高中數(shù)學(xué)教案電子版免費
發(fā)表時間:2025-08-18高中數(shù)學(xué)教案電子版免費(推薦二十篇)。
作為教學(xué)工作者,編寫教案是重要的一環(huán),它有助于我們根據(jù)實際情況靈活調(diào)整教學(xué)進程。以下是整理的高中數(shù)學(xué)教案電子版,供大家參考與借鑒,期望對你們有所幫助。
★ 高中數(shù)學(xué)教案電子版免費 ★
一、教學(xué)目標(biāo)
1. 知識與技能:理解并掌握等比數(shù)列的性質(zhì),并能夠初步應(yīng)用這些性質(zhì)解決相關(guān)問題。
2. 過程與方法:通過觀察、類比、猜測等推理方法,提高學(xué)生分析、綜合、抽象、概括等邏輯思維能力。
3. 情感態(tài)度價值觀:體會類比在研究新事物中的作用,了解知識間存在的共同規(guī)律,培養(yǎng)學(xué)生對數(shù)學(xué)的興趣和熱愛。
二、教學(xué)重點與難點
重點:等比數(shù)列的性質(zhì)及其應(yīng)用。www.lvshijia.net
難點:等比數(shù)列性質(zhì)的應(yīng)用,特別是解決復(fù)雜問題時如何靈活運用這些性質(zhì)。
三、教學(xué)過程
1. 復(fù)習(xí)引入
回顧等差數(shù)列的定義、通項公式及性質(zhì)。
引導(dǎo)學(xué)生對比等差數(shù)列,思考等比數(shù)列的定義及可能具有的性質(zhì)。
2. 新課講授
定義講解:明確等比數(shù)列的定義,即一個數(shù)列,若從第二項起,每一項與前一項之比都是同一個非零常數(shù),則這個數(shù)列是等比數(shù)列。
性質(zhì)推導(dǎo):通過類比等差數(shù)列的性質(zhì),引導(dǎo)學(xué)生猜想并推導(dǎo)等比數(shù)列的性質(zhì)。例如,等比數(shù)列中任意兩項的比值相等,通項公式為$a_n = a_1 \times q^{(n-1)}$等。
例題講解:通過具體例題,展示如何應(yīng)用等比數(shù)列的性質(zhì)解決問題。
3. 探究活動
小組研討:分組讓學(xué)生根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派代表講解練習(xí)。
性質(zhì)證明:選取幾個重要的'性質(zhì)進行證明,如等比數(shù)列中項的性質(zhì)、求和公式等。
4. 鞏固練習(xí)
設(shè)計一系列練習(xí)題,包括基礎(chǔ)題和綜合題,讓學(xué)生鞏固所學(xué)知識。
5. 小結(jié)與作業(yè)
總結(jié)本節(jié)課的重點內(nèi)容,強調(diào)等比數(shù)列的性質(zhì)及應(yīng)用。
布置課后作業(yè),包括課本習(xí)題和思考題,以進一步鞏固和拓展學(xué)生的知識。
★ 高中數(shù)學(xué)教案電子版免費 ★
一、教學(xué)目標(biāo)
1. 知識與技能:使學(xué)生正確理解組合的意義,掌握組合數(shù)的計算公式,并學(xué)會應(yīng)用組合知識解決實際問題。
2. 過程與方法:通過提出問題、創(chuàng)設(shè)情境、歸納概括等教學(xué)方法,培養(yǎng)學(xué)生分析問題、解決問題的能力。
3. 情感態(tài)度價值觀:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)度和探索精神。
二、教學(xué)重點與難點
重點:組合的定義、組合數(shù)及組合數(shù)的.公式。
難點:解組合的應(yīng)用題,特別是如何將實際問題抽象為組合問題并求解。
三、教學(xué)過程
1. 導(dǎo)入新課
提出問題:如“一條鐵路線上有6個火車站,需準備多少種不同的普通客車票?有多少種不同票價的普通客車票?”引導(dǎo)學(xué)生思考并區(qū)分排列與組合問題。
2. 新課講授
定義講解:明確組合的定義,即從n個不同元素中取出m個元素并成一組(m≤n),叫做從n個不同元素中取出m個元素的一個組合。
公式推導(dǎo):通過分步計數(shù)原理推導(dǎo)出組合數(shù)的計算公式$C_n^m = \frac{n!}{m!(n-m)!}$。
例題講解:通過具體例題展示如何應(yīng)用組合數(shù)的計算公式解決問題。
3. 歸納概括
總結(jié)組合的定義、性質(zhì)及計算公式,強調(diào)組合與排列的區(qū)別。
4. 鞏固練習(xí)
設(shè)計一系列練習(xí)題,包括基礎(chǔ)題和綜合題,讓學(xué)生鞏固所學(xué)知識并學(xué)會應(yīng)用。
5. 小結(jié)與作業(yè)
總結(jié)本節(jié)課的重點內(nèi)容,強調(diào)組合的意義及應(yīng)用。
布置課后作業(yè),包括課本習(xí)題和思考題,以進一步鞏固和拓展學(xué)生的知識。
★ 高中數(shù)學(xué)教案電子版免費 ★
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題。
(2)進一步理解曲線的方程和方程的曲線。
(3)初步掌握求曲線方程的方法。
(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力。
教學(xué)重點、難點:
求曲線的方程。
教學(xué)用具:
計算機。
教學(xué)方法:
啟發(fā)引導(dǎo)法,討論法。
教學(xué)過程:
【引入】
1、提問:什么是曲線的方程和方程的曲線。
學(xué)生思考并回答。教師強調(diào)。
2、坐標(biāo)法和解析幾何的意義、基本問題。
對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何。解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程。
(2)通過方程,研究平面曲線的性質(zhì)。
事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。
【問題】
如何根據(jù)已知條件,求出曲線的方程。
【實例分析】
例1:設(shè)、兩點的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。
首先由學(xué)生分析:根據(jù)直線方程的知識,運用點斜式即可解決。
解法一:易求線段的中點坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決。可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?
(通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。
證明:(1)曲線上的點的坐標(biāo)都是這個方程的解。
設(shè)是線段的垂直平分線上任意一點,則
即
將上式兩邊平方,整理得
這說明點的坐標(biāo)是方程的解。
(2)以這個方程的解為坐標(biāo)的點都是曲線上的點。
設(shè)點的坐標(biāo)是方程①的任意一解,則
到、的距離分別為
所以,即點在直線上。
綜合(1)、(2),①是所求直線的方程。
至此,證明完畢?;仡櫳鲜鰞?nèi)容我們會發(fā)現(xiàn)一個有趣的`現(xiàn)象:在證明(1)曲線上的點的坐標(biāo)都是這個方程的解中,設(shè)是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:
解法二:設(shè)是線段的垂直平分線上任意一點,也就是點屬于集合
由兩點間的距離公式,點所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足。顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想。因此是個好方法。
讓我們用這個方法試解如下問題:
例2:點與兩條互相垂直的直線的距離的積是常數(shù)求點的軌跡方程。
分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進行求解。
求解過程略。
【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):
分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正。說得更準確一點就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點的坐標(biāo);
(2)寫出適合條件的點的集合;
(3)用坐標(biāo)表示條件,列出方程;
(4)化方程為最簡形式;
(5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點。
一般情況下,求解過程已表明曲線上的點的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點都是曲線上的點。所以,通常情況下證明可省略,不過特殊情況要說明。
上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正。
下面再看一個問題:
例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程。
【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系。
解:設(shè)點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合
由距離公式,點適合的條件可表示為
①
將①式移項后再兩邊平方,得
化簡得
由題意,曲線在軸的上方,所以,雖然原點的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示。
【練習(xí)鞏固】
題目:在正三角形內(nèi)有一動點,已知到三個頂點的距離分別為,且有,求點軌跡方程。
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。
根據(jù)條件,代入坐標(biāo)可得
化簡得
①
由于題目中要求點在三角形內(nèi),所以,在結(jié)合①式可進一步求出、的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請對求解曲線方程的五個步驟進行評價。各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁練習(xí)1,2,3;
★ 高中數(shù)學(xué)教案電子版免費 ★
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二、目標(biāo)分析:
教學(xué)重點。難點
重點:集合的含義與表示方法。
難點:表示法的恰當(dāng)選擇。
教學(xué)目標(biāo)
1.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號;
(3)了解集合中元素的確定性?;ギ愋浴o序性;
(4)會用集合語言表示有關(guān)數(shù)學(xué)對象;
2.過程與方法
(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。
3.情感。態(tài)度與價值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性。
三、教法分析
1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。
2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。
四、過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學(xué)校”、“班級”等,有什么共同特征?
引導(dǎo)學(xué)生互相交流。與此同時,教師對學(xué)生的活動給予評價。
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);
(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學(xué)2004年9月入學(xué)的高一學(xué)生的全體。
2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義。一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素。
4.教師指出:集合常用大寫字母A,B,C,D表示,元素常用小寫字母a,b,c,d表示。
設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性、互異性和無序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。
2.教師組織引導(dǎo)學(xué)生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);
(2)我國的小河流。讓學(xué)生充分發(fā)表自己的建解。
3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對學(xué)生的學(xué)習(xí)活動給予及時的`評價。
4.教師提出問題,讓學(xué)生思考
b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
如果a是集合A的元素,就說a屬于集合A
如果a不是集合A的元素,就說a不屬于集合A
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示。
(3)讓學(xué)生完成教材第6頁練習(xí)第1題。
5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號。并讓學(xué)生完成習(xí)題1.1A組第1題。
6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言。列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>
使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學(xué)習(xí)
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A
(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題。
設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)
1.小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:
本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?
2.你認為學(xué)習(xí)集合有什么意義?
3.選擇集合的表示法時應(yīng)注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題
2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材。
★ 高中數(shù)學(xué)教案電子版免費 ★
教學(xué)目的:
掌握圓的標(biāo)準方程,并能解決與之有關(guān)的問題
教學(xué)重點:
圓的標(biāo)準方程及有關(guān)運用
教學(xué)難點:
標(biāo)準方程的靈活運用
教學(xué)過程:
一、導(dǎo)入新課,探究標(biāo)準方程
二、掌握知識,鞏固練習(xí)
練習(xí):
1、說出下列圓的方程
⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3
2、指出下列圓的'圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判斷3x-4y-10=0和x2+y2=4的位置關(guān)系
⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
★ 高中數(shù)學(xué)教案電子版免費 ★
教學(xué)目標(biāo):
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
(2)理解直線與二元一次方程的關(guān)系及其證明
(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點.
教學(xué)重點、難點:
直線方程的一般式.直線與二元一次方程 ( 不同時為0)的對應(yīng)關(guān)系及其證明.
教學(xué)用具:
計算機
教學(xué)方法:
啟發(fā)引導(dǎo)法,討論法
教學(xué)過程:
下面給出教學(xué)實施過程設(shè)計的簡要思路:
教學(xué)設(shè)計思路:
(一)引入的設(shè)計
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 ,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個問題:
問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)劊扛餍〗M可以討論討論.
學(xué)生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導(dǎo),使學(xué)生的認識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計
這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
學(xué)生或獨立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
當(dāng) 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
當(dāng) 不存在時,直線 的.方程可表示為 形式的方程,它是二元一次方程嗎?
學(xué)生有的認為是有的認為不是,此時教師引導(dǎo)學(xué)生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線 上點的坐標(biāo)形式,與其它直線上點的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程.
至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”.
同學(xué)們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結(jié)論.那么如何研究呢?
師生共同討論,評價不同思路,達成共識:
回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數(shù) 是否為0恰好對應(yīng)斜率 是否存在,即
(1)當(dāng) 時,方程可化為
這是表示斜率為 、在 軸上的截距為 的直線.
(2)當(dāng) 時,由于 、 不同時為0,必有 ,方程可化為
這表示一條與 軸垂直的直線.
因此,得到結(jié)論:
在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.
為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應(yīng)關(guān)系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.
(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計
略
★ 高中數(shù)學(xué)教案電子版免費 ★
教學(xué)目標(biāo)
1、知識與技能
(1)推廣角的概念、引入大于角和負角;
(2)理解并掌握正角、負角、零角的定義;
(3)理解任意角以及象限角的概念;
(4)掌握所有與角終邊相同的角(包括角)的表示方法;
(5)樹立運動變化觀點,深刻理解推廣后的角的概念;
(6)揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣。
(7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強化學(xué)生的參與意識。
2、過程與方法
通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。
3、情態(tài)與價值
通過本節(jié)的學(xué)習(xí),使同學(xué)們對角的概念有了一個新的認識,即有正角、負角和零角之分。角的概念推廣以后,知道角之間的`關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會運用運動變化的觀點認識事物。
教學(xué)重難點
重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。
難點:終邊相同的角的表示。
教學(xué)工具
投影儀等。
教學(xué)過程
創(chuàng)設(shè)情境
思考:你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了
小時,你應(yīng)當(dāng)如何將它校準?當(dāng)時間校準以后,分針轉(zhuǎn)了多少度?
[取出一個鐘表,實際操作]我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。
探究新知
1.初中時,我們已學(xué)習(xí)了角的概念,它是如何定義的呢?
[展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。如圖,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置OB,就形成角a.旋轉(zhuǎn)開始時的射線叫做角的始邊,OB叫終邊,射線的端點o叫做叫a的頂點。
2.如上述情境中所說的校準時鐘問題以及在體操比賽中我們經(jīng)常聽到這樣的術(shù)語:“轉(zhuǎn)體”(即轉(zhuǎn)體2周),“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,都是遇到大于的角以及按不同方向旋轉(zhuǎn)而成的角。同學(xué)們思考一下:能否再舉出幾個現(xiàn)實生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,這些說明了什么問題?又該如何區(qū)分和表示這些角呢?
[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負角(negativeangle).如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle).
3.學(xué)習(xí)小結(jié)
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直
線上的角的集合。
五、評價設(shè)計
1.作業(yè):習(xí)題組第1,2,3題。
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,進一步理解具有相同終邊的角的特點。
課后小結(jié)
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直
線上的角的集合。
課后習(xí)題
作業(yè):
1、習(xí)題組第1,2,3題。
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,進一步理解具有相同終邊的角的特點。
★ 高中數(shù)學(xué)教案電子版免費 ★
1.教學(xué)目標(biāo)
(1)知識目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.
(2)能力目標(biāo): 1.進一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;
2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強學(xué)生用數(shù)學(xué)的意識.
(3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點.難點
(1)教學(xué)重點:圓的標(biāo)準方程的求法及其應(yīng)用.
(2)教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準方程以及選擇恰
當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.
3.教學(xué)過程
(一)創(chuàng)設(shè)情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
[引導(dǎo)] 畫圖建系
[學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點,半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。
(二)深入探究(獲得新知)
問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學(xué)生活動] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標(biāo)法
如圖,設(shè)m(x,y)是圓上任意一點,根據(jù)定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}
由兩點間的距離公式,點m適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
i.直接應(yīng)用(內(nèi)化新知)
問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過點 ,圓心在點 .
2.根據(jù)圓的方程寫出圓心和半徑
(1) ; (2) .
ii.靈活應(yīng)用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的`方程.
[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點 的切線方程.
[學(xué)生活動]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .
iii.實際應(yīng)用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實際問題情境]
(四)反饋訓(xùn)練(形成方法)
問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.
3.求圓x2 y2=13過點(-2,3)的切線方程.
4.已知圓的方程為 ,求過點 的切線方程.
★ 高中數(shù)學(xué)教案電子版免費 ★
教學(xué)準備
教學(xué)目標(biāo)
熟悉兩角和與差的正、余公式的'推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過程
復(fù)習(xí)
兩角差的余弦公式
用- B代替B看看有什么結(jié)果?
★ 高中數(shù)學(xué)教案電子版免費 ★
幾何畫板不是一個一般的繪圖軟件,不僅制作出的圖形是動態(tài)的,而且注重數(shù)學(xué)表達的準確性。因此,應(yīng)該從數(shù)學(xué)的角度看待這個軟件,在理解中學(xué)習(xí)它,這樣就比較容易理解有關(guān)操作的規(guī)定,掌握操作方法,合理地進行操作,盡快掌握它的功能。反過來,當(dāng)需要構(gòu)造某個圖形,進行某種操作時,就會自覺地滿足軟件對該項操作需要的前提條件。
首先用幾何畫板創(chuàng)設(shè)情景,靜態(tài)變動態(tài),其次幾何畫板“數(shù)形結(jié)合”,抽象變形象,微觀變宏觀,能夠揭示知識之間的內(nèi)在聯(lián)系,培養(yǎng)思維能力、開發(fā)智力的工具。
通過這個課程的'學(xué)習(xí)使我受益匪淺,對幾何畫板有了一個全面直觀的認識。在以后的教育教學(xué)中,我要堅持不斷學(xué)習(xí),提高自己的課件制作水平。幾何畫板是一個在數(shù)學(xué)領(lǐng)域里進行創(chuàng)造、探索和分析等方面有著廣泛應(yīng)用的軟件系統(tǒng)。利用幾何畫板,您可以構(gòu)造交互式的數(shù)學(xué)模型,可用于從事形與數(shù)的基礎(chǔ)研究,構(gòu)造高級的、動態(tài)的復(fù)雜系統(tǒng)的插圖。不僅學(xué)習(xí)了幾何畫板的應(yīng)用知識,而且認識了很多同行,并從他們那里學(xué)到了不少知識。通過這學(xué)期的學(xué)習(xí),感覺《幾何畫板》是個很不錯的學(xué)習(xí)輔助軟件,相比較FLASH等的軟件,它的本身占用資源較少,操作簡單,學(xué)習(xí)起來也較容易,而且在平時的教學(xué)中,用他去制作一些課件,不需要浪費太多的時間,但僅僅這花幾天的學(xué)習(xí)要想將這個軟件運用自如還是不可能的,老師只能領(lǐng)導(dǎo)你去認識它,真正的對它熟悉還要在平時的教學(xué)中多多運用,自己去鉆研。
同時,通過學(xué)習(xí),還讓我體會到了,在運用課件輔助教學(xué)時,不僅僅是去制作課件,在制作過程中,要對這節(jié)課完全理解,從原理上明白這節(jié)課的實質(zhì)內(nèi)容,再細化到如何去制作,才能讓我簡單明了的理解這節(jié)課,是在制作過程中的關(guān)鍵點。通過這次幾何畫板的學(xué)習(xí),感覺受益匪淺!
★ 高中數(shù)學(xué)教案電子版免費 ★
一、注重基礎(chǔ),構(gòu)建知識體系
基本概念、基本方法、基本性質(zhì)一直是考研數(shù)學(xué)的重點。概率統(tǒng)計的概念比較抽象,方法與性質(zhì)也有相應(yīng)的適用條件。有些同學(xué)在考場上,不知道試題要考查什么,該怎樣下手,不知道該用哪個公式。我們建議考生在復(fù)習(xí)中一定要重視基礎(chǔ)知識,要復(fù)習(xí)所有的定義、定理、公式,做足夠多的基礎(chǔ)題來幫助鞏固基本知識。
概率統(tǒng)計的知識點是三大科目里較少的,以考查計算能力為主,其中的推導(dǎo)與證明也是計算性的??忌貏e要根據(jù)歷年概率統(tǒng)計考試的兩個大題內(nèi)容,找出所涉及到的概念與方法之間的聯(lián)系與區(qū)別。例如:事件獨立性與不相容的關(guān)系,隨機變量獨立與事件獨立的關(guān)系;分布函數(shù)與概率密度之間的聯(lián)系與差別;區(qū)間估計與假設(shè)檢驗之間的`聯(lián)系。掌握他們之間的聯(lián)系與區(qū)別,對大家處理其他低分值試題也是有助益的。
二、參照大綱,提高綜合能力
大綱作為指導(dǎo)性文件,對命題、應(yīng)試雙方都是有約束力的。數(shù)學(xué)的復(fù)習(xí)要強化基礎(chǔ),隨時參考適當(dāng)?shù)慕炭茣热缯憬髮W(xué)版的《概率統(tǒng)計》。有的考生認為復(fù)習(xí)到這個階段就可以拋開課本搞題海戰(zhàn)術(shù)了,這是舍本逐末。建議大家要邊看書、邊做題,通過做題來鞏固概念、方法。同時,考生最好選擇一本考研復(fù)習(xí)資料參照著學(xué)習(xí),這樣有利于知識能力的遷移,有助于在全面復(fù)習(xí)的基礎(chǔ)上掌握重點。
三、分類訓(xùn)練,培養(yǎng)應(yīng)變能力
近十年特別是近三年的研究生入學(xué)考試試題,加強了對考生分析問題和解決問題能力的考核。在概率統(tǒng)計的兩個大題中,基本上都是多個知識點的綜合。
從而達到對考生的運算能力、抽象概括能力、邏輯思維能力和綜合運用所學(xué)知識解決實際問題的能力的考核。建議在打好基礎(chǔ)的同時,加強常見題型的訓(xùn)練(歷年真題是很好的訓(xùn)練材料),邊做邊總結(jié),以加深對概念、性質(zhì)內(nèi)涵的理解和應(yīng)用方法的掌握,這樣才能夠做到舉一反三,全面地應(yīng)付試題的變化。
★ 高中數(shù)學(xué)教案電子版免費 ★
在2月19日,我們學(xué)校全體教師學(xué)習(xí)了致良知是一種偉大的力量。教育局教研室朱xx老師,對我們培訓(xùn)了袁局長在1月22日《在全面提升教學(xué)質(zhì)量座談會上的講話》。傳達了局長對修文教育的20xx年度的回顧,以及對修文縣20xx年度的教育全面部署。在講話中為修文的教育的騰飛插上了翅膀。下面談?wù)勎业母惺芗耙?guī)劃。
一、精英的管理模式,讓學(xué)校永保銳氣
目前,一支志存高遠、精通教育、有思想、善管理、敢創(chuàng)新的專家型校長隊伍正在形成,學(xué)校干部隊伍工作積極性日益上漲,管理水平和治理能力不斷提升。作為學(xué)校有著這樣的領(lǐng)導(dǎo)的管理,學(xué)校的校風(fēng)更為正,能依法治校讓學(xué)校得到全面提升。這樣學(xué)校就能朝好的發(fā)展方向前行。
二、教師用質(zhì)量說話,是有骨氣的
教學(xué)質(zhì)量是教師追求的永恒的主題??h局加大力度能讓全縣教學(xué)質(zhì)量全面提升。質(zhì)量要提升,花的是功夫,拼的`是干勁。那怎樣才能更好的提高教學(xué)質(zhì)量呢?
1、學(xué)期開始制定好計劃,教學(xué)進度
對一個學(xué)期的教學(xué)要有全面的計劃,在計劃中體現(xiàn)學(xué)科的整體性,與前面知識的銜接,以及對后面知識的影響。計劃能夠讓老師把握教學(xué)進度,沒有特殊的原因按進度教學(xué),做到科學(xué)規(guī)劃。這樣對提高教學(xué)質(zhì)量提供了好的保障。
2、嚴格超周備課,讓所教內(nèi)容先化于心
提前備課,能有足夠的時間選編好的題目,匯編好的方法,備課中專研教材,深研課表,這樣才能上出高質(zhì)量的好課。對于上課的內(nèi)容,要先過目,化于心,這樣長期堅持能夠使教學(xué)質(zhì)量得到提高。
3、上好每一堂課,抓好課堂教學(xué)
充分的全面的備課后,那上課更是一門藝術(shù)。我們要向四十分鐘要質(zhì)量,對與課堂語言的組織,課堂學(xué)習(xí)的調(diào)動,都要求教師有著很高的素養(yǎng)。對學(xué)生積極性的調(diào)動,能激發(fā)學(xué)生學(xué)習(xí)的興趣。興趣是最好的教師,所以對學(xué)生積極性能有很好的促進作用。發(fā)揮小組合作學(xué)習(xí)的優(yōu)勢,讓學(xué)生在學(xué)習(xí)中能夠很好的互助學(xué)習(xí)。
4、落實培優(yōu)補差工作
利用課余時間,對學(xué)生有針對的進行培優(yōu)補差。這樣能讓學(xué)生很好的學(xué)習(xí),后進生的補差中關(guān)鍵在于心補。找學(xué)生的所差進行補,讓學(xué)生很好的進行學(xué)習(xí),對學(xué)習(xí)有興趣。對培優(yōu)的工作,學(xué)生對現(xiàn)有的知識能夠更好的學(xué)習(xí)的基礎(chǔ)上,對做拔高題,但不能搞題海戰(zhàn)術(shù),要有針對性的學(xué)習(xí),這樣才能使學(xué)習(xí)輕松,而且收獲大。
5、加強自身的提高,與時俱進的發(fā)展
積極參加學(xué)校,縣局組織的所有的學(xué)習(xí)努力提高自己的教學(xué)業(yè)務(wù)水平。自己的專業(yè)學(xué)科素養(yǎng)能夠提升,這樣能夠很好的與高端教學(xué)走進。國培計劃中的學(xué)習(xí)能夠讓自己的專業(yè)水平提升。所以要抓住每一次學(xué)習(xí)的機會,珍惜每一次學(xué)習(xí)的機會。這樣才能立于不敗之地。能有好的教學(xué)質(zhì)量,才能挺直腰桿。
三、多學(xué)陽明心學(xué),感悟于心
全縣都在打造良知教育,那作為教師更應(yīng)該多學(xué)習(xí)。把心修好,才能更好的進行教學(xué)。知行合一,致良知,在事上多磨,讓心學(xué)內(nèi)化于心,外化于行獲得認可。時時記住要“為善去惡”,使自己的心靈歸于廓然大公的干凈清明境界。這樣活著似乎很累,卻是實實在在的修養(yǎng)功夫。茍日新,日日新,又日新,逐漸提高自己的精神境界和人生智慧。那樣才能去除私欲,很好的好教學(xué),不被世事擾亂我心。一心學(xué)習(xí)。圣人之道,吾性自足。
總之,通過學(xué)習(xí)讓我對自己的責(zé)任更加看重,努力工作,把質(zhì)量放在心中,抓在手上,扛在肩上。為教學(xué)質(zhì)量的提高揮灑自己的汗水,因為天上不會掉餡餅,努力奮斗才能夢想成真。
★ 高中數(shù)學(xué)教案電子版免費 ★
通過這次學(xué)習(xí),令我豁然開朗,受益匪淺。從精彩的講座中,使我深入解了什么是微課堂以及微視頻的制作,進一步更新了我的教育教學(xué)觀念。下面我就談一下感受頗深的幾點:
在學(xué)習(xí)的過程中,我深刻感覺到自己現(xiàn)在一些觀念的落后,比如在對待信息的獲取與應(yīng)用上。在培訓(xùn)學(xué)習(xí)中,很多老師都帶著先進的手機,錄象機、平板電腦等工具,隨時掃描專家團隊的微信二維碼,加入微信,學(xué)習(xí)過程中實現(xiàn)在線互動討論。而我對手機的理解還只是停留在打電話發(fā)短信上,還沒把它當(dāng)作一個可用于隨時隨地學(xué)習(xí)的工具上。這些觀念的滯后,必然會導(dǎo)致學(xué)習(xí)工作的落后,在一個信息發(fā)展如此迅猛的時代,閉門造車必然不會跟上社會發(fā)展的步伐。
當(dāng)然我開始也暗自為自己辯解,覺得自己的落后與周圍環(huán)境的避塞是有原因的。但在聽了張渝江老師的報告后,卻再也無法為自己找到任何借口了。張渝江老師是來自大山里的一位高中教師,但人家卻是在國內(nèi)最早認識翻轉(zhuǎn)課堂的,沒有太多的資金投入,那么他們就用盜版的平板電腦;支付不起高昂的軟件費用,那么就找免費的;買不起高檔的攝象設(shè)備,就去淘寶淘便宜的錄象工具;無法說服老師們習(xí)慣復(fù)雜的軟件,那么就把支持系統(tǒng)簡化。在他面前,所有的問題都可以應(yīng)刃而解,他把翻轉(zhuǎn)課堂成功的引入一所農(nóng)村高中,讓我們看到了希望。除了翻轉(zhuǎn)課堂,他對國內(nèi)外發(fā)生的一切前沿的'教育研究都如數(shù)家珍。如果這些出自一個大學(xué)教授的口中,我們會覺得很正常,但他卻是一個一線的高中老師,讓我不由的暗自驚嘆。同時,也給了我們一次心靈的震撼:在一個信息如此發(fā)達的社會,無論你處于什么地方,只要你肯用心,沒有學(xué)不到的知識,沒有實現(xiàn)不了的理想。
★ 高中數(shù)學(xué)教案電子版免費 ★
時光如飛,一年即將結(jié)束。作為xx醫(yī)院的醫(yī)生,我一直不斷地提升自己的工作能力。在這一年中,我的進步非常明顯,特別是動手術(shù)的能力,有了顯著的提升。但這些成就,主要要歸功于我們的副院長,他對我進行了精心的指導(dǎo)和培養(yǎng),就像一個恩師一樣。在他的指引下,我完成了幾乎所有的工作任務(wù),讓今年的工作成果和經(jīng)驗豐富并說明如下:
一、認真對待工作,保質(zhì)保量
作為醫(yī)院的醫(yī)生,我深知我肩負的責(zé)任很重,尤其是對病人的責(zé)任。任何的一個失誤都可能牽扯到患者的生命安全。因此,我工作中不敢有片刻掉以輕心,不管是給患者做手術(shù)還是開藥方,我都盡最大可能投入自己的精神和時間去認真完成。長此以往,這種工作態(tài)度已深入波及我的生活,讓我減少了失誤,從而保證了工作質(zhì)量。
二、學(xué)無止境,虛心請教
作為醫(yī)學(xué)生,我一直堅信“學(xué)無止境”。盡管我已成為一家三甲醫(yī)院的醫(yī)生,但我始終保持著虛心好學(xué)的態(tài)度。我清楚地了解到,醫(yī)學(xué)是一門無底洞,即便我努力終生也難以全部承載它。因此,我選擇專攻自己特長的領(lǐng)域:心臟專業(yè)。幸運的是,我們?nèi)ツ晷抡{(diào)過來的副院長正好是心臟學(xué)專家。所以,我?guī)缀醵荚诠ぷ髦辔覀儑@副院長學(xué)習(xí),滿足自己對專業(yè)知識的渴求。今年,我的工作效率得到了大幅提高,無論是病情診斷還是患者救治成功的幾率,都已有了顯著的提高。最關(guān)鍵的是,今年我的手術(shù)成功率達到了100%,多虧有老師的指導(dǎo)。
三、堅持初心,救治更多患者
在醫(yī)務(wù)人員的職業(yè)中,無疑拯救更多的病患是我們共同的初心。我深感工作的意義便是在救治過程中收獲真正的幸福。為此,我時刻提醒自己“堅持初衷,救治更多患者”。我的工作并不僅僅局限于醫(yī)院,我同樣也積極地參與社會公益活動,如定期為貧困地區(qū)群眾提供免費法律服務(wù)和義診。這些經(jīng)歷,讓我更好地理解我的職業(yè)對于社會的.重要意義,并時刻激勵著我踐行初心,救治更多的患者。
為了回饋社會,醫(yī)院開展了一項下鄉(xiāng)免費體檢活動。該活動于下半年的最后一個月展開,旨在讓老人過上一個安心的年。聽聞此消息,我毫不猶豫地報名參加。因為我清楚,在很多貧困的鄉(xiāng)村中,高血壓和心臟疾病等病痛在老年人中十分常見,但是這些患者并不自知。只有我們這樣的專業(yè)醫(yī)護人員,攜帶著正規(guī)的醫(yī)療設(shè)備,才能讓他們了解自身的身體情況。整個活動歷時半個月,我們走訪了四個村莊,為多位老年人帶去了關(guān)注和診療,這對我來說意義非凡。
作為一名醫(yī)生,服務(wù)人民是我的天職。我深信自己能夠救治更多的患者,殫精竭慮地工作,是我的使命。希望明年的工作能夠更上一層樓!
★ 高中數(shù)學(xué)教案電子版免費 ★
“時間是最好的藥”,這樣想來,我們的努力也應(yīng)該是這藥中一味成分。作為一名xxx醫(yī)院xx科室的護士。在這一年來,我積極努力的在自身的工作中加強了自己的學(xué)習(xí)和管理,不僅在醫(yī)務(wù)工作中更加的精進,在病人們的評價感受中也受到了不少的感謝和肯定。
回顧這這一年,在醫(yī)院領(lǐng)導(dǎo)和護士長的要求下,我積極嚴謹?shù)淖袷毓ぷ鞯囊?,并在思想上完善作為一名護士必要的責(zé)任和態(tài)度。此外,我還認真積極的提高了自身的專業(yè)知識和業(yè)務(wù)能力。在大家的幫助下較好的提高了自己,出色的完成了這一年的護理工作任務(wù)。以下是我一年來的工作總結(jié):
一、思想改進,態(tài)度完善
作為xxx醫(yī)院的護士人員,我早知道思想態(tài)度在我們工作中的重要性。而在今年的'工作中更是對次盡心的了積極嚴格的培訓(xùn)和加強!在護士長的教導(dǎo)的下,我在思想態(tài)度上能嚴格的保持對病人的熱情和積極心。面對病人,能以“愛心、細心、關(guān)心、耐心”的思想去看待病人,對待工作。
在思想方面,除了對這些基本的掌握和鞏固,我在工作中還一直保持著換位思考的態(tài)度,在工作中感受病人的擔(dān)心,感受家屬們的焦急。這些思想一直都在刺激著我,讓我能在工作中更加積極的保持好自身的態(tài)度,更加努力的做好自身的工作。
二、工作的情況
工作方面,我嚴格的遵守醫(yī)院對醫(yī)務(wù)人員的各項規(guī)定,從穿著到個人的行為習(xí)慣,我一直都保持著嚴格的要求,絕不做違反醫(yī)院規(guī)定的事情!尤其是在照顧病人和處理藥品的時候,我一定會再三確定,仔細的核對,對于標(biāo)字不清和不了解的藥品絕不亂動,并積極的總結(jié)自己在醫(yī)院工作中的情況,將工作中發(fā)現(xiàn)的問題及時的匯報給領(lǐng)導(dǎo)。
一年來,我來護士長等領(lǐng)導(dǎo)的幫助下積極的加強了自己的工作,也通過在醫(yī)院其他方面的努力,全面的改善了個人的思想和態(tài)度。讓我能朝著成為一名優(yōu)秀的“白衣天使”這個目標(biāo)又進了一步。
這一年,我積極保證了自身的工作,在醫(yī)療工作中未出現(xiàn)過任何錯誤。但在今后的任務(wù)上,我會更加努力的要求自己,加強自己能力,爭取在工作中為病人做出更多的貢獻,減輕更多的痛苦。我一定會積極努力,不負自己作為xxx醫(yī)院護士隊伍一員的職責(zé)和榮耀!
★ 高中數(shù)學(xué)教案電子版免費 ★
一、預(yù)習(xí)目標(biāo)
預(yù)習(xí)《平面向量應(yīng)用舉例》,體會向量是一種處理幾何問題、物理問題等的工具,建立實際問題與向量的聯(lián)系。
二、預(yù)習(xí)內(nèi)容
閱讀課本內(nèi)容,整理例題,結(jié)合向量的運算,解決實際的幾何問題、物理問題。另外,在思考一下幾個問題:
1、例1如果不用向量的方法,還有其他證明方法嗎?
2、利用向量方法解決平面幾何問題的“三步曲”是什么?
3、例3中,
⑴為何值時,|F1|最小,最小值是多少?
⑵|F1|能等于|G|嗎?為什么?
三、提出疑惑
同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內(nèi)容。
課內(nèi)探究學(xué)案
一、學(xué)習(xí)內(nèi)容
1、運用向量的有關(guān)知識(向量加減法與向量數(shù)量積的運算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。
2、運用向量的有關(guān)知識解決簡單的物理問題。
二、學(xué)習(xí)過程
探究一:
(1)向量運算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會?
(2)舉出幾個具有線性運算的幾何實例。
例1、證明:平行四邊形兩條對角線的平方和等于四條邊的平方和。
已知:平行四邊形ABCD。
求證:
試用幾何方法解決這個問題,利用向量的方法解決平面幾何問題的“三步曲”?
(1)建立平面幾何與向量的聯(lián)系,
(2)通過向量運算,研究幾何元素之間的.關(guān)系,
(3)把運算結(jié)果“翻譯”成幾何關(guān)系。
例2,如圖,平行四邊形ABCD中,點E、F分別是AD、DC邊的中點,BE、BF分別與AC交于R、T兩點,你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?
探究二:兩個人提一個旅行包,夾角越大越費力。在單杠上做引體向上運動,兩臂夾角越小越省力。這些力的問題是怎么回事?
例3,在日常生活中,你是否有這樣的經(jīng)驗:兩個人共提一個旅行包,夾角越大越費力;在單杠上作引體向上運動,兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?
請同學(xué)們結(jié)合剛才這個問題,思考下面的問題:
⑴為何值時,|F1|最小,最小值是多少?
⑵|F1|能等于|G|嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時,所用的時間是多少(精確到0。1min)?
變式訓(xùn)練:兩個粒子A、B從同一源發(fā)射出來,在某一時刻,它們的位移分別為,(1)寫出此時粒子B相對粒子A的位移s;(2)計算s在方向上的投影。
三、反思總結(jié)
結(jié)合圖形特點,選定正交基底,用坐標(biāo)表示向量進行運算解決幾何問題,體現(xiàn)幾何問題。
代數(shù)化的特點,數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運算簡練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長方形、正方形、直角三角形等平行、垂直等問題常用此法。
本節(jié)主要研究了用向量知識解決平面幾何問題和物理問題;掌握向量法和坐標(biāo)法,以及用向量解決實際問題的步驟。
★ 高中數(shù)學(xué)教案電子版免費 ★
教學(xué)目標(biāo):
1.進一步熟練掌握比較法證明不等式;
2.了解作商比較法證明不等式;
3.提高學(xué)生解題時應(yīng)變能力.
教學(xué)重點:
比較法的應(yīng)用
教學(xué)難點:
常見解題技巧
教學(xué)方法啟發(fā)引導(dǎo)式
教學(xué)活動
(一)導(dǎo)入新課
(教師活動)教師打出字幕(復(fù)習(xí)提問),請三位同學(xué)回答問題,教師點評.
(學(xué)生活動)思考問題,回答.
[字幕]1.比較法證明不等式的步驟是怎樣的?
2.比較法證明不等式的步驟中,依據(jù)、手段、目的各是什么?
3.用比較法證明不等式的步驟中,最關(guān)鍵的是哪一步?學(xué)了哪些常用的變形方法?對式子的變形還有其它方法嗎?
[點評]用比較法證明不等式步驟中,關(guān)鍵是對差式的變形.在我們所學(xué)的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節(jié)課我們將繼續(xù)學(xué)習(xí)比較法證明不等式,積累對差式變形的常用方法和比較法思想的應(yīng)用.(板書課題)
設(shè)計意圖:復(fù)習(xí)鞏固已學(xué)知識,銜接新知識,引入本節(jié)課學(xué)習(xí)的內(nèi)容.
(二)新課講授
【嘗試探索,建立新知】
(教師活動)提出問題,引導(dǎo)學(xué)生研究解決問題,并點評.
(學(xué)生活動)嘗試解決問題.
[問題]
1.化簡
2.比較與()的大小.
(學(xué)生解答問題)
[點評]
①問題1,我們采用了因式分解的方法進行簡化.
②通過學(xué)習(xí)比較法證明不等式,我們不難發(fā)現(xiàn),比較法的思想方法還可用來比較兩個式子的大?。?/p>
設(shè)計意圖:啟發(fā)學(xué)生研究問題,建立新知,形成新的知識體系.
【例題示范,學(xué)會應(yīng)用】
(教師活動)教師打出字幕(例題),引導(dǎo)、啟發(fā)學(xué)生研究問題,井點評解題過程.
(學(xué)生活動)分析,研究問題.
[字幕]例題3已知 a , b 是正數(shù),且,求證
[分析]依題目特點,作差后重新組項,采用因式分解來變形.
證明:(見課本)
[點評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個因式的積的形式,在確定符號中,表達過程較復(fù)雜,如何書寫證明過程,例3給出了一個好的示范.
[點評]解這道題在判斷符號時用了分類討論,分類討論是重要的數(shù)學(xué) 思想方法.要理解為什么分類,怎樣分類.分類時要不重不漏.
[字幕]例5甲、乙兩人同時同地沿同一條路線走到同一地點.甲有一半時間以速度 m 行走,另一半時間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問甲、乙兩人誰先到達指定地點.
[分析]設(shè)從出發(fā)地點至指定地點的路程為,甲、乙兩人走完這段路程用的時間分別為,要回答題目中的問題,只要比較、的大小就可以了.
解:(見課本)
[點評]此題是一個實際問題,學(xué)習(xí)了如何利用比較法證明不等式的思想方法解決有關(guān)實際問題.要培養(yǎng)自己學(xué)數(shù)學(xué),用數(shù)學(xué)的良好品質(zhì).
設(shè)計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號的方法.培養(yǎng)學(xué)生應(yīng)用知識解決實際問題的能力.
【課堂練習(xí)】
(教師活動)教師打出字幕練習(xí),要求學(xué)生獨立思考,完成練習(xí);請甲、乙兩位學(xué)生板演;巡視學(xué)生的解題情況,對正確的給予肯定,對偏差及時糾正;點評練習(xí)中存在的問題.
(學(xué)生活動)在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演.
[字幕]練習(xí):1.設(shè),比較與的大小.
2.已知,求證
設(shè)計意圖:掌握比較法證明不等式及思想方法的'應(yīng)用.靈活掌握因式分解法對差式的變形和分類討論確定符號.反饋信息,調(diào)節(jié)課堂教學(xué).
【分析歸納、小結(jié)解法】
(教師活動)分析歸納例題的解題過程,小結(jié)對差式變形、確定符號的常用方法和利用不等式解決實際問題的解題步驟.
(學(xué)生活動)與教師一道小結(jié),并記錄在筆記本上.
1.比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個式子大小的一種重要方法.
2.對差式變形的常用方法有:配方法,通分法,因式分解法等.
-
88教案網(wǎng)出圈內(nèi)容精選:
- 高中數(shù)學(xué)教案電子版免費?|?高中數(shù)學(xué)教案?|?初中數(shù)學(xué)教案電子版?|?小學(xué)體育教案電子版免費?|?高中數(shù)學(xué)教案電子版免費?|?高中數(shù)學(xué)教案
3.會用分類討論的方法確定差式的符號.
4.利用不等式解決實際問題的解題步驟:
①類比列方程解應(yīng)用題的步驟
②分析題意,設(shè)未知數(shù),找出數(shù)量關(guān)系(函數(shù)關(guān)系,相等關(guān)系或不等關(guān)系)
③列出函數(shù)關(guān)系、等式或不等式
④求解,作答.
設(shè)計意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握用比較法證明不等式的知識體系.
(三)小結(jié)
(教師活動)教師小結(jié)本節(jié)課所學(xué)的知識及數(shù)思想與方法.
(學(xué)生活動)與教師一道小結(jié),并記錄筆記.
本節(jié)課學(xué)習(xí)了對差式變形的一種常用方法因式分解法;對符號確定的分類討論法;應(yīng)用比較法的思想解決實際問題.
通過學(xué)習(xí)比較法證明不等式,要明確比較法證明不等式的理論依據(jù),理解轉(zhuǎn)化,使問題簡化是比較法證明不等式中所蘊含的重要數(shù)學(xué)思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學(xué)習(xí)中繼續(xù)積累方法,培養(yǎng)用數(shù)學(xué)知識解決實際問題的能力.
設(shè)計意圖:培養(yǎng)學(xué)生對所學(xué)的知識進行概括歸納的能力,鞏固所學(xué)的知識,領(lǐng)會化歸、類比、分類討論的重要數(shù)學(xué)思想方法.
(四)布置作業(yè)
1.課本作業(yè):P17 7、8。
2,思考題:已知,求證
3.研究性題:對于同樣的距離,船在流水中來回行駛一次的時間和船在靜水中來回行駛一次的時間是否相等?(假設(shè)船在流水中的速度和部在靜水中的速度保持不變)
設(shè)計意圖:思考題讓學(xué)生了解商值比較法,掌握分類討論的思想.研究性題是使學(xué)生理論聯(lián)系實際,用數(shù)學(xué)解決實際問題,提高應(yīng)用數(shù)學(xué)的能力.
(五)課后點評
1.教學(xué)評價、反饋調(diào)節(jié)措施的構(gòu)想:本節(jié)課采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,通過啟發(fā)誘導(dǎo)學(xué)生深入思考問題,解決問題,反饋學(xué)習(xí)信息,調(diào)節(jié)教學(xué)活動.
2.教學(xué)措施的設(shè)計:由于對差式變形,確定符號是掌握比較法證明不等式的關(guān)鍵,本節(jié)課在上節(jié)課的基礎(chǔ)上繼續(xù)學(xué)習(xí)差式變形的方法和符號的確定,例3和例4分別使學(xué)生掌握因式分解變形和分類討論確定符號,例5使學(xué)生對所學(xué)的知識會應(yīng)用.例題設(shè)計目的在于突出重點,突破難點,學(xué)會應(yīng)用
★ 高中數(shù)學(xué)教案電子版免費 ★
教學(xué)目標(biāo)
(1)了解用坐標(biāo)法研究幾何問題的方法,了解解析幾何的基本問題。
(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。
(3)通過曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點。
(4)通過求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學(xué)生理解解析幾何的思想方法。
(5)進一步理解數(shù)形結(jié)合的思想方法。
教學(xué)建議
教材分析
(1)知識結(jié)構(gòu)
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì)。曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。
(2)重點、難點分析
①本節(jié)內(nèi)容教學(xué)的重點是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想。
②本節(jié)的難點是曲線方程的概念和求曲線方程的方法。
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應(yīng)關(guān)系,說明曲線與方程的對應(yīng)關(guān)系。曲線與方程對應(yīng)關(guān)系的基礎(chǔ)是點與坐標(biāo)的對應(yīng)關(guān)系。注意強調(diào)曲線方程的完備性和純粹性。
(2)可以結(jié)合已經(jīng)學(xué)過的直線方程的知識幫助學(xué)生領(lǐng)會坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準備。
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則。
(4)從集合與對應(yīng)的觀點可以看得更清楚:
設(shè) 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應(yīng)的點的坐標(biāo)的集合。
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即:
(5)在學(xué)習(xí)求曲線方程的.方法時,應(yīng)從具體實例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學(xué)生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實例的基礎(chǔ)上讓學(xué)生自然地獲得。教學(xué)中對課本例2的解法分析很重要。
這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即:
文字語言中的幾何條件 數(shù)學(xué)符號語言中的等式 數(shù)學(xué)符號語言中含動點坐標(biāo) , 的代數(shù)方程 簡化了的 , 的代數(shù)方程由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標(biāo)的代數(shù)方程。”
(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”。
★ 高中數(shù)學(xué)教案電子版免費 ★
第一章:空間幾何體
1.1.1柱、錐、臺、球的結(jié)構(gòu)特征
一、教學(xué)目標(biāo)
1.知識與技能
(1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價值觀
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點、難點
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的`方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10.現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本P8,習(xí)題1.1A組第1題。
4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習(xí):課本P7練習(xí)1、2(1)(2)
課本P8習(xí)題1.1第2、3、4題
五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
六、布置作業(yè)
課本P8練習(xí)題1.1B組第1題
課外練習(xí)課本P8習(xí)題1.1B組第2題
1.2.1空間幾何體的三視圖(1課時)
一、教學(xué)目標(biāo)
1.知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2.過程與方法
主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀
(1)提高學(xué)生空間想象力
(2)體會三視圖的作用
二、教學(xué)重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1.學(xué)法:觀察、動手實踐、討論、類比
2.教學(xué)用具:實物模型、三角板
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實踐動手作圖
1.講臺上放球、長方體實物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;
2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細心觀察,認識了它的基本結(jié)構(gòu)特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本P10,圖1.2-3)
請同學(xué)們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。
4.請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)
課本P12練習(xí)1、2P18習(xí)題1.2A組1
(四)歸納整理
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習(xí)
1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
1.2.2空間幾何體的直觀圖(1課時)
一、教學(xué)目標(biāo)
1.知識與技能
(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀
(1)提高空間想象力與直觀感受。
(2)體會對比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動中的應(yīng)用。
二、教學(xué)重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學(xué)法與教學(xué)用具
1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學(xué)用具:三角板、圓規(guī)
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1.我們都學(xué)過畫畫,這節(jié)課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學(xué)生畫。
2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結(jié)這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結(jié)為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
練習(xí)反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點,與學(xué)生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測畫法的關(guān)鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習(xí)第5題
2.課外思考課本P16,探究(1)(2)
★ 高中數(shù)學(xué)教案電子版免費 ★
教學(xué)目標(biāo)
(1)了解算法的含義,體會算法思想。
(2)會用自然語言和數(shù)學(xué)語言描述簡單具體問題的算法;
(3)學(xué)習(xí)有條理地、清晰地表達解決問題的步驟,培養(yǎng)邏輯思維能力與表達能力。
教學(xué)重難點
重點:算法的含義、解二元一次方程組的算法設(shè)計。
難點:把自然語言轉(zhuǎn)化為算法語言。
情境導(dǎo)入
電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:
第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠鏡或瞄準鏡);
第二步:瞄準目標(biāo);
第三步:計算(或估測)風(fēng)速、距離、空氣濕度、空氣密度;
第四步:根據(jù)第三步的結(jié)果修正彈著點;
第五步:開槍;
第六步:迅速轉(zhuǎn)移(或隱蔽)
以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。
課堂探究
預(yù)習(xí)提升
1、定義:算法可以理解為由基本運算及規(guī)定的運算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。
2、描述方式
自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖。
3、算法的要求
(1)寫出的算法,必須能解決一類問題,且能重復(fù)使用;
(2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。
4、算法的特征
(1)有限性:一個算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。
(2)確定性:算法的計算規(guī)則及相應(yīng)的'計算步驟必須是唯一確定的。
(3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結(jié)果。
(4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。
(5)不唯一性:解決同一問題的算法可以是不唯一的
課堂典例講練
命題方向1對算法意義的理解
例1、下列敘述中,
①植樹需要運苗、挖坑、栽苗、澆水這些步驟;
②按順序進行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;
③從青島乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;
④3x>x+1;
⑤求所有能被3整除的正數(shù),即3,6,9,12。
能稱為算法的個數(shù)為()
A、2
B、3
C、4
D、5
【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。
【答案】B
[規(guī)律總結(jié)]
1、正確理解算法的概念及其特點是解決問題的關(guān)鍵、
2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、
【變式訓(xùn)練】下列對算法的理解不正確的是________
①一個算法應(yīng)包含有限的步驟,而不能是無限的
②算法可以理解為由基本運算及規(guī)定的運算順序構(gòu)成的完整的解題步驟
③算法中的每一步都應(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果
④一個問題只能設(shè)計出一個算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;
由對于同一個問題可以有不同的算法故④不正確。
【答案】④
命題方向2解方程(組)的算法
例2、給出求解方程組的一個算法。
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、
[規(guī)范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4
第四步,輸出4,-1
方法二:算法如下:
第一步,由①式可以得到y(tǒng)=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,輸出4,-1
[規(guī)律總結(jié)]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調(diào)對“通法、通解”的理解,又要強調(diào)對所學(xué)知識的靈活運用。
2、設(shè)計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學(xué)上解方程(組)的方法進行設(shè)計,但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設(shè)計算法步驟。
【變式訓(xùn)練】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命題方向3篩選問題的算法設(shè)計
例3、設(shè)計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值、
[思路分析]比較a,b比較m與c―→最小數(shù)
[規(guī)范解答]算法步驟如下:
1、比較a與b的大小,若a
2、比較m與c的大小,若m
[規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個。
【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一個數(shù)m,m=21;
2、將m與89比較,是否相等,如果相等,則搜索到89;
3、如果m與89不相等,則往下執(zhí)行;
4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。
命題方向4非數(shù)值性問題的算法
例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊。
(1)設(shè)計安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
-
推薦閱讀:
高中數(shù)學(xué)教案電子版免費(推薦二十篇)
高中數(shù)學(xué)教案電子版免費(五篇)
高中數(shù)學(xué)教案電子版免費6篇
高中數(shù)學(xué)教案
初中數(shù)學(xué)教案電子版(二十二篇)
高中數(shù)學(xué)教案分享
-
為了您方便瀏覽更多的高中數(shù)學(xué)教案電子版免費網(wǎng)內(nèi)容,請訪問高中數(shù)學(xué)教案電子版免費