88教案網(wǎng)
最新《正弦定理》教案
最新《正弦定理》教案系列。
教案課件在老師少不了一項(xiàng)工作事項(xiàng),按要求每個(gè)老師都應(yīng)該在準(zhǔn)備教案課件。只有提前備好教案課件,這樣課堂的教學(xué)效率才能有大的提升。那寫教案課件時(shí)需要注意哪些方面?以下為小編為你收集整理的最新《正弦定理》教案系列,更多信息請(qǐng)繼續(xù)關(guān)注我們的網(wǎng)站。
最新《正弦定理》教案【篇1】
一、教材分析
1.教材地位和作用
在初中,學(xué)生已經(jīng)學(xué)習(xí)了三角形的邊和角的基本關(guān)系;同時(shí)在必修4 ,學(xué)生也學(xué)習(xí)了三角函數(shù)、平面向量等內(nèi)容。這些為學(xué)生學(xué)習(xí)正弦定理提供了堅(jiān)實(shí)的基礎(chǔ)。正弦定理是初中解直角三角形的延伸,是揭示三角形邊、角之間數(shù)量關(guān)系的重要公式,本節(jié)內(nèi)容同時(shí)又是學(xué)生學(xué)習(xí)解三角形,幾何計(jì)算等后續(xù)知識(shí)的基礎(chǔ),而且在物理學(xué)等其它學(xué)科、工業(yè)生產(chǎn)以及日常生活等常常涉及解三角形的問題。 依據(jù)教材的上述地位和作用,我確定如下教學(xué)目標(biāo)和重難點(diǎn)
2.教學(xué)目標(biāo)
(1)知識(shí)目標(biāo):
①引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,探索證明正弦定理的方法;
②簡(jiǎn)單運(yùn)用正弦定理解三角形、初步解決某些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題。
(2)能力目標(biāo):
①通過對(duì)直角三角形邊角數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理,體驗(yàn)用特殊到一般的思想方法發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過程。
②在利用正弦定理來解三角形的過程中,逐步培養(yǎng)應(yīng)用數(shù)學(xué)知識(shí)來解決社會(huì)實(shí)際問題的能力。
(3)情感目標(biāo):通過設(shè)立問題情境,激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī)和好奇心理,使其主動(dòng)參與雙邊交流活動(dòng)。通過對(duì)問題的提出、思考、解決培養(yǎng)學(xué)生自信、自立的優(yōu)良心理品質(zhì)。通過教師對(duì)例題的講解培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣及科學(xué)的學(xué)習(xí)態(tài)度。 3.教學(xué)的重﹑難點(diǎn)
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用; 教學(xué)難點(diǎn):正弦定理的探索及證明;
教學(xué)中為了達(dá)到上述目標(biāo),突破上述重難點(diǎn),我將采用如下的教學(xué)方法與手段
二、教學(xué)方法與手段
1.教學(xué)方法
教學(xué)過程中以教師為主導(dǎo),學(xué)生為主體,創(chuàng)設(shè)和諧、愉悅教學(xué)環(huán)境。根據(jù)本節(jié)課內(nèi)容和學(xué)生認(rèn)知水平,我主要采用啟導(dǎo)法、感性體驗(yàn)法、多媒體輔助教學(xué)。
2.學(xué)法指導(dǎo)
學(xué)情調(diào)動(dòng):學(xué)生在初中已獲得了直角三角形邊角關(guān)系的初步知識(shí),正因如此學(xué)生在心理上會(huì)提出如何解決斜三角形邊角關(guān)系的疑問。
學(xué)法指導(dǎo):指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,讓學(xué)生在問題情景中學(xué)習(xí),再通過對(duì)實(shí)例進(jìn)行具體分析,進(jìn)而觀察歸納、演練鞏固,由具體到抽象,逐步實(shí)現(xiàn)對(duì)新知識(shí)的理解深化。
3.教學(xué)手段
利用多媒體展示圖片,極大的吸引學(xué)生的注意力,活躍課堂氣氛,調(diào)動(dòng)學(xué)生參與解決問題的積極性。為了提高課堂效率,便于學(xué)生動(dòng)手練習(xí),我把本節(jié)課的例題、課堂練習(xí)制作成一張習(xí)題紙,課前發(fā)給學(xué)生。
下面我講解如何運(yùn)用上述教學(xué)方法和手段開展教學(xué)過程
三、教學(xué)過程設(shè)計(jì)
教學(xué)流程:
引出課題
引出新知
歸納方法
鞏固新知
布置作業(yè)
四、總結(jié)分析:
現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的性質(zhì)概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)基礎(chǔ)上的,因此我在教學(xué)設(shè)計(jì)過程中注意了: ㈠在學(xué)生已有知識(shí)結(jié)構(gòu)和新性質(zhì)概念間尋找“最近發(fā)展區(qū)”. ㈡引導(dǎo)學(xué)生通過同化,順應(yīng)掌握新概念。
㈢設(shè)法走出“性質(zhì)概念一帶而過,演習(xí)作業(yè)鋪天蓋地”的誤區(qū),促使自己與學(xué)生一起走進(jìn)“重視探究、重視交流、重視過程” 的新天地。
我認(rèn)為本節(jié)課的設(shè)計(jì)應(yīng)遵循教學(xué)的基本原則;注重對(duì)學(xué)生思維的發(fā)展;貫徹教師對(duì)本節(jié)內(nèi)容的理解;體現(xiàn)“學(xué)思結(jié)合﹑學(xué)用結(jié)合”原則。希望對(duì)學(xué)生的思維品質(zhì)的培養(yǎng)﹑數(shù)學(xué)思想的建立﹑心理品質(zhì)的優(yōu)化起到良好的作用.
設(shè)計(jì)意圖:我的板書設(shè)計(jì)的指導(dǎo)原則:簡(jiǎn)明直觀,重點(diǎn)突出。本節(jié)課的板書教學(xué)重點(diǎn)放在黑板的正中間,為了能加深學(xué)生對(duì)正弦定理以及其應(yīng)用的認(rèn)識(shí),把例題放在中間,以期全班同學(xué)都能看得到。
謝謝!
最新《正弦定理》教案【篇2】
教材地位與作用:
本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)??家恍┙獯痤}。因此,正弦定理的知識(shí)非常重要。
學(xué)情分析:
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們?cè)诮鉀Q任意三角形的邊與角問題,就比較困難。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。
(根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo))
教學(xué)目標(biāo)分析:
知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。
情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。
教法學(xué)法分析:
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動(dòng)手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。
教學(xué)過程
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。
3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:
在三角形中,角與所對(duì)的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明
(四)歸納總結(jié),簡(jiǎn)單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81。8°,a=42。9cm。解三角形。
例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來解三角形。
2.例2。在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1、在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2、在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認(rèn)識(shí)
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。
(從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
(九)作業(yè)布置
最新《正弦定理》教案【篇3】
尊敬的各位考官:
大家好,我是今天的X號(hào)考生,今天我說課的題目是《正弦定理》。
新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。
一、說教材
教師對(duì)教材的掌握程度,是評(píng)判一位教師是否能上好一堂課的基本標(biāo)準(zhǔn)。在正式內(nèi)容開始之前,我要先談一談對(duì)教材的理解。
《正弦定理》是人教A版必修5第一章第一節(jié)的內(nèi)容,其主要內(nèi)容是正弦定理及其應(yīng)用。此前學(xué)習(xí)了三角函數(shù)的相關(guān)知識(shí),且積累很多的證明、推導(dǎo)的經(jīng)驗(yàn),為本節(jié)課的學(xué)習(xí)都起到了一定的鋪墊作用。本節(jié)課的學(xué)習(xí),也為以后學(xué)習(xí)和解決生活中的一些問題提供幫助。因此本節(jié)的學(xué)習(xí)有著極其重要的地位。
二、說學(xué)情
合理把握學(xué)情是上好一堂課的基礎(chǔ),下面我來談?wù)剬W(xué)生的實(shí)際情況。
這一階段的學(xué)生已經(jīng)具備了一定的分析問題、解決問題的能力,且在知識(shí)方面也有了一定的積累。所以,教學(xué)中,利用學(xué)生的特點(diǎn)以及原有經(jīng)驗(yàn)進(jìn)行教學(xué),增強(qiáng)學(xué)生的課堂參與度。
三、說教學(xué)目標(biāo)
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識(shí)與技能
能證明正弦定理,并能利用正弦定理解決實(shí)際問題。
(二)過程與方法
通過正弦定理的推導(dǎo)過程,提高分析問題、解決問題的能力。
(三)情感、態(tài)度與價(jià)值觀
在正弦定理的推導(dǎo)過程中,感受數(shù)學(xué)的嚴(yán)謹(jǐn),提升對(duì)數(shù)學(xué)的興趣。
四、說教學(xué)重難點(diǎn)
我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)為:正弦定理。難點(diǎn):正弦定理的證明。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、啟發(fā)法、練習(xí)法、小組合作、自主探究等教學(xué)方法。
六、說教學(xué)過程
在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項(xiàng)活動(dòng)的安排也注重互動(dòng)、交流,最大限度的調(diào)動(dòng)學(xué)生參與課堂的積極性、主動(dòng)性。
(一)導(dǎo)入新課
首先是導(dǎo)入環(huán)節(jié),我將采用溫故知新的導(dǎo)入方式。
復(fù)習(xí)初中學(xué)習(xí)的任意三角形中的邊和角存在什么樣的關(guān)系。在學(xué)生回顧之后,再提問:能否得到這個(gè)邊、角關(guān)系準(zhǔn)確量化的表示?引出本節(jié)課學(xué)習(xí)的內(nèi)容——正弦定理。
通過溫故知新的導(dǎo)入方式,能為本節(jié)課的后續(xù)的教學(xué)做好鋪墊。
(二)講解新知
接下來是新課講授環(huán)節(jié),我將分為四部分,分別為在直角三角形中推導(dǎo)正弦定理、在銳角三角形中推導(dǎo)正弦定理、在鈍角三角形中推導(dǎo)正弦定理以及正弦定理的應(yīng)用。
素的過程叫做解三角形。
在介紹完正弦定理后,接下來介紹正弦定理的應(yīng)用。通過提問:我們利用正弦定理可以解決一些怎樣的解三角形問題呢?總結(jié):如果已知三角形的任意兩個(gè)角與一邊,由三角形內(nèi)角和定理,可以計(jì)算出三角形的另一角,并由正弦定理計(jì)算出三角形的另兩邊;如果已知三角形的任意兩邊與其中一邊的對(duì)角,應(yīng)用正弦定理,可以計(jì)算出另一邊的對(duì)角的正弦值,進(jìn)而確定這個(gè)角和三角形其他的邊和角。
整節(jié)課,本著學(xué)生為主體,教師為主導(dǎo)的設(shè)計(jì)理念,結(jié)合教學(xué)內(nèi)容和學(xué)生的特點(diǎn),利用學(xué)生已有的知識(shí)經(jīng)驗(yàn),采用層次性的問題,一步步引導(dǎo)學(xué)生思考交流、發(fā)現(xiàn)知識(shí)。并且在整個(gè)過程中,講授法、引導(dǎo)法、合作探究等多種教學(xué)方法的使用,不但讓學(xué)生學(xué)會(huì)知識(shí),也培養(yǎng)學(xué)生的學(xué)習(xí)能力。通過這樣的設(shè)計(jì),提升學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,提高學(xué)習(xí)數(shù)學(xué)的興趣。
(三)課堂練習(xí)
最新《正弦定理》教案【篇4】
尊敬的各位專家、評(píng)委:
大家好!
我是**縣**中學(xué)數(shù)學(xué)教師fwsi,我今天說課的題目是:人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書 數(shù)學(xué)必修5第一章第一節(jié)的第一課時(shí)《正弦定理》,依據(jù)新課程標(biāo)準(zhǔn)對(duì)教材的要求,結(jié)合我對(duì)教材的理解,我將從以下幾個(gè)方面說明我的設(shè)計(jì)和構(gòu)思。
一、教材分析
"解三角形"既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課"正弦定理",作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從"實(shí)際問題"抽象成"數(shù)學(xué)問題"的建模過程中,體驗(yàn) "觀察——猜想——證明——應(yīng)用"這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和"用數(shù)學(xué)"的意識(shí)。
二、學(xué)情分析
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)"一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法"的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。
三、教學(xué)目標(biāo)
1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問題。
過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用"等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立"數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)"的理念。
2、教學(xué)重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。
教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。
四、教學(xué)方法與手段
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用"問題教學(xué)法",即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
五、教學(xué)過程
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:
(一)創(chuàng)設(shè)情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì)不會(huì)想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?
1671年兩個(gè)法國(guó)天文學(xué)家首次測(cè)出了地月之間的距離大約為 385400km,你知道他們當(dāng)時(shí)是怎樣測(cè)出這個(gè)距離的嗎?
問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)
引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律
問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請(qǐng)你根據(jù)初中知識(shí),解決這樣一個(gè)問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來嗎?
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理
(三)類比歸納,嚴(yán)格證明
問題4:本題屬于初中問題,而且比較簡(jiǎn)單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個(gè)結(jié)論還成立嗎?
此時(shí)放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。
問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個(gè)結(jié)論仍然成立?我們光說成立不行,必須有能力進(jìn)行嚴(yán)格的理論證明,你有這個(gè)能力嗎?下面我希望你能用實(shí)力告訴我,開始。(啟發(fā)引導(dǎo)學(xué)生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)
放手給學(xué)生實(shí)踐的機(jī)會(huì)和時(shí)間,使學(xué)生真正的參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實(shí)踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。同時(shí),考慮到有部分同學(xué)基礎(chǔ)較差,考個(gè)人或小組可能無法完成探究任務(wù),教師在學(xué)生動(dòng)手的同時(shí),通過巡查,讓提前證明出結(jié)論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過程的書寫規(guī)范性,同時(shí),也讓從無從下手的同學(xué)有個(gè)參考,不至于閑呆著浪費(fèi)時(shí)間。
問題6:由此,你能否得到一個(gè)更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時(shí)板書課題并用紅色粉筆標(biāo)示出正弦定理內(nèi)容)
教師講解:告訴大家,其實(shí)這個(gè)大名鼎鼎的正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細(xì)亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個(gè)證明。也有說正弦定理的證明是13世紀(jì)的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現(xiàn)了這個(gè)充滿著數(shù)學(xué)美的結(jié)論,不能不說也是人類數(shù)學(xué)史上的一個(gè)奇跡。老師希望21世紀(jì)的你能在今后的學(xué)習(xí)中也研究出一個(gè)被后人景仰的某某定理來,到那時(shí)我也就成了數(shù)學(xué)家的老師了。當(dāng)然,老師的希望能否變成現(xiàn)實(shí),就要看大家的了。
通過本段內(nèi)容的講解,滲透一些數(shù)學(xué)史的內(nèi)容,對(duì)學(xué)生不僅有數(shù)學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習(xí)科學(xué)文化知識(shí)的熱情。
(四)強(qiáng)化理解,簡(jiǎn)單應(yīng)用
下面請(qǐng)大家看我們的教材2-3頁到例題1上邊,并自學(xué)解三角形定義。
讓學(xué)生看看書,放慢節(jié)奏,有利于學(xué)生消化和吸收剛才的內(nèi)容,同時(shí)教師可以利用這段時(shí)間對(duì)個(gè)別學(xué)困生進(jìn)行輔導(dǎo),以減少掉隊(duì)的同學(xué)數(shù)量,同時(shí)培養(yǎng)學(xué)生養(yǎng)成自覺看書的好習(xí)慣。
我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個(gè)簡(jiǎn)單的問題:
問題7:(教材例題1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。
(本題簡(jiǎn)單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實(shí)踐中發(fā)現(xiàn)的問題給予必要的講評(píng))
充分給學(xué)生自己動(dòng)手的時(shí)間和機(jī)會(huì),由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。
強(qiáng)化練習(xí)
讓全體同學(xué)限時(shí)完成教材4頁練習(xí)第一題,找兩位同學(xué)上黑板。
問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30?,解三角形。
例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時(shí),引導(dǎo)學(xué)生對(duì)比例題1研究,在什么情況下解三角形有唯一解?為什么?對(duì)學(xué)有余力的同學(xué)鼓勵(lì)他們自學(xué)探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進(jìn)一步討論》
(五)小結(jié)歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應(yīng)用
4、涉及的數(shù)學(xué)思想和方法。
師生共同總結(jié)本節(jié)課的收獲的同時(shí),引導(dǎo)學(xué)生學(xué)會(huì)自己總結(jié),讓學(xué)生進(jìn)一步回顧和體會(huì)知識(shí)的形成、發(fā)展、完善的過程。
(六)布置作業(yè),鞏固提高
1、教材10頁習(xí)題1.1A組第1題。
2、學(xué)有余力的同學(xué)探究10頁B組第1題,體會(huì)正弦定理的其他證明方法。
證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
對(duì)不同水平的學(xué)生設(shè)計(jì)不同梯度的.作業(yè),尊重學(xué)生的個(gè)性差異,有利于因材施教的教學(xué)原則的貫徹。
(七)板書設(shè)計(jì):(略)
最新《正弦定理》教案【篇5】
一、教材分析
《正弦定理》是人教版教材必修五第一章《解三角形》的第一節(jié)內(nèi)容,也是三角形理論中的一個(gè)重要內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系。在此之前,學(xué)生已經(jīng)學(xué)習(xí)過了正弦函數(shù)和余弦函數(shù),知識(shí)儲(chǔ)備已足夠。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實(shí)際生活中許多測(cè)量問題的工具。因此熟練掌握正弦定理能為接下來學(xué)習(xí)解三角形打下堅(jiān)實(shí)基礎(chǔ),并能在實(shí)際應(yīng)用中靈活變通。
二、教學(xué)目標(biāo)
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):
知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論,并能掌握多種證明方法。
情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。
四、教法分析
依據(jù)本節(jié)課內(nèi)容的特點(diǎn),學(xué)生的認(rèn)識(shí)規(guī)律,本節(jié)知識(shí)遵循以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想,采用與學(xué)生共同探索的教學(xué)方法,命題教學(xué)的發(fā)生型模式,以問題實(shí)際為參照對(duì)象,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化,并且運(yùn)用例題和習(xí)題來強(qiáng)化內(nèi)容的掌握,突破重難點(diǎn)。即指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法。學(xué)生采用自主式、合作式、探討式的學(xué)習(xí)方法,這樣能使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生的合作意識(shí)和探究精神。
五、教學(xué)過程
本節(jié)知識(shí)教學(xué)采用發(fā)生型模式:
1、問題情境
有一個(gè)旅游景點(diǎn),為了吸引更多的游客,想在風(fēng)景區(qū)兩座相鄰的山之間搭建一條觀光索道。已知一座山A到山腳C的上面斜距離是1500米,在山腳測(cè)得兩座山頂之間的夾角是450,在另一座山頂B測(cè)得山腳與A山頂之間的夾角是300。求需要建多長(zhǎng)的索道?
可將問題數(shù)學(xué)符號(hào)化,抽象成數(shù)學(xué)圖形。即已知AC=1500m,∠C=450,∠B=300。求AB=?
此題可運(yùn)用做輔助線BC邊上的高來間接求解得出。
提問:有沒有根據(jù)已提供的數(shù)據(jù),直接一步就能解出來的方法?
思考:我們知道,在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系。那我們能不能得到關(guān)于邊、角關(guān)系準(zhǔn)確量化的表示呢?
2、歸納命題
我們從特殊的三角形直角三角形中來探討邊與角的數(shù)量關(guān)系:
在如圖Rt三角形ABC中,根據(jù)正弦函數(shù)的定義
最新《正弦定理》教案【篇6】
一、教學(xué)內(nèi)容分析
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。
二、學(xué)情分析
對(duì)高一的學(xué)生來說,一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問題、解決問題。
三、設(shè)計(jì)思想:
培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的?!边@個(gè)觀點(diǎn)從教學(xué)的角度來理解就是:知識(shí)不僅是通過教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。
四、教學(xué)目標(biāo):
1、在創(chuàng)設(shè)的問題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性。
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類基本問題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無解三種情況。
3、通過對(duì)實(shí)際問題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來源于生活,又服務(wù)與生活。
五、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索與證明。
突破難點(diǎn)的手段:抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
六、復(fù)習(xí)引入:
1、在任意三角形行中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系?是否可以把邊、角關(guān)系準(zhǔn)確量化?
2、在ABC中,角A、B、C的正弦對(duì)邊分別是a,b,c,你能發(fā)現(xiàn)它們之間有什么關(guān)系嗎?
結(jié)論:
證明:(向量法)過A作單位向量j垂直于AC,由AC+CB=AB邊同乘以單位向量。
正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。
七、教學(xué)反思
本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個(gè)問題需要精心設(shè)計(jì)。一個(gè)是問題的引入,一個(gè)是定理的證明。通過兩個(gè)實(shí)際問題引入,讓學(xué)生體會(huì)為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計(jì),尋求解決問題的方法。具體的思路就是從解決課本的實(shí)際問題入手展開,將問題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的知識(shí),有效提高學(xué)生解決問題的能力。
1、在教學(xué)過程中,我注重引導(dǎo)學(xué)生的思維發(fā)生,發(fā)展,讓學(xué)生體會(huì)數(shù)學(xué)問題是如何解決的,給學(xué)生解決問題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數(shù)形結(jié)合思想等思想。
2、在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段。利用《幾何畫板》探究比值的值,由動(dòng)到靜,取得了很好的效果,加深了學(xué)生的印象。
3、由于設(shè)計(jì)的內(nèi)容比較的多,教學(xué)時(shí)間的超時(shí),這說明我自己對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,致使教學(xué)過程中時(shí)間的分配不夠適當(dāng),教學(xué)語言不夠精簡(jiǎn),今后我一定避免此類問題,爭(zhēng)取更大的進(jìn)步。
以上就是《最新《正弦定理》教案系列》的全部?jī)?nèi)容,想了解更多內(nèi)容,請(qǐng)點(diǎn)擊正弦定理教案查看或關(guān)注本網(wǎng)站內(nèi)容更新,感謝您的關(guān)注!
正弦定理教案相關(guān)推薦
更多>-
正弦定理 一位優(yōu)秀的教師不打無準(zhǔn)備之仗,會(huì)提前做好準(zhǔn)備,高中教師在教學(xué)前就要準(zhǔn)備好教案,做好充分的準(zhǔn)備。教案可以讓學(xué)生更好地進(jìn)入課堂環(huán)境中來,使高中教師有一個(gè)簡(jiǎn)單易懂的教學(xué)思路。所以你在寫高中教案時(shí)要注意些什么呢?以下是小編為大家收集的“正弦定理”歡迎大家與身邊的朋友分享吧!課題:1.1正弦定理班級(jí):姓名:學(xué)...
-
正弦定理(一) 班級(jí):小組:姓名:編號(hào): 總課題解三角形 課題正弦定理(一) 主備劉芳審核使用時(shí)間 學(xué)習(xí)目標(biāo)掌握正弦定理,并能解決一些簡(jiǎn)單的三角形度量問題 學(xué)習(xí)重點(diǎn)利用正弦定理解決一些簡(jiǎn)單的三角形度量問題 學(xué)習(xí)難點(diǎn)利...
2023幼兒園語言的教案設(shè)計(jì)(合集7篇)04-30
- 防校園欺凌安全教案1000字系列6篇04-30
- [熱門]水的世界教案大班反思精選6篇04-30
- 一年級(jí)雨點(diǎn)兒教案合集04-30
- 《社戲》教學(xué)反思范文(合集7篇)04-30
- 最新描寫關(guān)于青春疼痛系列文學(xué)的簡(jiǎn)短語句通用四十條06-23
- 有關(guān)《少年王勃》教學(xué)反思范文04-30
- 一年級(jí)數(shù)學(xué)上冊(cè)教學(xué)反思通用版800字精選04-30
- [薦]體育老師教學(xué)總結(jié)最新1000字系列02-10
- 關(guān)于小學(xué)生健康教案精選04-30
- 初中周記教學(xué)反思精選04-30
- 最新《正弦定理》教案系列04-30
- 《正弦定理》教案精選2000字集錦04-25
- 正弦定理(一)11-12
- 《正弦定理》導(dǎo)學(xué)案10-13