形成自我調(diào)控、自我控制的習慣
七、教學重點
調(diào)控情緒的方法
八、教學難點
調(diào)控情緒方法的運用
九、教學過程
(一)、導入
在上節(jié)課我們探討了情緒這個話題,了解了豐富多樣的情緒,也知道情緒有積極與消積之分。在面對如此豐富而復雜的情緒,我們應(yīng)該怎樣來面對了,是作我們情緒的奴隸了,讓其放任自流,還是學會調(diào)控它們,做一個積極樂觀上向的人了?同學們在回答老師的問題之前了,先來看一個小故事。
秀才與棺材
有一個大家非常熟悉的故事。有張李兩個秀才一起去趕考,路上他們遇到了一支出殯的隊伍??吹侥强诤诤鹾醯墓撞?,其中張秀才心里立即“咯噔”一下,涼了半截。心想:完了,真觸霉頭,趕考的日子居然碰到這個倒霉的棺材。于是,心情一落千丈,走進考場,那個“黑乎乎的棺材”一直揮之不去,結(jié)果,文思枯竭,果然名落孫山。
李秀才也同時看到了,一開始心里也“咯噔”了一下,但轉(zhuǎn)念一想:棺材,噢!那不就是有“官”又有“財”嗎?好,好兆頭,看來今天我要鴻運當頭了,一定高中。于是心里十分興奮,情緒高漲,走進考場,文思如泉涌,果然一舉高中?;氐郊依?,兩人都對家人說:那“棺材”真是好靈。
閱讀完后,同學們想想李秀才為什么能夠高中?張秀才為何落第?
(兩個秀才怎么面對棺材?兩種情緒分別產(chǎn)生怎樣的結(jié)果了?)同學們能不能舉例說說自己在平時不高興會怎樣,高興時又怎樣?
老師總結(jié):通過上面兩個小材料和同學們自己生活的經(jīng)歷,看來大家都愿意做一個快樂人,保持一個好的情緒來學習和生活。但是問題就出現(xiàn)了我們怎樣才能保持一個好的情緒了?在回答這個問題之前我們還有一個問題情緒我們可以調(diào)適嗎?
(二)、情緒是可以調(diào)適的
問卷小調(diào)查
問題:
1、當你和好朋友約好下午去打球,但是天公不作美偏偏在你正要出去的時候下起了大雨。這時你會怎樣了?(是生氣,怎么這倒霉了?還是心平靜氣的和同學再約或做其它的安排了?)
2、當老師批評你做事馬虎,不認真,你會怎樣了?(是生氣,老師就會批評我,還是沮喪,老師批評我了?還是高興,看老師多關(guān)心我呀指出我這個大毛病?)
老師總結(jié):看來情緒與一個人的態(tài)度有關(guān),當面對同一個問題,我們的態(tài)度不同我們情緒也會不同,心情也會不同。不難發(fā)現(xiàn)保持積極樂觀的態(tài)度的同學,往往會有更多的積極健康的情緒表現(xiàn)。下面我們在看一個有趣的小故事,看完后,同學們想想你們會怎么解了?
從前,有位王秀才進京趕考,這是第N次了,他早早地尋得常住的旅店,積極備考??荚嚽皫滋焖隽藘蓚€夢:第一個夢是夢見自己在墻上種大白菜;第二個夢境是他在雨中帶了斗笠還打雨傘。張秀才感覺這兩個夢寓意深刻,于是第二天一早起來就趕緊去找算命先生解夢。算命先生還沒有完全聽完秀才說夢,就連拍大腿直率感嘆地說:“您還是回家吧!你想想看,在高墻上種白菜不是白費勁嗎?戴斗笠打雨傘不是多此一舉嗎?”張秀才一聽,覺得講得有道理,心灰意冷,回旅店收拾行李準備退房回家。店老板好生奇怪,問張秀才:“您明后天不就是考試嗎?怎么今天要趕回家?”張秀才告訴店老板析夢之事。店老板聽后,又做了另番解釋,張秀才一聽,覺得店老板說得更有道理。于是繼續(xù)住下,積極備戰(zhàn),精神振奮,參加考試,張秀才果然中了個探花。
假如你是這位店老板,你將如何向王秀才解釋?
說:“嗨,有如此好夢,我也會解夢叻。你想想,在墻上種菜不是高種(中)嗎?戴斗笠打傘不是說明你這次不怕,有備無患嗎?我覺得,你這次一定考中?!?/p>
老師總結(jié):同學回答的很好,看來同學們已經(jīng)學會從事物的好的角度出發(fā),保持一個好的心態(tài),看到事情的積極的一面。從上面的小調(diào)查,我們發(fā)現(xiàn)在我們生活中,情緒原來是可能調(diào)適的,我們可以通過改變自己的態(tài)度來控制自己的情緒。上面的小故事和課本P65的相似,同學們可以看一下。
(三)、排除不良情緒
在坐的各位了正處在青少年階段,它是人生的花季,我們在擁有五彩繽紛生活的同時,也經(jīng)歷著豐富的情緒變化。情緒會給我們帶給我們勇氣,信心和力量,也會使我們沖動、消極,無所事事,甚至做出一些違背道德與法律規(guī)范的事情來。而在開始了,我們已經(jīng)解了和體會到不良情緒對我們的生活學習帶來很大的危害。愿意做一個積極樂觀上向的人,積極的調(diào)控我們的不良情緒。剛才我們已經(jīng)知道情緒原來可以調(diào)適的,但是我們應(yīng)該怎樣調(diào)控了?下面了有個小活動。
出謀劃策
請你給下面的同學出主意,開處方,幫助他們調(diào)控情緒。(見課本P66)
老師總結(jié):我們同學提出了很多解決問題的方法,有:轉(zhuǎn)移話題、改變環(huán)境,我們把他們叫做:轉(zhuǎn)移注意力。在適合場合哭一場、向他人傾訴、進行劇烈運動放聲歌唱或大聲喊叫、寫日記,我們把他們叫做:合理發(fā)泄法。自我安慰、自我暗示、自我激勵、心理換位、學會升華,我們把他們叫做:理智控制法。
老師具體介紹各方法的含義和方式
注意轉(zhuǎn)移法:當人的情緒激動時,為了使它不至于爆發(fā)和難以控制,可以有意識地轉(zhuǎn)移注意力,把注意力從引起不良情緒反應(yīng)的'刺激情境轉(zhuǎn)移到其他事物或活動上去。
改變注意焦點;
做自己平時最感興趣的事;
改變環(huán)境,到風景秀麗的野外去郊游或散步……
合理發(fā)泄法:遇到不良情緒時,通過簡單的“宣泄”痛痛快快地表達出來,或?qū)⒉涣记榫w通過別的方式宣泄出來。
在適當?shù)膱龊峡抟粓?向他人傾訴;
進行劇烈運動;放聲歌唱或大叫;
聽聽音樂;發(fā)發(fā)牢騷;寫寫日記;
聲聲吁嘆……
理智控制法:在陷入不良情緒時,主動調(diào)動理智這道“閘門”的力量,控制不良情緒,并努力使自己愉悅起來。
自我解嘲,自我安慰;
自我暗示,自己提醒自己,遏制不良情緒的產(chǎn)生;
在困難和逆境面前,有效地進行自我激勵,以便從不良情緒之中擺脫出來;
心理換位,與對方交換位置,站在對方的角度思考問題;
學會升華,將消極的情緒與頭腦中的一些閃光點聯(lián)系起來,將不良情緒轉(zhuǎn)化為積極而有益的行動……
(四)、喜怒哀樂,不忘關(guān)心他人
我們已經(jīng)學會調(diào)控情緒的方法了,但是我們是否應(yīng)該考慮我們發(fā)泄情緒,調(diào)適情緒要注意場合了?下面看看假如是你,你會怎么做?
中午,期中考試成績發(fā)下來了,李曄考得很不好,想到回家要挨媽媽的批評,他心里非常難過,也很懊惱。鄰座王強考得不錯,他不禁喜形于色,大聲地對周圍同學說:“我媽說了,如果這次考好了,就給我買全套的《網(wǎng)球王子》光碟,到時候,我借給你們看。”張亮聽到這話,一聲不響地走出教室……
王強當時的情緒表達是否合適?
你能想象當時李曄的心情嗎?
情緒的表達是否只是自己的事情?
我們在運用一些方法調(diào)控情緒時,應(yīng)該注意什么問題呢?
老師歸納:個人由于自己的需要不同、遭遇不同的事情會引起不同的情緒感受,但個人在表達自己的情緒時,最好能考慮場合和他人的感受,否則有可能引起不尊重甚至傷害他人的情況。
老師總結(jié):表面上情緒似乎是個人情感,其實不然,我們是生活在一個集體中,而人的情感具有相通性和感染性,一個人的情緒狀態(tài)很容易影響到周圍的人,我們應(yīng)該學會在合適的場合、用合理的方式發(fā)泄自己的情緒。因此,情緒表達需要考慮他人感受,當喜則喜,當怒則怒,喜怒有常,喜怒有度,這是我們調(diào)控情緒的目標。如果我們能夠在生活中對別人的情緒給與更多的關(guān)心,嘗試去共享彼此的各種情緒,那么,我們的喜悅將加倍,而痛苦會減半,同學們的情誼也將更加深厚。
(五)、練兵場
連連看:(請同學講)
1、當你面對他人的批評時G、不要內(nèi)疚,要記取“吃一塹,長一智”
2、當你和家人有誤會時B、不要難過,要理解父母的苦心
3、當你做錯事時C、不要委屈,要提醒自己“聞過則喜”
4、當你對他人表現(xiàn)不滿時D.不要憤怒,要選擇“得饒人處且饒人”
5、當有人對你不滿時E、不要生氣,要自勉“走自己的
6、當你對新環(huán)境不適應(yīng)時F.不要焦慮,要相信“人最終會戰(zhàn)勝環(huán)境”
7、當你和同學有矛盾時A.不要傷心,要懂得“矛盾無時不有”
在什么場合下應(yīng)該有什么情緒?
教室(1)手舞足蹈(2)大聲喊叫(3)靜心專注
聯(lián)歡會上(1)積極參與(2)漠不關(guān)心(3)顯示自我
追悼會上(1)高聲喧嘩(2)身著艷麗服飾(3)沉痛哀悼
(六)、結(jié)束:全班同學一起唱《幸福拍手歌》
孩子們你們現(xiàn)在快樂嗎?在快樂的歌聲中我們結(jié)束本節(jié)課,生活中有很多美好的事情和樂趣,只要我們能以一種積極的心態(tài)去捕捉它、發(fā)現(xiàn)它,就會感到生活的快樂。而我們在喜怒哀樂同時,不要忘了關(guān)心他人,留心他人的情緒,這些會讓我們彼此的感情更加深厚,關(guān)系更加融洽,而我們的心也會靠的更近。
十、板書設(shè)計
學會調(diào)控情緒
一、情緒是可以調(diào)適的
態(tài)度、角度不同
二、排除不良情緒
注意轉(zhuǎn)移法
合理發(fā)泄法
理智控制法
三、喜怒哀樂,不忘關(guān)心
高中數(shù)學教案全套模板 篇10
一、自我介紹
我姓x,是你們的數(shù)學老師,因為是數(shù)學老師所以在自我介紹的時候喜歡給出自己的數(shù)字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。
二、相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節(jié)課我們不急于上新課,我想和大家聊一聊數(shù)學,一起來思考為什么要學習數(shù)學及如何學好數(shù)學這兩個問題。
(一)為什么要學習數(shù)學
相信高一的第一節(jié)課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數(shù)學老師我表達上不如文科老師迂回婉轉(zhuǎn)和風趣幽默,我們更喜歡用數(shù)字說明問題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數(shù)學系為北大第一系,這種傳統(tǒng)一直保持到現(xiàn)在。為什么數(shù)學系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數(shù)學是有用的,數(shù)學有助于提高能力。
數(shù)學家華羅庚在《人民日報》精彩描述了數(shù)學在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無處不有重要貢獻。
問題1:大家知道海王星是怎么發(fā)現(xiàn)的,冥王星又是怎么被請出十大行星行列的?
海王星的發(fā)現(xiàn)是在數(shù)學計算過程中發(fā)現(xiàn)的,天文望遠鏡的觀測只是驗證了人們的推論。
1812年,法國人布瓦德在計算天王星的運動軌道時,發(fā)現(xiàn)理論計算值同觀測資料發(fā)生了一系列誤差。這使許多天文學家紛紛致力這個問題的研究,進而發(fā)現(xiàn)天王星的脫軌與一個未知的引力的存在相關(guān)。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的一封快信。發(fā)信人就是勒威耶。信中,勒威耶預告了一顆以往沒有發(fā)現(xiàn)的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發(fā)現(xiàn)了一顆新的8等星。又過了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學慣例,用神話里的名字把這顆星命名為"海王星"。
1930年美國天文學家湯博發(fā)現(xiàn)冥王星,當時錯估了冥王星的質(zhì)量,以為冥王星比地球還大,所以命名為大行星。然而,經(jīng)過近30年的進一步觀測和計算,發(fā)現(xiàn)它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,"冥王星是大行星"早已被寫入教科書,以后也就將錯就錯了。經(jīng)過多年的爭論,國際天文學聯(lián)合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據(jù)國際天文學聯(lián)合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數(shù)量將由九顆減為八顆。事實上,位居太陽系九大行星末席70多年的冥王星,自發(fā)現(xiàn)之日起地位就備受爭議。
馬克思說:"一種科學只有在成功運用數(shù)學時,才算達到了真正完善的地步。"正因為數(shù)學是日常生活和進一步學習必不可少的基礎(chǔ)和工具,一切科學到了最后都歸結(jié)為數(shù)學問題。
其實在我們的周圍有很多事情都是可以用數(shù)學可以來解決的,無非很多人都沒有用數(shù)學的眼光來看待。
問題2:徒認為上帝是萬能的。你們認為呢?如何來證明你的結(jié)論呢?(讓同學發(fā)言)
我的觀點:上帝不是萬能的。為什么呢?仔細聽我講來。
證明:(反證法)假如上帝是萬能的
那么他能夠制作出一塊無論什么力量都搬不動的石頭
根據(jù)假設(shè),既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭
這與"無論什么力量都搬不動的石頭"相矛盾
所以假設(shè)不成立
所以上帝不是萬能的。問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人還說公平嗎?
當然,我們學習的數(shù)學只是數(shù)學學科體系中很基礎(chǔ),很小的一部分?,F(xiàn)在課本上學的未必能直接應(yīng)用于生活,主要是為以后學習更高層次的理科打好基礎(chǔ),同時,也為了掌握一些數(shù)學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:"讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數(shù)學使人聰明…",也有人形象地稱數(shù)學是思維的體操。下面我們通過具體的例子來體驗一下某些數(shù)學思想方法和思維方式。
故事一:據(jù)說國際象棋是古印度的一位宰相發(fā)明的。國王很欣賞他的這項發(fā)明,問他的宰相要什么賞賜。聰明的宰相說,"我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數(shù)加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。"國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發(fā)現(xiàn)即使把全國所有的谷子抬來也遠遠不夠。
人們通常憑借自己掌握的數(shù)學知識耍些小聰明,使問題妙不可言。
數(shù)學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應(yīng)該先放還是后放才有必勝的把握。
數(shù)學思想:退到最簡單、最特殊的地方。
故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展-圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質(zhì)量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現(xiàn)象中受到啟發(fā),很好地解決了這一問題,你認為他會怎么做呢?
渡邊的成功之處就在于思維角度新,從問題的'側(cè)面輕巧取勝。也正體現(xiàn)了數(shù)學學習中經(jīng)常用到的發(fā)散式思維。在數(shù)學學習中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯(lián)系思維方式,表現(xiàn)為對解題方法的模仿和繼承;而發(fā)散式思維即對問題開拓、創(chuàng)新,表現(xiàn)為對問題舉一反三,觸類旁通。在解決具體問題中,我們應(yīng)該將兩種思維方式相結(jié)合。
學數(shù)學有利于培養(yǎng)人的思維品質(zhì):結(jié)構(gòu)意識、整體意識、抽象意識、化歸意識、優(yōu)化意識、反思意識,盡管數(shù)學在培養(yǎng)學生的這些思維品質(zhì)方面和其他學科存在著交集,但數(shù)學在其中的地位是無法被代替的。總之,學習數(shù)學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創(chuàng)造……
(二)如何學好數(shù)學
高中數(shù)學的內(nèi)容多,抽象性、理論性強,高中很注重自學能力的培養(yǎng)的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學能力的培養(yǎng),誰的自學能力強,那么在一定的程度上影響著你的成績以及你將來你發(fā)展的前途。同時要注意以下幾點:
第一:對數(shù)學學科特點有清楚的認識
主編寄語里是這樣描述數(shù)學的特征的:數(shù)學是自然的。數(shù)學的概念、方法、思想都是人類長期實踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實數(shù)再到復數(shù),都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產(chǎn)生的背景,它的形成過程以及它的應(yīng)用,讓數(shù)學顯得合情合理,渾然天成。數(shù)學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學規(guī)則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是"想當然"的話,那就學不下去了。
第二:要改變一個觀念。
有人會說自己的基礎(chǔ)不好。那我問下什么是基礎(chǔ)?今天所學的知識就是明天的基礎(chǔ)。明天學習的知識就是后天的基礎(chǔ)。所以要學好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎(chǔ)好不好。過去的幾年里我分別帶過五十一中和一中的學生,兩邊學生的課堂感覺差不多,應(yīng)該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因為課堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學外課自主時間的投入太少,學習習慣不太好。
第三:學數(shù)學要摸索自己的學習方法
學習、掌握并能靈活應(yīng)用數(shù)學的途徑有千萬條,每個人都可以有與眾不同的數(shù)學學習方法。做習題、用數(shù)學解決各種問題是必需的,理解、學會證明、領(lǐng)會思想、掌握方法也是必需的。此外,還要發(fā)揮問題的作用,學會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學習。同時,注意前后知識的銜接,類比地學、聯(lián)系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
第四:養(yǎng)成良好的學習習慣(與一中學生相比較)
㈠課前預習。怎樣預習呢?就是自己在上課之前把內(nèi)容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經(jīng)有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。
㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數(shù)學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應(yīng)的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應(yīng)位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。
㈢關(guān)于作業(yè)。絕對不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現(xiàn)有誰抄作業(yè),那么既然他這樣喜歡抄,我就要你把當天的作業(yè)多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個道理大家應(yīng)該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。二、向老師請教,要養(yǎng)成多想多問的習慣。我的辦公室在二樓二號,歡迎大家前來交流
㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數(shù)學成績提高。
好的開始是成功的一半,新的學期開始了,請大家調(diào)整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。
高中數(shù)學教案全套模板 篇11
一、教學目標
(1)了解含有“或”、“且”、“非”復合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
(5)會用真值表判斷相應(yīng)的復合命題的真假;
(6)在知識學習的基礎(chǔ)上,培養(yǎng)學生簡單推理的技能.
二、教學重點難點:
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
三、教學過程
1.新課導入
在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調(diào)邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關(guān)知識.)
學生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學議論結(jié)果,答案是肯定的)
教師提問:什么是命題?
(學生進行回憶、思考.)
概念總結(jié):對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎(chǔ)上,介紹簡易邏輯的知識.
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?
(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.
對“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
對“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.
對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應(yīng)于集合 ,則命題非 就對應(yīng)著集合 在全集 中的補集 .
命題可分為簡單命題和復合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復合命題.
(4)命題的表示:用 , , , ,……來表示.
(教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復合命題的概念作出分析和展開.)
我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.
給出一個含有“或”、“且”、“非”的復合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復合命題.
對于給出“若 則 ”形式的復合命題,應(yīng)能找到條件 和結(jié)論 .
在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.
(1) ;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若 ,則 .
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)
例3 寫出下表中各給定語的否定語(用課件打出來).
若給定語為
等于
大于
是
都是
至多有一個
至少有一個
至多有個
其否定語分別為
分析:“等于”的否定語是“不等于”;
“大于”的否定語是“小于或者等于”;
“是”的否定語是“不是”;
“都是”的否定語是“不都是”;
“至多有一個”的否定語是“至少有兩個”;
“至少有一個”的否定語是“一個都沒有”;
“至多有 個”的否定語是“至少有 個”.
(如果時間寬裕,可讓學生討論后得出結(jié)論.)
置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當?shù)谋嫖雠c展開.)
4.課堂練習:第26頁練習1
5.課外作業(yè):第29頁習題1.6
高中數(shù)學教案全套模板 篇12
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形。“二面角”是人教版《數(shù)學》第二冊(下B)中9.7的內(nèi)容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學習還對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學目標:
知識目標:(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
(2)進一步培養(yǎng)學生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標:(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。
德育目標:(1)使學生認識到數(shù)學知識來自實踐,并服務(wù)于實踐,增強學生應(yīng)用數(shù)學的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學生聯(lián)系的辯證唯物主義觀點。
情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。
3、重點、難點:
重點:“二面角”和“二面角的平面角”的概念
難點:“二面角的平面角”概念的形成過程
二、教法分析
1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓練法、探究研討法為主。
2、教學控制與調(diào)節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據(jù)學生及教學的實際情況,估計二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學手段:教學手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。
三、學法指導
1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。
2、學會:在掌握基礎(chǔ)知識的同時,學生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學思想方法的運用,學會建立完善的認知結(jié)構(gòu)。
3、會學:通過自己親身參與,學生要領(lǐng)會復習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學過程
心理學研究表明,當學生明確數(shù)學概念的學習目的和意義時,就會對概念的學習產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
(一)、二面角
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學習了哪些角?
問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個問題,打開了學生的原有認知結(jié)構(gòu),為知識的創(chuàng)新做好了準備;同時也讓學生領(lǐng)會到,二面角這一概念的產(chǎn)生是因為它與我們的生活密不可分,激發(fā)學生的求知欲。2、展現(xiàn)概念形成過程。
問題情境4、那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個問題情境,為學生創(chuàng)新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學生說,對于學生的創(chuàng)新意識和創(chuàng)新結(jié)果,教師要給與積極的評價。
問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個旋轉(zhuǎn)量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面
與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。
問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個角是唯一確定的。
問題情境9、這個平面的角的頂點及兩邊是如何確定的?
(2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習慣,這對強化他們的創(chuàng)新意識大有幫助。
問題情境10、那么,這個角的頂點及兩邊應(yīng)如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內(nèi)。這也是學生直覺思維的結(jié)果。
(3)、探索實驗。通過實驗,激發(fā)了學生的學習興趣,培養(yǎng)了學生的動手操作能力。
(4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的.頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
(5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當?shù)囊龑?,并加以理論證明。
(三)、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
(四)、范例分析
為鞏固學生所學知識,由于時間的關(guān)系設(shè)置了一道例題。來源于實際生活,不但培養(yǎng)了學生分析問題和解決問題的能力,也讓學生領(lǐng)會到數(shù)學概念來自生活實際,并服務(wù)于生活實際,從而增強他們應(yīng)用數(shù)學的意識。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。
分析:涉及二面角的計算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角??勺寣W生先做,為調(diào)動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實際情況,本題的變式訓練也可作為課后思考題。
題后反思:
(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
(五)、練習、小結(jié)與作業(yè)
練習:習題9.7的第3題
小結(jié)在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統(tǒng)。同時要求學生對本節(jié)課的學習方法進行總結(jié),領(lǐng)會復習類比和深入研究這兩種知識創(chuàng)新的方法。
作業(yè):習題9.7的第4題
思考題:見例題
五、板書設(shè)計(見課件)
以上是我對《二面角》授課的初步設(shè)想,不足之處,懇請大家批評指正,謝謝!
高中數(shù)學教案全套模板 篇13
整體設(shè)計
教學分析
我們在初中的學習過程中,已了解了整數(shù)指數(shù)冪的概念和運算性質(zhì)。從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分數(shù)指數(shù)。進而推廣到有理數(shù)指數(shù),再推廣到實數(shù)指數(shù),并將冪的運算性質(zhì)由整數(shù)指數(shù)冪推廣到實數(shù)指數(shù)冪。
教材為了讓學生在學習之外就感受到指數(shù)函數(shù)的實際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題。前一個問題,既讓學生回顧了初中學過的整數(shù)指數(shù)冪,也讓學生感受到其中的函數(shù)模型,并且還有思想教育價值。后一個問題讓學生體會其中的函數(shù)模型的同時,激發(fā)學生探究分數(shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學習作了鋪墊。
本節(jié)安排的內(nèi)容蘊涵了許多重要的數(shù)學思想方法,如推廣的思想(指數(shù)冪運算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時,充分關(guān)注與實際問題的結(jié)合,體現(xiàn)數(shù)學的應(yīng)用價值。
根據(jù)本節(jié)內(nèi)容的特點,教學中要注意發(fā)揮信息技術(shù)的力量,盡量利用計算器和計算機創(chuàng)設(shè)教學情境,為學生的數(shù)學探究與數(shù)學思維提供支持。
三維目標
1、通過與初中所學的知識進行類比,理解分數(shù)指數(shù)冪的概念,進而學習指數(shù)冪的性質(zhì)。掌握分數(shù)指數(shù)冪和根式之間的互化,掌握分數(shù)指數(shù)冪的運算性質(zhì)。培養(yǎng)學生觀察分析、抽象類比的能力。
2、掌握根式與分數(shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學思想。通過運算訓練,養(yǎng)成學生嚴謹治學,一絲不茍的學習習慣,讓學生了解數(shù)學來自生活,數(shù)學又服務(wù)于生活的哲理。
3、能熟練地運用有理指數(shù)冪運算性質(zhì)進行化簡、求值,培養(yǎng)學生嚴謹?shù)乃季S和科學正確的計算能力。
4、通過訓練及點評,讓學生更能熟練掌握指數(shù)冪的運算性質(zhì)。展示函數(shù)圖象,讓學生通過觀察,進而研究指數(shù)函數(shù)的性質(zhì),讓學生體驗數(shù)學的簡潔美和統(tǒng)一美。
重點難點
教學重點
(1)分數(shù)指數(shù)冪和根式概念的理解。
(2)掌握并運用分數(shù)指數(shù)冪的運算性質(zhì)。
(3)運用有理指數(shù)冪的性質(zhì)進行化簡、求值。
教學難點
(1)分數(shù)指數(shù)冪及根式概念的理解。
(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用。
課時安排
3課時
教學過程
第1課時
作者:路致芳
導入新課
思路1.同學們在預習的過程中能否知道考古學家如何判斷生物的發(fā)展與進化,又怎樣判斷它們所處的年代?(考古學家是通過對生物化石的研究來判斷生物的發(fā)展與進化的,第二個問題我們不太清楚)考古學家是按照這樣一條規(guī)律推測生物所處的年代的。教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算。
思路2.同學們,我們在初中學習了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算。
推進新課
新知探究
提出問題
(1)什么是平方根?什么是立方根?一個數(shù)的平方根有幾個,立方根呢?
(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?
(3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?
(4)可否用一個式子表達呢?
活動:教師提示,引導學生回憶初中的時候已經(jīng)學過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進行引申、推廣,相互交流討論后回答,教師及時啟發(fā)學生,具體問題一般化,歸納類比出n次方根的概念,評價學生的思維。
討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實數(shù)的平方根有兩個,它們互為相反數(shù),如:4的平方根為±2,負數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數(shù)的立方根只有一個,如:-8的立方根為-2.
(2)類比平方根、立方根的定義,一個數(shù)的四次方等于a,則這個數(shù)叫a的四次方根。一個數(shù)的五次方等于a,則這個數(shù)叫a的五次方根。一個數(shù)的六次方等于a,則這個數(shù)叫a的六次方根。
(3)類比(2)得到一個數(shù)的n次方等于a,則這個數(shù)叫a的n次方根。
(4)用一個式子表達是,若xn=a,則x叫a的n次方根。
教師板書n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數(shù)集。
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例。
提出問題
(1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目)。
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。
(2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì)的數(shù),有什么特點?
(3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負,還有零,結(jié)論有一個的,也有兩個的,你能否總結(jié)一般規(guī)律呢?
(4)任何一個數(shù)a的偶次方根是否存在呢?
活動:教師提示學生切實緊扣n次方根的概念,求一個數(shù)a的n次方根,就是求出的那個數(shù)的n次方等于a,及時點撥學生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的特點,對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學生及時表揚,對回答不準確的學生提示引導考慮問題的思路。
討論結(jié)果:(1)因為±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
(2)方根的指數(shù)是2,3,4,5,7…特點是有奇數(shù)和偶數(shù)??偟膩砜矗@些數(shù)包括正數(shù),負數(shù)和零。
(3)一個數(shù)a的奇次方根只有一個,一個正數(shù)a的偶次方根有兩個,是互為相反數(shù)。0的任何次方根都是0.
(4)任何一個數(shù)a的偶次方根不一定存在,如負數(shù)的偶次方根就不存在,因為沒有一個數(shù)的偶次方是一個負數(shù)。
類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):
①當n為偶數(shù)時,正數(shù)a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負數(shù),負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0)。
②n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負數(shù)的n次方根是一個負數(shù),這時a的n次方根用符號na表示。
③負數(shù)沒有偶次方根;0的任何次方根都是零。
上面的文字語言可用下面的式子表示:
a為正數(shù):n為奇數(shù),a的n次方根有一個為na,n為偶數(shù),a的n次方根有兩個為±na.
a為負數(shù):n為奇數(shù),a的n次方根只有一個為na,n為偶數(shù),a的n次方根不存在。
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例。
思考
根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?
活動:教師提示學生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學生,隨機給出一個數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學生在舉例過程中的問題。
解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個名稱——根式。
根式的概念:
式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù)。
如3-27中,3叫根指數(shù),-27叫被開方數(shù)。
思考
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動:教師讓學生注意討論n為奇偶數(shù)和a的符號,充分讓學生多舉實例,分組討論。教師點撥,注意歸納整理。
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。
解答:根據(jù)n次方根的意義,可得:(na)n=a.
通過探究得到:n為奇數(shù),nan=a.
n為偶數(shù),nan=|a|=a,-a,a≥0,a
因此我們得到n次方根的運算性質(zhì):
①(na)n=a.先開方,再乘方(同次),結(jié)果為被開方數(shù)。
②n為奇數(shù),nan=a.先奇次乘方,再開方(同次),結(jié)果為被開方數(shù)。
n為偶數(shù),nan=|a|=a,-a,a≥0,a
應(yīng)用示例
思路1
例求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。
活動:求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個題目仔細分析。觀察學生的解題情況,讓學生展示結(jié)果,抓住學生在解題過程中出現(xiàn)的問題并對癥下藥。求下列各式的值實際上是求數(shù)的方根,可按方根的運算性質(zhì)來解,首先要搞清楚運算順序,目的是把被開方數(shù)的符號定準,然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結(jié)果必須是非負數(shù)。
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b)。
點評:不注意n的奇偶性對式子nan的值的影響,是導致問題出現(xiàn)的一個重要原因,要在理解的基礎(chǔ)上,記準,記熟,會用,活用。
變式訓練
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
點評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解。
思路2
例1下列各式中正確的是()
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活動:教師提示,這是一道選擇題,本題考查n次方根的運算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴格按求方根的步驟,體會方根運算的實質(zhì),學生先思考哪些地方容易出錯,再回答。
解析:(1)4a4=a,考查n次方根的運算性質(zhì),當n為偶數(shù)時,應(yīng)先寫nan=|a|,故A項錯。
(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個正數(shù)的偶次方根,根據(jù)運算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項錯。
(3)a0=1是有條件的,即a≠0,故C項也錯。
(4)D項是一個正數(shù)的偶次方根,根據(jù)運算順序也應(yīng)如此,故D項正確。所以答案選D.
答案:D
點評:本題由于考查n次方根的運算性質(zhì)與運算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細心。
例2 3+22+3-22=__________.
活動:讓同學們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細一想,我們學習的內(nèi)容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運算求出結(jié)果是解題的關(guān)鍵,因此將根號下面的式子化成一個完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關(guān)鍵,教師提示,引導學生解題的思路。
解析:因為3+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
點評:不難看出3-22與3+22形式上有些特點,即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個完全平方式。
思考
上面的例2還有別的解法嗎?
活動:教師引導,去根號常常利用完全平方公式,有時平方差公式也可,同學們觀察兩個式子的特點,具有對稱性,再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消。同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法。
另解:利用整體思想,x=3+22+3-22,
兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解。
變式訓練
若a2-2a+1=a-1,求a的取值范圍。
解:因為a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
點評:利用方根的運算性質(zhì)轉(zhuǎn)化為去絕對值符號,是解題的關(guān)鍵。
知能訓練
(教師用多媒體顯示在屏幕上)
1、以下說法正確的是()
A.正數(shù)的n次方根是一個正數(shù)
B.負數(shù)的n次方根是一個負數(shù)
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整數(shù)集)
答案:C
2、化簡下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。
3、計算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
問題:nan=a與(na)n=a(n>1,n∈N)哪一個是恒等式,為什么?請舉例說明。
活動:組織學生結(jié)合前面的例題及其解答,進行分析討論,解決這一問題要緊扣n次方根的定義。
通過歸納,得出問題結(jié)果,對a是正數(shù)和零,n為偶數(shù)時,n為奇數(shù)時討論一下。再對a是負數(shù),n為偶數(shù)時,n為奇數(shù)時討論一下,就可得到相應(yīng)的結(jié)論。
解:(1)(na)n=a(n>1,n∈N)。
如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=na一定是它的一個n次方根,所以(na)n=a恒成立。
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,當n為奇數(shù),當n為偶數(shù)。
當n為奇數(shù)時,a∈R,nan=a恒成立。
例如:525=2,5(-2)5=-2.
當n為偶數(shù)時,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。
點評:實質(zhì)上是對n次方根的概念、性質(zhì)以及運算性質(zhì)的深刻理解。
課堂小結(jié)
學生仔細交流討論后,在筆記上寫出本節(jié)課的學習收獲,教師用多媒體顯示在屏幕上。
1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集。用式子na表示,式子na叫根式,其中a叫被開方數(shù),n叫根指數(shù)。
(1)當n為偶數(shù)時,a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負數(shù),負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0)。
(2)n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負數(shù)的n次方根是一個負數(shù),這時a的n次方根用符號na表示。
(3)負數(shù)沒有偶次方根。0的任何次方根都是零。
2、掌握兩個公式:n為奇數(shù)時,(na)n=a,n為偶數(shù)時,nan=|a|=a,-a,a≥0,a
作業(yè)
課本習題2.1A組1.
補充作業(yè):
1、化簡下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
2、若5
解析:因為5
答案:2a-13
3.5+26+5-26=__________.
解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,
不難看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
設(shè)計感想
學生已經(jīng)學習了數(shù)的平方根和立方根,根式的內(nèi)容是這些內(nèi)容的推廣,本節(jié)課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時,要結(jié)合已學內(nèi)容,列舉具體實例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來進行,每種情況又分a>0,a
第2課時
作者:郝云靜
導入新課
思路1.碳14測年法。原來宇宙射線在大氣層中能夠產(chǎn)生放射性碳14,并與氧結(jié)合成二氧化碳后進入所有活組織,先為植物吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機體內(nèi)保持一定的水平。而當有機體死亡后,即會停止吸收碳14,其組織內(nèi)的碳14便以約5 730年的半衰期開始衰變并消失。對于任何含碳物質(zhì)只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經(jīng)過一定的時間,變?yōu)樵瓉淼囊话耄R霰竟?jié)課題:指數(shù)與指數(shù)冪的運算之分數(shù)指數(shù)冪。
思路2.同學們,我們在初中學習了整數(shù)指數(shù)冪及其運算性質(zhì),那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的。這就是本節(jié)的主講內(nèi)容,教師板書本節(jié)課題——指數(shù)與指數(shù)冪的運算之分數(shù)指數(shù)冪。
推進新課
新知探究
提出問題
(1)整數(shù)指數(shù)冪的運算性質(zhì)是什么?
(2)觀察以下式子,并總結(jié)出規(guī)律:a>0,
①;
②a8=(a4)2=a4=,;
③4a12=4(a3)4=a3=;
④2a10=2(a5)2=a5= 。
(3)利用(2)的規(guī)律,你能表示下列式子嗎?
,,,(x>0,m,n∈正整數(shù)集,且n>1)。
(4)你能用方根的意義來解釋(3)的式子嗎?
(5)你能推廣到一般的情形嗎?
活動:學生回顧初中學習的整數(shù)指數(shù)冪及運算性質(zhì),仔細觀察,特別是每題的開始和最后兩步的指數(shù)之間的關(guān)系,教師引導學生體會方根的意義,用方根的意義加以解釋,指點啟發(fā)學生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學及時表揚,其他學生鼓勵提示。
討論結(jié)果:(1)整數(shù)指數(shù)冪的運算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無意義;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實質(zhì)上①5a10=,②a8=,③4a12=,④2a10=結(jié)果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質(zhì)沒變。
根據(jù)4個式子的最后結(jié)果可以總結(jié):當根式的被開方數(shù)的指數(shù)能被根指數(shù)整除時,根式可以寫成分數(shù)作為指數(shù)的形式(分數(shù)指數(shù)冪形式)。
(3)利用(2)的規(guī)律,453=,375=,5a7=,nxm= 。
(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。
結(jié)果表明方根的結(jié)果和分數(shù)指數(shù)冪是相通的。
(5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數(shù)集,n>1)。
綜上所述,我們得到正數(shù)的正分數(shù)指數(shù)冪的意義,教師板書:
規(guī)定:正數(shù)的正分數(shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1)。
提出問題
(1)負整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?
(2)你能得出負分數(shù)指數(shù)冪的意義嗎?
(3)你認為應(yīng)怎樣規(guī)定零的分數(shù)指數(shù)冪的意義?
(4)綜合上述,如何規(guī)定分數(shù)指數(shù)冪的意義?
(5)分數(shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個規(guī)定會產(chǎn)生什么樣的后果?
(6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?
活動:學生回想初中學習的情形,結(jié)合自己的學習體會回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負整數(shù)指數(shù)冪的意義來類比,把正分數(shù)指數(shù)冪的意義與負分數(shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運算性質(zhì)類比可得有理數(shù)指數(shù)冪的運算性質(zhì),教師在黑板上板書,學生合作交流,以具體的實例說明a>0的必要性,教師及時作出評價。
討論結(jié)果:(1)負整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N+。
(2)既然負整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分數(shù)指數(shù)冪的意義可得正數(shù)的負分數(shù)指數(shù)冪的意義。
規(guī)定:正數(shù)的負分數(shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。
(3)規(guī)定:零的分數(shù)指數(shù)冪的意義是:零的正分數(shù)次冪等于零,零的負分數(shù)指數(shù)冪沒有意義。
(4)教師板書分數(shù)指數(shù)冪的意義。分數(shù)指數(shù)冪的意義就是:
正數(shù)的正分數(shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負分數(shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分數(shù)次冪等于零,零的負分數(shù)指數(shù)冪沒有意義。
(5)若沒有a>0這個條件會怎樣呢?
如=3-1=-1,=6(-1)2=1具有同樣意義的兩個式子出現(xiàn)了截然不同的結(jié)果,這只說明分數(shù)指數(shù)冪在底數(shù)小于零時是無意義的。因此在把根式化成分數(shù)指數(shù)時,切記要使底數(shù)大于零,如無a>0的條件,比如式子3a2=,同時負數(shù)開奇次方是有意義的,負數(shù)開奇次方時,應(yīng)把負號移到根式的外邊,然后再按規(guī)定化成分數(shù)指數(shù)冪,也就是說,負分數(shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負數(shù),負數(shù)只是出現(xiàn)在指數(shù)上。
(6)規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。
有理數(shù)指數(shù)冪的運算性質(zhì):對任意的有理數(shù)r,s,均有下面的運算性質(zhì):
①ar?as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a?b)r=arbr(a>0,b>0,r∈Q)。
我們利用分數(shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運算性質(zhì)可以解決一些問題,來看下面的例題。
應(yīng)用示例
例1求值:(1);(2);(3)12-5;(4) 。
活動:教師引導學生考慮解題的方法,利用冪的運算性質(zhì)計算出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來。
解:(1) =22=4;
(2)=5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4)=23-3=278.
點評:本例主要考查冪值運算,要按規(guī)定來解。在進行冪值運算時,要首先考慮轉(zhuǎn)化為指數(shù)運算,而不是首先轉(zhuǎn)化為熟悉的根式運算,如=382=364=4.
例2用分數(shù)指數(shù)冪的形式表示下列各式。
a3?a;a2?3a2;a3a(a>0)。
活動:學生觀察、思考,根據(jù)解題的順序,把根式化為分數(shù)指數(shù)冪,再由冪的運算性質(zhì)來運算,根式化為分數(shù)指數(shù)冪時,要由里往外依次進行,把握好運算性質(zhì)和順序,學生討論交流自己的解題步驟,教師評價學生的解題情況,鼓勵學生注意總結(jié)。
解:a3?a=a3? =;
a2?3a2=a2? =;
a3a= 。
點評:利用分數(shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運算性質(zhì)進行根式運算時,其順序是先把根式化為分數(shù)指數(shù)冪,再由冪的運算性質(zhì)來運算。對于計算的結(jié)果,不強求統(tǒng)一用什么形式來表示,沒有特別要求,就用分數(shù)指數(shù)冪的形式來表示,但結(jié)果不能既有分數(shù)指數(shù)又有根式,也不能既有分母又有負指數(shù)。
例3計算下列各式(式中字母都是正數(shù))。
(1);
(2)。
活動:先由學生觀察以上兩個式子的特征,然后分析,四則運算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內(nèi)的,整數(shù)冪的運算性質(zhì)及運算規(guī)律擴充到分數(shù)指數(shù)冪后,其運算順序仍符合我們以前的四則運算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項式的乘除運算,可以用單項式的乘除法運算順序進行,要注意符號,第(2)小題是乘方運算,可先按積的乘方計算,再按冪的乘方進行計算,熟悉后可以簡化步驟。
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
(2)=m2n-3=m2n3.
點評:分數(shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法。有了分數(shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分數(shù)指數(shù)冪的形式,用分數(shù)指數(shù)冪的運算法則進行運算了。
本例主要是指數(shù)冪的運算法則的綜合考查和應(yīng)用。
變式訓練
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4計算下列各式:
(1)(325-125)÷425;
(2)a2a?3a2(a>0)。
活動:先由學生觀察以上兩個式子的特征,然后分析,化為同底。利用分數(shù)指數(shù)冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分數(shù)指數(shù)冪再計算,這樣就簡便多了,第(2)小題也是先把根式轉(zhuǎn)化為分數(shù)指數(shù)冪后再由運算法則計算,最后寫出解答。
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能訓練
課本本節(jié)練習1,2,3
【補充練習】
教師用實物投影儀把題目投射到屏幕上讓學生解答,教師巡視,啟發(fā),對做得好的同學給予表揚鼓勵。
1、(1)下列運算中,正確的是()
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()
A.①② B.①③ C.①②③④ D.①③④
(3)(34a6)2?(43a6)2等于()
A.a B.a2 C.a3 D.a4
(4)把根式-25(a-b)-2改寫成分數(shù)指數(shù)冪的形式為()
A. B.
C. D.
(5)化簡的結(jié)果是()
A.6a B.-a C.-9a D.9a
2、計算:(1) --17-2+ -3-1+(2-1)0=__________.
(2)設(shè)5x=4,5y=2,則52x-y=__________.
3、已知x+y=12,xy=9且x答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)83、解:。因為x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.又因為x所以原式= =12-6-63=-33.拓展提升1、化簡:?;顒樱簩W生觀察式子特點,考慮x的指數(shù)之間的關(guān)系可以得到解題思路,應(yīng)對原式進行因式分解,根據(jù)本題的特點,注意到:x-1= -13=;x+1= +13=;。構(gòu)建解題思路教師適時啟發(fā)提示。解:==== 。點撥:解這類題目,要注意運用以下公式,=a-b,=a± +b,=a±b.2、已知,探究下列各式的值的求法。(1)a+a-1;(2)a2+a-2;(3) 。解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7;(2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47;(3)由于,所以有=a+a-1+1=8.點撥:對“條件求值”問題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值。課堂小結(jié)活動:教師,本節(jié)課同學們有哪些收獲?請把你的學習收獲記錄在你的筆記本上,同學們之間相互交流。同時教師用投影儀顯示本堂課的知識要點:(1)分數(shù)指數(shù)冪的意義就是:正數(shù)的正分數(shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負分數(shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分數(shù)次冪等于零,零的負分數(shù)指數(shù)冪沒有意義。(2)規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。(3)有理數(shù)指數(shù)冪的運算性質(zhì):對任意的有理數(shù)r,s,均有下面的運算性質(zhì):①ar?as=ar+s(a>0,r,s∈Q),②(ar)s=ars(a>0,r,s∈Q),③(a?b)r=arbr(a>0,b>0,r∈Q)。(4)說明兩點:①分數(shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關(guān)系。②整數(shù)指數(shù)冪的運算性質(zhì)對任意的有理數(shù)指數(shù)冪也同樣適用。因而分數(shù)指數(shù)冪與根式可以互化,也可以利用=am來計算。作業(yè)課本習題2.1A組2,4.設(shè)計感想本節(jié)課是分數(shù)指數(shù)冪的意義的引出及應(yīng)用,分數(shù)指數(shù)是指數(shù)概念的又一次擴充,要讓學生反復理解分數(shù)指數(shù)冪的意義,教學中可以通過根式與分數(shù)指數(shù)冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習,強化訓練,鞏固知識,要輔助以信息技術(shù)的手段來完成大容量的課堂教學任務(wù)。第3課時作者:鄭芳鳴導入新課思路1.同學們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分數(shù)到負分數(shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴充過程,自然數(shù)到整數(shù),整數(shù)到分數(shù)(有理數(shù)),有理數(shù)到實數(shù)。并且知道,在有理數(shù)到實數(shù)的擴充過程中,增添的數(shù)是無理數(shù)。對無理數(shù)指數(shù)冪,也是這樣擴充而來。既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的'運算(3)〕之無理數(shù)指數(shù)冪。思路2.同學們,在初中我們學習了函數(shù)的知識,對函數(shù)有了一個初步的了解,到了高中,我們又對函數(shù)的概念進行了進一步的學習,有了更深的理解,我們僅僅學了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠遠不能滿足我們的需要,隨著科學的發(fā)展,社會的進步,我們還要學習許多函數(shù),其中就有指數(shù)函數(shù),為了學習指數(shù)函數(shù)的知識,我們必須學習實數(shù)指數(shù)冪的運算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴充到實數(shù)指數(shù)冪,因此我們本節(jié)課學習:指數(shù)與指數(shù)冪的運算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題。推進新課新知探究提出問題(1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?(2)多媒體顯示以下圖表:同學們從上面的兩個表中,能發(fā)現(xiàn)什么樣的規(guī)律?2的過剩近似值的近似值1.5 11.180 339 891.42 9.829 635 3281.415 9.750 851 8081.414 3 9.739 872 621.414 22 9.738 618 6431.414 214 9.738 524 6021.414 213 6 9.738 518 3321.414 213 57 9.738 517 8621.414 213 563 9.738 517 752… …的近似值2的不足近似值9.518 269 694 1.49.672 669 973 1.419.735 171 039 1.4149.738 305 174 1.414 29.738 461 907 1.414 219.738 508 928 1.414 2139.738 516 765 1.414 213 59.738 517 705 1.414 213 569.738 517 736 1.414 213 562… …(3)你能給上述思想起個名字嗎?(4)一個正數(shù)的無理數(shù)次冪到底是一個什么性質(zhì)的數(shù)呢?如,根據(jù)你學過的知識,能作出判斷并合理地解釋嗎?(5)借助上面的結(jié)論你能說出一般性的結(jié)論嗎?活動:教師引導,學生回憶,教師提問,學生回答,積極交流,及時評價學生,學生有困惑時加以解釋,可用多媒體顯示輔助內(nèi)容:問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向。問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián)。問題(3)上述方法實際上是無限接近,最后是逼近。問題(4)對問題給予大膽猜測,從數(shù)軸的觀點加以解釋。問題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般。討論結(jié)果:(1)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于2,稱2的過剩近似值。(2)第一個表:從大于2的方向逼近2時,就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。第二個表:從小于2的方向逼近2時,就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。從另一角度來看這個問題,在數(shù)軸上近似地表示這些點,數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說從兩個方向無限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結(jié)果,事實上表示這些數(shù)的點從兩個方向向表示的點靠近,但這個點一定在數(shù)軸上,由此我們可得到的結(jié)論是一定是一個實數(shù),即51.4充分表明是一個實數(shù)。(3)逼近思想,事實上里面含有極限的思想,這是以后要學的知識。(4)根據(jù)(2)(3)我們可以推斷是一個實數(shù),猜測一個正數(shù)的無理數(shù)次冪是一個實數(shù)。(5)無理數(shù)指數(shù)冪的意義:一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù)。也就是說無理數(shù)可以作為指數(shù),并且它的結(jié)果是一個實數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個確定的實數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴充到實數(shù)指數(shù)冪。提出問題(1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時,必須規(guī)定底數(shù)是正數(shù)?(2)無理數(shù)指數(shù)冪的運算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運算法則相通呢?(3)你能給出實數(shù)指數(shù)冪的運算法則嗎?活動:教師組織學生互助合作,交流探討,引導他們用反例說明問題,注意類比,歸納。對問題(1)回顧我們學習分數(shù)指數(shù)冪的意義時對底數(shù)的規(guī)定,舉例說明。對問題(2)結(jié)合有理數(shù)指數(shù)冪的運算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù),那么無理數(shù)指數(shù)冪的運算法則應(yīng)當與有理數(shù)指數(shù)冪的運算法則類似,并且相通。對問題(3)有了有理數(shù)指數(shù)冪的運算法則和無理數(shù)指數(shù)冪的運算法則,實數(shù)的運算法則自然就得到了。討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個確定的實數(shù),就不會再造成混亂。(2)因為無理數(shù)指數(shù)冪是一個確定的實數(shù),所以能進行指數(shù)的運算,也能進行冪的運算,有理數(shù)指數(shù)冪的運算性質(zhì),同樣也適用于無理數(shù)指數(shù)冪。類比有理數(shù)指數(shù)冪的運算性質(zhì)可以得到無理數(shù)指數(shù)冪的運算法則:①ar?as=ar+s(a>0,r,s都是無理數(shù))。②(ar)s=ars(a>0,r,s都是無理數(shù))。③(a?b)r=arbr(a>0,b>0,r是無理數(shù))。(3)指數(shù)冪擴充到實數(shù)后,指數(shù)冪的運算性質(zhì)也就推廣到了實數(shù)指數(shù)冪。實數(shù)指數(shù)冪的運算性質(zhì):對任意的實數(shù)r,s,均有下面的運算性質(zhì):①ar?as=ar+s(a>0,r,s∈R)。②(ar)s=ars(a>0,r,s∈R)。③(a?b)r=arbr(a>0,b>0,r∈R)。應(yīng)用示例例1利用函數(shù)計算器計算。(精確到0.001)(1)0.32.1;(2)3.14-3;(3);(4) 。活動:教師教會學生利用函數(shù)計算器計算,熟悉計算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值;對于(2),先按底數(shù)3.14,再按xy鍵,再按負號-鍵,再按3,最后按=即可;對于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可;對于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時也可按2ndf或shift鍵,使用鍵上面的功能去運算。學生可以相互交流,挖掘計算器的用途。解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.點評:熟練掌握用計算器計算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會;用四舍五入法求近似值,若保留小數(shù)點后n位,只需看第(n+1)位能否進位即可。例2求值或化簡。(1)a-4b23ab2(a>0,b>0);(2)(a>0,b>0);(3)5-26+7-43-6-42.活動:學生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達到最簡,對既有分數(shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分數(shù)指數(shù)冪的形式,便于運算,教師有針對性地提示引導,對(1)由里向外把根式化成分數(shù)指數(shù)冪,要緊扣分數(shù)指數(shù)冪的意義和運算性質(zhì),對(2)既有分數(shù)指數(shù)冪又有根式,應(yīng)當統(tǒng)一起來,化為分數(shù)指數(shù)冪,對(3)有多重根號的式子,應(yīng)先去根號,這里是二次根式,被開方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學生作及時的評價,注意總結(jié)解題的方法和規(guī)律。解:(1)a-4b23ab2= =3b46a11 。點評:根式的運算常?;蓛绲倪\算進行,計算結(jié)果如沒有特殊要求,就用根式的形式來表示。高中數(shù)學教案全套模板 篇14活動設(shè)計背景孩子在幼兒園里,和其他小朋友相處時,經(jīng)常會發(fā)生一些摩擦,幼兒卻不會調(diào)節(jié)控制自己的情緒,有時會大哭,有時會難過,甚至還會大打出手,特別是幼兒上了中班以后,心情變化大,會更不容易控制自己的情緒。喜、怒、哀、愁之情人皆有之,但快樂作為一種積極情緒卻是心理健康的重要標志之一。對于幼兒的成長尤為重要。愉快的情緒既來自于成人的關(guān)懷呵護,更取決于幼兒自身的主觀體驗。幼兒園新綱要中指出,健康領(lǐng)域的目標之一就是讓幼兒能身體健康,在集體生活中情緒安定、愉快,為此我設(shè)計這次活動——開心吧,就是為了讓幼兒在體察、感知、理解中,懂得人的基本情緒,知道情緒愉快有利于身體健康,培養(yǎng)幼兒開朗的性格和樂觀的情緒。在教育中,我們要讓幼兒學會如何保持愉快的心情,并初步學會用多種方式排解不開心的情緒,為快樂的人生奠定基礎(chǔ)。本次活動的內(nèi)容選自中班健康下冊中的第二個活動主題“齊齊開心”,這一個活動的主題就是讓幼兒學會用適當?shù)姆绞脚沤獠婚_心的情緒,知道好的情緒對我們身體是有好處的。好的情緒還可以讓我們交到更多的朋友,在集體生活中能感受到更多的快樂和安全感。根據(jù)這一內(nèi)容我設(shè)計了三個環(huán)節(jié):情景感知,理解每個人都有情緒——討論分析,知道好心情有利于我們身體健康——體驗理解,尋找到排解不開心情緒的方法?;顒幽繕?、懂得情緒愉快有利于身體健康。2、初步學習正確的方式排解不開心的情緒。3、引導幼兒逐漸養(yǎng)成積極樂觀的生活態(tài)度。4、學會保持愉快的心情,培養(yǎng)幼兒熱愛生活,快樂生活的良好情感。5、學習控制自己的情緒,難過或疼痛時不哭。教學重點、難點教學重點:懂得情緒愉快有利于身體健康。教學難點:初步學習正確的方式排解不開心的情緒?;顒舆^程步驟1:一、情景感知,理解每個人都有情緒。1、出示圖片1(一個小朋友當時值日生之后露出甜甜地笑容。)問:圖上的`小朋友怎么了?為什么?平時你們會這樣嗎?為什么呢?(和幼兒討論之后得出情緒:開心。)2、出示圖片2(一個小朋友自己帶到幼兒園的圖書被撕破后很生氣。)問:圖上的小朋友怎么了?為什么?你們有過這樣的經(jīng)歷嗎?(和幼兒討論之后得出情緒:生氣。)3、出示圖片3(一個小朋友看見魚缸里的小金魚死了,表現(xiàn)得非常傷心。)問:圖上的小朋友怎么啦?為什么?你們也會這樣嗎?為什么?(和幼兒討論后得出情緒:傷心或不開心。)4、出示圖片4(一個小朋友因為不會系鞋帶而發(fā)愁。)問:小朋友怎么啦?為什么?你們會系鞋帶嗎?如果你們遇到了不會做的事情會怎么樣?為什么?(和幼兒討論后得出表情詞:發(fā)愁。)5、教師小結(jié):每個人在遇到各種各樣的事情時,心里都會有不一樣的感受,喜、怒、哀、愁等,這種感受我們叫它心情。設(shè)計意圖:在第一個環(huán)節(jié)中,讓孩子觀察富有生活氣息的圖片,和老師一起討論生活中經(jīng)常會遇到的事情,讓幼兒盡情的說說自己是否也會這樣,在觀察和討論中理解每個人都有各種各樣的情緒,喜、怒、哀、愁。步驟2:二、討論分析,知道好心情有利于我們身體健康。1、師:心情是我們的好朋友,一份好心情能讓我們過得很開心,可是一份壞心情卻會把一切都弄得很糟糕,那么我們在什么時候心情會好,什么時候心情會壞呢?好心情 壞心情(教師根據(jù)幼兒回答的情況填在書面表格中。)2、你們平時心情好的的時候多還是心情壞的時候多呢?為什么?心情好的時候你們會用什么顏色來表現(xiàn)呢?請你們?yōu)樽约旱那榫w配色。(出示色彩卡,請幼兒為不同心情配色。)開心 生氣 傷心 發(fā)愁(注:每一個心情都有娃娃頭表現(xiàn),有助于幼兒理解這些心情。)3、幼兒操作結(jié)束后,教師小結(jié)分析幼兒的配色情況。教師小結(jié),好心情時我們會用鮮艷的顏色來表現(xiàn),壞心情是我們會用深暗的顏色來表現(xiàn),看來孩子們都喜歡好心情咯,不開心就是生氣,生氣不僅不讓人喜歡,還會對我們身體產(chǎn)生壞的影響。生氣的時候,人吃不下飯,睡不好覺,身體越來越差,所以我們要盡量不讓自己生氣,把生氣這個壞習慣消滅掉。好的心情會讓我們開心地過每一天,讓我們身體健康。設(shè)計意圖:在第二個環(huán)節(jié)中,我用表格的形式記錄孩子們的好心情和壞心情,同時還讓他們給心情配色,讓他們理解好心情與壞心情的不同,感知好心情會給我們帶來快樂。步驟3:三、體驗理解,尋找到排解不開心情緒的方法。1、好心情會給我們帶來快樂,可是有幾只小動物不開心了,看看它們怎么了?(出示兩幅圖。)圖5:斑馬先生和小獅子搶皮球臉上被小獅子扔皮球給砸傷了。圖6:花豬小姐已經(jīng)有很多玩具了,還要媽媽給她買玩具,媽媽不肯,它就生氣了。引導幼兒理解斑馬先生和花豬小姐這時的心情很壞。2、怎樣才能讓他們變得開心呢?狐貍大嬸開了一間開心吧,我們?nèi)タ纯窗?。(出示書本第一頁的畫面。)哇,斑馬先生和花豬小姐在狐貍大嬸的開心吧玩的多開心呀。狐貍大嬸的開心吧真神奇,它們是怎樣變快樂的呢?(讓幼兒仔細觀察圖畫并回答。斑馬先生在吃冰激凌而變開心了,花豬小姐在跳蹦蹦床而變開心了。)(教師再幼兒的回答基礎(chǔ)上再小結(jié),讓幼兒懂得心情不好的時候可以采取其他適當?shù)姆绞脚沤獠婚_心的情緒,讓自己變得開心起來。)3、你們還有其他更好的方法讓它們變得開心嗎?(引導幼兒盡情的討論回答,同時及時鼓勵回答正確的幼兒,讓幼兒感知可以有不同或很多的方法排解不開心的情緒。)4、幼兒回答后讓他們把他們自己認為好的方法記錄在操作卡第2頁“我的開心法寶中。”5、幼兒完成操作后,教師簡單小結(jié)本次活動的內(nèi)容。心情是藏在我們每個人心中的小精靈,我們有時高興,有時生氣,有時難過,不過,我們要學會調(diào)節(jié)自己的情緒,讓我們隨時保持愉快的心情。遇到不開心的時候,可以唱唱歌,跳跳舞,玩玩玩具,看看電視或者用你們剛才記錄的各種好的辦法,這樣我們就能讓自己快樂起來,就能天天擁有好心情,你的快樂就會變成大家的快樂,我們身邊就會充滿快樂!設(shè)計意圖:在第三個環(huán)節(jié)中,我通過讓幼兒觀察斑馬先生和花豬小姐不開心的情緒,讓幼兒到狐貍大嬸的開心吧去看看,看狐貍大嬸是怎樣讓它們變得開心的,然后再讓幼兒想出更多更好的方法讓它們變得開心起來,同時做好記錄讓幼兒在說說畫畫中理解怎樣用正確的方式排解不開心的情緒,讓自己高興起來,讓幼兒在激烈的討論中學會怎樣快樂。(附板書)好心情:媽媽給我買玩具我很高興我到動物園玩很開心我看動畫片的時候很開心……壞心情:別人打我很不高興我的玩具被別人搶去了我很不開心我奶奶生病了我很傷心
高中數(shù)學教案相關(guān)推薦
更多>-
高中數(shù)學教案 學校教師會把課本的核心教學內(nèi)容整理到教案和課件中,因此教師在編寫教案時必須非常認真對待。只有充分準備教案和課件的前期工作,才能達到預期的教學目標。那么,什么樣的教案和課件才算是優(yōu)秀的呢?88教案網(wǎng)的編輯特別為您推薦這篇文章,希望您能更深入地了解“高中數(shù)學教案”的知識點。謝謝您的關(guān)注,希望您能收藏我們...
-
高中數(shù)學教案2022模板其三 一名優(yōu)秀的教師在教學方面無論做什么事都有計劃和準備,高中教師要準備好教案為之后的教學做準備。教案可以讓上課時的教學氛圍非?;钴S,幫助高中教師在教學期間更好的掌握節(jié)奏。關(guān)于好的高中教案要怎么樣去寫呢?以下是小編收集整理的“高中數(shù)學教案2022模板其三”,僅供參考,大家一起來看看吧。 會用坐標法及距離公...
- 高中數(shù)學教案分享07-17
- 高中數(shù)學教案精選11-23
- 高中數(shù)學教案范本03-19
- 蘇教版高中數(shù)學必修1全套學案09-22
- 高中數(shù)學教案十二篇04-08
- 高中數(shù)學教案九篇04-28
- 高中數(shù)學教案15篇02-28
- 高中數(shù)學教學教案模板范文09-10
預備黨員思想?yún)R報3000字左右大學生(通用五篇)09-27
- 春節(jié)作文300字三年級下冊09-27
- 高中生物教案詳案大全09-27
- 開學典禮發(fā)言稿學生代表(優(yōu)質(zhì)八篇)09-27
- 開學典禮教師代表講話(分享十篇)09-27
- 重陽節(jié)活動小結(jié)幼兒園大班09-27
- 軍訓心得100字第一天(精選八篇)09-27
- 植樹手抄報內(nèi)容模板(收藏2篇)09-27
- 幼兒園臘八節(jié)活動方案主題09-27
- 高中數(shù)學教案匯總九篇09-15
- 高中數(shù)學教案優(yōu)秀教案范文大全09-14
- 高中數(shù)學教案通用模板人教版09-14
- 高中數(shù)學教學設(shè)計全套(推薦10篇)09-13
- 高中數(shù)學教案優(yōu)秀教案手寫模板(合集10篇)09-12
- 2024高中數(shù)學教案模板式(集錦7篇)09-12
- 2024高中數(shù)學教案全套(集錦八篇)09-11
- 高中數(shù)學教學教案模板范文09-10
- 高中數(shù)學教案優(yōu)秀教案試講模板(精選八篇)09-10
- 高中數(shù)學教案大全模板(精品十篇)09-10