88教案網(wǎng)
高中數(shù)學(xué)教案
高中數(shù)學(xué)教案內(nèi)容。
上課前準(zhǔn)備好課堂用到教案課件很重要,每個(gè)老師對(duì)于寫教案課件都不陌生。做好教案課件的前期準(zhǔn)備工作,這樣才能實(shí)現(xiàn)預(yù)期的教學(xué)目標(biāo)設(shè)計(jì)。那些教案課件的重點(diǎn)在哪里?或許"高中數(shù)學(xué)教案內(nèi)容"是你正在尋找的內(nèi)容,歡迎分享給你的朋友!
高中數(shù)學(xué)教案(篇1)
直線的方程
教學(xué)目標(biāo)
(1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn).
(6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議
1.教材分析
(1)知識(shí)結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式.
(2)重點(diǎn)、難點(diǎn)分析
①本節(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用.
直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí).
②本節(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn)
(3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解.
(4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮.
求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.
(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力.
(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.
高中數(shù)學(xué)教案(篇2)
一、教學(xué)內(nèi)容分析
向量作為工具在數(shù)學(xué)、物理以及實(shí)際生活中都有著廣泛的應(yīng)用.
本小節(jié)的重點(diǎn)是結(jié)合向量知識(shí)證明數(shù)學(xué)中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用.
二、教學(xué)目標(biāo)設(shè)計(jì)
1、通過利用向量知識(shí)解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會(huì)從不同角度去看待一些數(shù)學(xué)問題,使一些數(shù)學(xué)知識(shí)有機(jī)聯(lián)系,拓寬解決問題的思路.
2、了解構(gòu)造法在解題中的運(yùn)用.
三、教學(xué)重點(diǎn)及難點(diǎn)
重點(diǎn):平面向量知識(shí)在各個(gè)領(lǐng)域中應(yīng)用.
難點(diǎn):向量的構(gòu)造.
四、教學(xué)流程設(shè)計(jì)
五、教學(xué)過程設(shè)計(jì)
一、復(fù)習(xí)與回顧
1、提問:下列哪些量是向量?
(1)力 (2)功 (3)位移 (4)力矩
2、上述四個(gè)量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[說明]復(fù)習(xí)數(shù)量積的有關(guān)知識(shí).
二、學(xué)習(xí)新課
例1(書中例5)
向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時(shí)它在數(shù)學(xué)學(xué)科中也有許多妙用!請(qǐng)看
例2(書中例3)
證法(一)原不等式等價(jià)于,由基本不等式知(1)式成立,故原不等式成立.
證法(二)向量法
[說明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點(diǎn),構(gòu)造向量,并發(fā)現(xiàn)(等號(hào)成立的充要條件是)
例3(書中例4)
[說明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個(gè)公式得到證明.
二、鞏固練習(xí)
1、如圖,某人在靜水中游泳,速度為 km/h.
(1)如果他徑直游向河對(duì)岸,水的流速為4 km/h,他實(shí)際沿什么方向前進(jìn)?速度大小為多少?
答案:沿北偏東方向前進(jìn),實(shí)際速度大小是8 km/h.
(2) 他必須朝哪個(gè)方向游才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度大小為多少?
答案:朝北偏西方向前進(jìn),實(shí)際速度大小為km/h.
三、課堂小結(jié)
1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用.
2、要學(xué)會(huì)從不同的角度去看一個(gè)數(shù)學(xué)問題,是數(shù)學(xué)知識(shí)有機(jī)聯(lián)系.
四、作業(yè)布置
1、書面作業(yè):課本P73, 練習(xí)8.4 4
高中數(shù)學(xué)教案(篇3)
教學(xué)目標(biāo):
1。了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。
2。會(huì)求一些簡單函數(shù)的反函數(shù)。
3。在嘗試、探索求反函數(shù)的過程中,深化對(duì)概念的認(rèn)識(shí),總結(jié)出求反函數(shù)的一般步驟,加深對(duì)函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識(shí)。
4。進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點(diǎn)分析問題,培養(yǎng)抽象、概括的能力。
教學(xué)重點(diǎn):
求反函數(shù)的方法。
教學(xué)難點(diǎn):
反函數(shù)的概念。
教學(xué)過程:
教學(xué)活動(dòng)
設(shè)計(jì)意圖一、創(chuàng)設(shè)情境,引入新課
1。復(fù)習(xí)提問
①函數(shù)的概念
②y=f(x)中各變量的意義
2。同學(xué)們?cè)谖锢碚n學(xué)過勻速直線運(yùn)動(dòng)的位移和時(shí)間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時(shí)間t的函數(shù);在t=中,時(shí)間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容。
3。板書課題
由實(shí)際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo)。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性。
二、實(shí)例分析,組織探究
1。問題組一:
(用投影給出函數(shù)與;與()的圖象)
(1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對(duì)稱;與()的圖象也關(guān)于直線y=x對(duì)稱。是求一個(gè)數(shù)立方的運(yùn)算,而是求一個(gè)數(shù)立方根的運(yùn)算,它們互為逆運(yùn)算。同樣,與()也互為逆運(yùn)算。)
(2)由,已知y能否求x?
(3)是否是一個(gè)函數(shù)?它與有何關(guān)系?
(4)與有何聯(lián)系?
2。問題組二:
(1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?
3。滲透反函數(shù)的概念。
(教師點(diǎn)明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點(diǎn))
從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點(diǎn),有利于培養(yǎng)學(xué)生抽象、概括的能力。
通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識(shí),在"最近發(fā)展區(qū)"設(shè)計(jì)問題,使學(xué)生對(duì)反函數(shù)有一個(gè)直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ)。
三、師生互動(dòng),歸納定義
1。(根據(jù)上述實(shí)例,教師與學(xué)生共同歸納出反函數(shù)的定義)
函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域?yàn)?C。我們根據(jù)這個(gè)函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) 。如果對(duì)于y在C中的任何一個(gè)值,通過x = j (y),x在A中都有的值和它對(duì)應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù)。這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作: ??紤]到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對(duì)調(diào)寫成。
2。引導(dǎo)分析:
1)反函數(shù)也是函數(shù);
2)對(duì)應(yīng)法則為互逆運(yùn)算;
3)定義中的"如果"意味著對(duì)于一個(gè)任意的函數(shù)y=f(x)來說不一定有反函數(shù);
4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;
5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);
6)要理解好符號(hào)f;
7)交換變量x、y的原因。
3。兩次轉(zhuǎn)換x、y的對(duì)應(yīng)關(guān)系
(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價(jià)的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價(jià)的)
4。函數(shù)與其反函數(shù)的關(guān)系
函數(shù)y=f(x)
函數(shù)
定義域
A
C
值 域
C
A
四、應(yīng)用解題,總結(jié)步驟
1。(投影例題)
【例1】求下列函數(shù)的反函數(shù)
(1)y=3x—1 (2)y=x 1
【例2】求函數(shù)的反函數(shù)。
(教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟。)
2。總結(jié)求函數(shù)反函數(shù)的步驟:
1° 由y=f(x)反解出x=f(y)。
2° 把x=f(y)中 x與y互換得。
3° 寫出反函數(shù)的定義域。
(簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?
(2)的反函數(shù)是________。
(3)(x
在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對(duì)性地體會(huì)定義的特點(diǎn),進(jìn)而對(duì)定義有更深刻的認(rèn)識(shí),與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會(huì)反函數(shù)。在剖析定義的過程中,讓學(xué)生體會(huì)函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對(duì)數(shù)學(xué)的符號(hào)語言有更好的把握。
通過動(dòng)畫演示,表格對(duì)照,使學(xué)生對(duì)反函數(shù)定義從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而消化理解。
通過對(duì)具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力。
題目的設(shè)計(jì)遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn)。并體現(xiàn)了對(duì)定義的反思理解。學(xué)生思考練習(xí),師生共同分析糾正。
五、鞏固強(qiáng)化,評(píng)價(jià)反饋
1。已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)
(1)y=—2x 3(xR) (2)y=—(xR,且x)
( 3 ) y=(xR,且x)
2。已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。
五、反思小結(jié),再度設(shè)疑
本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟?;榉春瘮?shù)的兩個(gè)函數(shù)的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節(jié)研究。
(讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會(huì),教師適時(shí)點(diǎn)撥)
進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學(xué)生對(duì)知識(shí)的掌握情況,評(píng)價(jià)學(xué)生對(duì)學(xué)習(xí)目標(biāo)的落實(shí)程度。具體實(shí)踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動(dòng)學(xué)生的積極性。"問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進(jìn)課堂又帶著新的問題走出課堂。
六、作業(yè)
習(xí)題2。4 第1題,第2題
進(jìn)一步鞏固所學(xué)的知識(shí)。
教學(xué)設(shè)計(jì)說明
"問題是數(shù)學(xué)的心臟"。一個(gè)概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程。本節(jié)教案通過一個(gè)物理學(xué)中的具體實(shí)例引入反函數(shù),進(jìn)而又通過若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念。
反函數(shù)的概念是教學(xué)中的難點(diǎn),原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號(hào)。由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成。另外,對(duì)概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評(píng)價(jià)反饋的作用。通過對(duì)函數(shù)與方程的分析,互逆探索,動(dòng)畫演示,表格對(duì)照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動(dòng)了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維。使學(xué)生自然成為學(xué)習(xí)的主人。
高中數(shù)學(xué)教案(篇4)
教學(xué)目標(biāo)
(1)了解用坐標(biāo)法研究幾何問題的方法,了解解析幾何的基本問題。
(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點(diǎn)的概念。
(3)通過曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對(duì)立統(tǒng)一的辯證唯物主義觀點(diǎn)。
(4)通過求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學(xué)生理解解析幾何的思想方法。
(5)進(jìn)一步理解數(shù)形結(jié)合的思想方法。
教學(xué)建議
教材分析
(1)知識(shí)結(jié)構(gòu)
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì)。曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。
(2)重點(diǎn)、難點(diǎn)分析
①本節(jié)內(nèi)容教學(xué)的重點(diǎn)是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想。
②本節(jié)的難點(diǎn)是曲線方程的概念和求曲線方程的方法。
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過簡單的實(shí)例引出曲線的點(diǎn)集與方程的解集之間的對(duì)應(yīng)關(guān)系,說明曲線與方程的對(duì)應(yīng)關(guān)系。曲線與方程對(duì)應(yīng)關(guān)系的基礎(chǔ)是點(diǎn)與坐標(biāo)的對(duì)應(yīng)關(guān)系。注意強(qiáng)調(diào)曲線方程的完備性和純粹性。
(2)可以結(jié)合已經(jīng)學(xué)過的直線方程的知識(shí)幫助學(xué)生領(lǐng)會(huì)坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準(zhǔn)備。
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準(zhǔn)則。
(4)從集合與對(duì)應(yīng)的觀點(diǎn)可以看得更清楚:
設(shè) 表示曲線 上適合某種條件的點(diǎn) 的集合;
表示二元方程的解對(duì)應(yīng)的點(diǎn)的坐標(biāo)的集合。
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即
(5)在學(xué)習(xí)求曲線方程的方法時(shí),應(yīng)從具體實(shí)例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個(gè)過渡是一個(gè)從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個(gè)過程中提醒學(xué)生注意轉(zhuǎn)化是否為等價(jià)的,這將決定第五步如何做。同時(shí)教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實(shí)例的基礎(chǔ)上讓學(xué)生自然地獲得。教學(xué)中對(duì)課本例2的解法分析很重要。
這五個(gè)步驟的實(shí)質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即
文字語言中的幾何條件 數(shù)學(xué)符號(hào)語言中的等式 數(shù)學(xué)符號(hào)語言中含動(dòng)點(diǎn)坐標(biāo) , 的代數(shù)方程 簡化了的 , 的代數(shù)方程
由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個(gè)形式的特點(diǎn)是“含動(dòng)點(diǎn)坐標(biāo)的代數(shù)方程。”
(6)求曲線方程的問題是解析幾何中一個(gè)基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”。
高中數(shù)學(xué)教案(篇5)
一、教學(xué)目標(biāo)
知識(shí)與技能:
理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。
過程與方法:
會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價(jià)值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識(shí)。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
任意角概念的理解;區(qū)間角的集合的書寫。
教學(xué)難點(diǎn):
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學(xué)過程
(一)導(dǎo)入新課
1、回顧角的定義
①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
(二)教學(xué)新課
1、角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
②角的名稱:
注意:
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;
⑵零角的終邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角。
⑤練習(xí):請(qǐng)說出角α、β、γ各是多少度?
2、象限角的概念:
①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數(shù)學(xué)教案模板范文?篇2
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.
教學(xué)重難點(diǎn)
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.
教學(xué)過程
等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出.
【方法規(guī)律】
1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題.方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法.
2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個(gè)實(shí)數(shù)
a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)
3、在求等差數(shù)列前n項(xiàng)和的最大(小)值時(shí),常用函數(shù)的思想和方法加以解決.
【示范舉例】
例1:
(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為.
(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.
例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù).
例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng).
高中數(shù)學(xué)教案模板范文?篇3
1.1.1 任意角
教學(xué)目標(biāo)
(一) 知識(shí)與技能目標(biāo)
理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.
(二) 過程與能力目標(biāo)
會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.
(三) 情感與態(tài)度目標(biāo)
1. 提高學(xué)生的推理能力;
2.培養(yǎng)學(xué)生應(yīng)用意識(shí). 教學(xué)重點(diǎn)
任意角概念的理解;區(qū)間角的集合的書寫. 教學(xué)難點(diǎn)
終邊相同角的集合的表示;區(qū)間角的集合的書寫.
教學(xué)過程
一、引入:
1.回顧角的定義
①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.
二、新課:
1.角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.
②角的名稱:
③角的分類: A
正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角
④注意:
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;
⑵零角的終邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角.
⑤練習(xí):請(qǐng)說出角α、β、γ各是多少度?
2.象限角的概念:
①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角.
例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ β | β = α +
k·360° ,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和. 注意: ⑴ k∈Z
⑵ α是任一角;
⑶ 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個(gè),它們相差
360°的整數(shù)倍;
⑷ 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β
4.課堂小結(jié)
①角的定義;
②角的分類:
正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角
③象限角;
④終邊相同的角的表示法.
5.課后作業(yè):
①閱讀教材P2-P5;
②教材P5練習(xí)第1-5題;
③教材P.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
? k·360°+180°
因此,2k·360°+360°
故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角. 又k·180°+90°
各是第幾象限角?
當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°
屬于第二象限角
當(dāng)k為奇數(shù)時(shí),令k=2n+1 (n∈Z),則n·360°+270°
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
(一)
教學(xué)目標(biāo)
(二) 知識(shí)與技能目標(biāo)
理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).
(三) 過程與能力目標(biāo)
能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問題
(四) 情感與態(tài)度目標(biāo)
通過新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過對(duì)弧度制與角度制下弧長公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學(xué)重點(diǎn)
弧度的概念.弧長公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點(diǎn)
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學(xué)過程
一、復(fù)習(xí)角度制:
初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引 入:
由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進(jìn)制的,運(yùn)用起來不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定 義
我們規(guī)定,長度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.
3.思考:
(1)一定大小的圓心角?所對(duì)應(yīng)的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?
(2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):
①半圓所對(duì)的圓心角為
②整圓所對(duì)的圓心角為
③正角的弧度數(shù)是一個(gè)正數(shù).
④負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).
⑤零角的弧度數(shù)是零.
⑥角α的弧度數(shù)的絕對(duì)值|α|= .
4.角度與弧度之間的轉(zhuǎn)換:
①將角度化為弧度:
②將弧度化為角度:
5.常規(guī)寫法:
① 用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).
② 弧度與角度不能混用.
弧長等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.計(jì)算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
①閱讀教材P6 –P8;
②教材P9練習(xí)第1、2、3、6題;
③教材P10面7、8題及B2、3題.
高中數(shù)學(xué)教案模板范文?篇4
一、教學(xué)目標(biāo)
1.知識(shí)與技能
(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
(2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。
2.過程與方法
學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價(jià)值觀
(1)提高空間想象力與直觀感受。
(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn)、難點(diǎn):用斜二測畫法畫空間幾何值的直觀圖。
三、學(xué)法與教學(xué)用具
1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學(xué)用具:三角板、圓規(guī)
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1.我們都學(xué)過畫畫,這節(jié)課我們畫一物體:圓柱
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。
2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評(píng)。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測畫法的步驟。
練習(xí)反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。
5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測畫法的關(guān)鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習(xí)第5題
2.課外思考課本P16,探究(1)(2)
高中數(shù)學(xué)教案模板范文?篇5
一、教學(xué)目標(biāo)
1.知識(shí)與技能
(1)掌握畫三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2.過程與方法
主要通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀
(1)提高學(xué)生空間想象力
(2)體會(huì)三視圖的作用
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):畫出簡單組合體的三視圖
難點(diǎn):識(shí)別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比
2.教學(xué)用具:實(shí)物模型、三角板
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實(shí)踐動(dòng)手作圖
1.講臺(tái)上放球、長方體實(shí)物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;
2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖
學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本P10,圖1.2-3)
請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺(tái)的三視圖嗎?
(3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問題的看法。
4.請(qǐng)同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)
課本P12練習(xí)1、2P18習(xí)題1.2A組1
(四)歸納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習(xí)
1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫出它的三視圖。
高中數(shù)學(xué)教案(篇6)
[學(xué)習(xí)目標(biāo)]
(1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;
(2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學(xué)習(xí)重點(diǎn)]
兩角和與差的正弦、余弦、正切公式
[學(xué)習(xí)難點(diǎn)]
余弦和角公式的推導(dǎo)
[知識(shí)結(jié)構(gòu)]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用
高中數(shù)學(xué)優(yōu)秀教案4
一、教學(xué)目標(biāo):
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
二、教學(xué)重點(diǎn):
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
三、教學(xué)過程:
(一)主要知識(shí):
1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略
四、小結(jié):
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
五、作業(yè):
略
高中數(shù)學(xué)教案(篇7)
一、目的要求
1.通過本章的引言,使學(xué)生初步了解本章所研究的問題是集合與簡易邏輯的有關(guān)知識(shí),并認(rèn)識(shí)到用數(shù)學(xué)解決實(shí)際問題離不開集合與邏輯的知識(shí)。
2.在小學(xué)與初中的基礎(chǔ)上,結(jié)合實(shí)例,初步理解集合的概念,并知道常用數(shù)集及其記法。
3.從集合及其元素的概念出發(fā),初步了解屬于關(guān)系的意義。
二、內(nèi)容分析
1.集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念。在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集。至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具。這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)。
把集合的初步知識(shí)與簡易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)。例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。
2.1.1節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明。然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
3.這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念。學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義。本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念。
4.在初中幾何中,點(diǎn)、直線、平面等概念都是原始的、不定義的概念,類似地,集合則是集合論中的原始的、不定義的概念。在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí)。教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集?!边@句話,只是對(duì)集合概念的描述性說明。
三、教學(xué)過程
提出問題:
教科書引言所給的問題。
組織討論:
為什么“回答有20名同學(xué)參賽”不一定對(duì),怎么解決這個(gè)問題。
歸納總結(jié):
1.可能有的同學(xué)兩次運(yùn)動(dòng)會(huì)都參加了,因此,不能簡單地用加法解決這個(gè)問題.
2.怎么解決這個(gè)問題呢?以前我們解一個(gè)問題,通常是先用代數(shù)式表示問題中的數(shù)量關(guān)系,再進(jìn)一步求解,也就是先用數(shù)學(xué)語言描述它,把它數(shù)學(xué)化。這個(gè)問題與我們過去學(xué)過的問題不同,是屬于與集合有關(guān)的問題,因此需要先用集合的語言描述它,完全解決問題,還需要更多的集合與邏輯的知識(shí),這就是本章將要學(xué)習(xí)的內(nèi)容了。
提出問題:
1.在初中,我們學(xué)過哪些集合?
2.在初中,我們用集合描述過什么?
組織討論:
什么是集合?
歸納總結(jié):
1.代數(shù):實(shí)數(shù)集合,不等式的解集等;
幾何:點(diǎn)的集合等。
2.在初中幾何中,圓的概念是用集合描述的。
新課講解:
1.集合的概念:(具體舉例后,進(jìn)行描述性定義)
(1)某種指定的對(duì)象集在一起就成為一個(gè)集合,簡稱集。
(2)元素:集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。
(3)集合中的元素與集合的關(guān)系:
a是集合A的元素,稱a屬于集合A,記作a∈A;
a不是集合A的元素,稱a不屬于集合A,記作。
例如,設(shè)B={1,2,3,4,5},那么5∈B,
注:集合、元素概念是數(shù)學(xué)中的原始概念,可以結(jié)合實(shí)例理解它們所描述的整體與個(gè)體的關(guān)系,同時(shí),應(yīng)著重從以下三個(gè)元素的屬性,來把握集合及其元素的確切含義。
①確定性:集合中的元素是確定的,即給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。
例如,像“我國的小河流”、“年輕人”、“接近零的數(shù)”等都不能組成一個(gè)集合。
②互異性:集合中的元素是互異的,即集合中的元素是沒有重復(fù)的。
此外,集合還有無序性,即集合中的元素?zé)o順序。
例如,集合{1,2},與集合{2,1}表示同一集合。
2.常用的數(shù)集及其記法:
全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記作N,非負(fù)整數(shù)集內(nèi)排除0的集,表示成或;
全體整數(shù)的集合通常簡稱整數(shù)集,記作Z;
全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q;
全體實(shí)數(shù)的集合通常簡稱實(shí)數(shù)集,記作R。
注:①自然數(shù)集與非負(fù)整數(shù)集是相同的,就是說,自然數(shù)集包括數(shù)0,這與小學(xué)和初中學(xué)習(xí)的可能有所不同;
②非負(fù)整數(shù)集內(nèi)排除0的集,也就是正整數(shù)集,表示成或。其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成或。負(fù)整數(shù)集、正有理數(shù)集、正實(shí)數(shù)集等,沒有專門的記法。
課堂練習(xí):
教科書1.1節(jié)第一個(gè)練習(xí)第1題。
歸納總結(jié):
1.集合及其元素是數(shù)學(xué)中的原始概念,只能作描述性定義。學(xué)習(xí)時(shí)應(yīng)結(jié)合實(shí)例弄清其含義。
2.集合中元素的特性中,確定性可以用于判定某些對(duì)象是否是給定集合的元素,互異性可用于簡化集合的表示,無序性可以用于判定集合間的關(guān)系(如后面要學(xué)習(xí)的包含或相等關(guān)系等)。
四、布置作業(yè)
教科書1.1節(jié)第一個(gè)練習(xí)第2題(直接填在教科書上)。
高中數(shù)學(xué)教案(篇8)
一、教學(xué)內(nèi)容分析
本節(jié)內(nèi)容是學(xué)生在學(xué)習(xí)了乘法原理、排列、排列數(shù)公式和加法原理以后的知識(shí),學(xué)生已經(jīng)掌握了排列問題,并且對(duì)順序與排列的關(guān)系已經(jīng)有了一個(gè)比較清晰的認(rèn)識(shí).因此關(guān)鍵是排列與組合的區(qū)別在于問題是否與順序有關(guān).與順序有關(guān)的是排列問題,與順序無關(guān)是組合問題,順序?qū)ε帕?、組合問題的求解特別重要.排列與組合的區(qū)別,從定義上來說是簡單的,但在具體求解過程中學(xué)生往往感到困惑,分不清到底與順序有無關(guān)系,指導(dǎo)學(xué)生根據(jù)生活經(jīng)驗(yàn)和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學(xué)的真諦在于悟,只有學(xué)生真正理解了,才能舉一反三、融會(huì)貫通.
二、教學(xué)目標(biāo)設(shè)計(jì)
1.理解組合的意義,掌握組合數(shù)的計(jì)算公式;
2.能正確認(rèn)識(shí)組合與排列的聯(lián)系與區(qū)別
3.通過練習(xí)與訓(xùn)練體驗(yàn)并初步掌握組合數(shù)的計(jì)算公式
三、教學(xué)重點(diǎn)及難點(diǎn)
組合概念的理解和組合數(shù)公式;組合與排列的區(qū)別.
四、教學(xué)用具準(zhǔn)備
多媒體設(shè)備
五、教學(xué)流程設(shè)計(jì)
高中數(shù)學(xué)教案(篇9)
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。
以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
借助單位圓探究誘導(dǎo)公式。
能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
誘導(dǎo)公式的應(yīng)用。
多媒體。
1. 誘導(dǎo)公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
已知 由
可知
而 (課件演示,學(xué)生發(fā)現(xiàn))
所以
于是可得: (三)
設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。
1. 練習(xí)
(1)
設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
設(shè)計(jì)意圖:利用公式解決問題。
練習(xí):
(1)
(2) (學(xué)生板演,師生點(diǎn)評(píng))
設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。
四。課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。
很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:
1.要認(rèn)真的研讀新課標(biāo),對(duì)教學(xué)的目標(biāo),重難點(diǎn)把握要到位
2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正
3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作
4.盡可能讓你的學(xué)生自主提出問題,自主的思考,能夠化被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),充分享受學(xué)習(xí)數(shù)學(xué)的樂趣
5.上課的生動(dòng)化,形象化需要加強(qiáng)
1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。
2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。
4.評(píng)議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。
建議:課件制作在線測評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學(xué)生。
( 1)給學(xué)生思考的時(shí)間較長,語調(diào)相對(duì)平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語言更好
( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考
( 3)網(wǎng)絡(luò)平臺(tái)的使用,使得學(xué)生的參與度明顯提高,存在問題:1.公式對(duì)稱性的誘導(dǎo),點(diǎn)與點(diǎn)的對(duì)稱的誘導(dǎo),終邊的關(guān)系的誘導(dǎo),要進(jìn)一步的修正;2.公式的概括要注意引導(dǎo)學(xué)生怎么用,學(xué)習(xí)這個(gè)誘導(dǎo)公式的作用
( 4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來
( 5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對(duì)是比較快的3.練習(xí)量比較少
( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)
( 8)教學(xué)模式相對(duì)簡單重復(fù)
( 9)思路較為清晰,規(guī)范化的推理
高中數(shù)學(xué)教案(篇10)
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.
(2)進(jìn)一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.
教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.
教學(xué)用具:
計(jì)算機(jī).
教學(xué)方法:
啟發(fā)引導(dǎo)法,討論法.
教學(xué)過程:
【引入】
1.提問:什么是曲線的方程和方程的曲線.
學(xué)生思考并回答.教師強(qiáng)調(diào).
2.坐標(biāo)法和解析幾何的意義、基本問題.
對(duì)于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程.
(2)通過方程,研究平面曲線的性質(zhì).
事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.
【問題】
如何根據(jù)已知條件,求出曲線的方程.
【實(shí)例分析】
例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程.
首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決.
解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問題是我們?cè)缇蛯W(xué)過的,用點(diǎn)斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?
(通過教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).
證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.
設(shè)是線段的垂直平分線上任意一點(diǎn),則
即
將上式兩邊平方,整理得
這說明點(diǎn)的坐標(biāo)是方程的解.
(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).
設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則
到、的距離分別為
所以,即點(diǎn)在直線上.
綜合(1)、(2),①是所求直線的方程.
至此,證明完畢.回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個(gè)證明過程就表明一種求解過程,下面試試看:
解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合
由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想.因此是個(gè)好方法.
讓我們用這個(gè)方法試解如下問題:
例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程.
分析:這是一個(gè)純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.
求解過程略.
【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):
分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點(diǎn)就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);
(2)寫出適合條件的'點(diǎn)的集合;
(3)用坐標(biāo)表示條件,列出方程;
(4)化方程為最簡形式;
(5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).
一般情況下,求解過程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).所以,通常情況下證明可省略,不過特殊情況要說明.
上述五個(gè)步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正.
下面再看一個(gè)問題:
例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程.
【動(dòng)畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動(dòng)變化的過程中尋找關(guān)系.
解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合
由距離公式,點(diǎn)適合的條件可表示為
①
將①式移項(xiàng)后再兩邊平方,得
化簡得
由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示.
【練習(xí)鞏固】
題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、 、,且有,求點(diǎn)軌跡方程.Jab88.Com
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為.
根據(jù)條件,代入坐標(biāo)可得
化簡得
①
由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià).各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁練習(xí)1,2,3;
高中數(shù)學(xué)教案2022最新完整版?篇2
一、教學(xué)目標(biāo)
1.知識(shí)與技能
(1)掌握畫三視圖的基本技能
(2)豐富學(xué)生的空間想象力
2.過程與方法
主要通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀
(1)提高學(xué)生空間想象力
(2)體會(huì)三視圖的作用
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):畫出簡單組合體的三視圖
難點(diǎn):識(shí)別三視圖所表示的空間幾何體
三、學(xué)法與教學(xué)用具
1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比
2.教學(xué)用具:實(shí)物模型、三角板
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實(shí)踐動(dòng)手作圖
1.講臺(tái)上放球、長方體實(shí)物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;
2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖
學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本P10,圖1.2-3)
請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺(tái)的三視圖嗎?
(3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問題的看法。
4.請(qǐng)同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)
課本P12練習(xí)1、2P18習(xí)題1.2A組1
(四)歸納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習(xí)
1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫出它的三視圖。
高中數(shù)學(xué)教案2022最新完整版?篇3
一、教學(xué)目標(biāo)
1.知識(shí)與技能
(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
(2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。
2.過程與方法
學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價(jià)值觀
(1)提高空間想象力與直觀感受。
(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn)、難點(diǎn):用斜二測畫法畫空間幾何值的直觀圖。
三、學(xué)法與教學(xué)用具
1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學(xué)用具:三角板、圓規(guī)
四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1.我們都學(xué)過畫畫,這節(jié)課我們畫一物體:圓柱
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。
2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評(píng)。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測畫法的步驟。
練習(xí)反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。
5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測畫法的關(guān)鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習(xí)第5題
2.課外思考課本P16,探究(1)(2)
高中數(shù)學(xué)教案2022最新完整版?篇4
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。
三、設(shè)計(jì)思想
由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.
四、教學(xué)目標(biāo)
1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2.通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1.對(duì)圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線定義解題
六、教學(xué)過程設(shè)計(jì)
【設(shè)計(jì)思路】
(一)開門見山,提出問題
一上課,我就直截了當(dāng)?shù)亟o出——
例題1:(1) 已知a(-2,0), b(2,0)動(dòng)點(diǎn)m滿足|ma|+|mb|=2,則點(diǎn)m的軌跡是( )。
(a)橢圓 (b)雙曲線 (c)線段 (d)不存在
(2)已知?jiǎng)狱c(diǎn) m(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)m的軌跡是( )。
(a)橢圓 (b)雙曲線 (c)拋物線 (d)兩條相交直線
【設(shè)計(jì)意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折—— 如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|入手,考慮通過適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是 ,實(shí)軸長為 ,焦距為 。以深化對(duì)概念的理解。
高中數(shù)學(xué)教案2022最新完整版?篇5
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形。“二面角”是人教版《數(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究兩個(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學(xué)目標(biāo):
知識(shí)目標(biāo):
(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。
(2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標(biāo):
(1)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。
(2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。
德育目標(biāo):
(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)
(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。
情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。
3、重點(diǎn)、難點(diǎn):
重點(diǎn):“二面角”和“二面角的平面角”的概念
難點(diǎn):“二面角的平面角”概念的形成過程
二、教法分析
1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。
2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。
三、學(xué)法指導(dǎo)
1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。
3、會(huì)學(xué):通過自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學(xué)過程
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營造了創(chuàng)新思維的氛圍。
(一)、二面角
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?
問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。
2、展現(xiàn)概念形成過程。
問題情境4、那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。
問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。
問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。
問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?
(2)、提出猜想:二面角的大小也可通過平面的角來定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。
問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。
(3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。
(4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
(5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。
(三)、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
(四)、范例分析
為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。
分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角??勺寣W(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
(五)、練習(xí)、小結(jié)與作業(yè)
練習(xí):習(xí)題9.7的第3題
小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。
作業(yè):習(xí)題9.7的第4題
思考題:見例題
五、板書設(shè)計(jì)(見課件)
以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!
高中數(shù)學(xué)教案(篇11)
【教學(xué)目標(biāo)】
1. 知識(shí)與技能
(1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過程:
(3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡單問題。
2.過程與方法
在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價(jià)值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點(diǎn)】
①等差數(shù)列的概念;②等差數(shù)列的通項(xiàng)公式
【教學(xué)難點(diǎn)】
①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展.
【設(shè)計(jì)思路】
1.教法
①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性.
③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).
2.學(xué)法
引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、水庫水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.
【教學(xué)過程】
一:創(chuàng)設(shè)情境,引入新課
1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:m)組成一個(gè)什么數(shù)列?
3.我國現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?
教師:以上三個(gè)問題中的數(shù)蘊(yùn)涵著三列數(shù).
學(xué)生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.
二:觀察歸納,形成定義
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點(diǎn)?
思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.
(設(shè)計(jì)意圖:通過對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓住:“從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)
三:舉一反三,鞏固定義
1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.
注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .
(設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).
2思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)
四:利用定義,導(dǎo)出通項(xiàng)
1.已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?
2.已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)
五:應(yīng)用通項(xiàng),解決問題
1判斷100是不是等差數(shù)列2, 9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?
2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差數(shù)列 3,7,11,…的第4項(xiàng)和第10項(xiàng)
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式
(設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問題.)
六:反饋練習(xí):教材13頁練習(xí)1
七:歸納總結(jié):
1.一個(gè)定義:
等差數(shù)列的定義及定義表達(dá)式
2.一個(gè)公式:
等差數(shù)列的通項(xiàng)公式
3.二個(gè)應(yīng)用:
定義和通項(xiàng)公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉€(gè)代表發(fā)言,最后教師給出補(bǔ)充
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)
【設(shè)計(jì)反思】
本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.
高中數(shù)學(xué)教案(篇12)
“等差數(shù)列”教學(xué)設(shè)計(jì)
一、教學(xué)內(nèi)容分析
等差數(shù)列是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,?數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。
二、教學(xué)目標(biāo)
1、通過本節(jié)課的學(xué)習(xí)使學(xué)生理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列。
2、引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,會(huì)求等差數(shù)列的公差及通項(xiàng)公式,能在解題中靈活應(yīng)用,初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛苓\(yùn)用;并在此過程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力。
3、在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
三、教學(xué)重難點(diǎn)
重點(diǎn):
①等差數(shù)列的概念。
②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。
難點(diǎn):
①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。
②理解等差數(shù)列是一種函數(shù)模型。
四、學(xué)習(xí)者分析
普通高中學(xué)生經(jīng)過一年的高中的學(xué)習(xí)生活,已經(jīng)慢慢習(xí)慣的高中的學(xué)習(xí)氛圍,大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,且對(duì)數(shù)列的知識(shí)有了初步的接觸和認(rèn)識(shí),已經(jīng)熟悉由觀察到抽象的數(shù)學(xué)活動(dòng)過程,對(duì)函數(shù)、方程思想體會(huì)逐漸深刻,應(yīng)用數(shù)學(xué)公式的能力逐漸加強(qiáng)。他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力。但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
五、教學(xué)策略選擇與設(shè)計(jì)
結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了從教法、學(xué)法兩種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo),讓學(xué)生更好的理解。通過引入實(shí)例來啟發(fā)學(xué)生,挺高學(xué)生的學(xué)習(xí)興趣,是學(xué)生更加形象、愉快的去學(xué)習(xí)這堂課。下面是我教學(xué)設(shè)計(jì):
1.教法
⑴誘導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。
⑵分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性。
⑶講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。
2.學(xué)法
引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問題、水庫水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。
六、教學(xué)資源與工具設(shè)計(jì)
(一)學(xué)習(xí)環(huán)境:多媒體教室
(二)用到的資源:
1 查找有關(guān)等差數(shù)列的實(shí)例
2 寫出上課要提到的問題
3 制作相關(guān)PPT課件
七、教學(xué)過程
教學(xué)環(huán)境 教學(xué)內(nèi)容與
教師活動(dòng) 學(xué)生活動(dòng) 設(shè)計(jì)意圖或依據(jù) 情境導(dǎo)入
在南北朝時(shí)期《張邱建算經(jīng)》中,有一道題“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中間三人未到者,亦依等次更 給,問各得金幾何,及未到三人復(fù)應(yīng)得金幾何“。 這個(gè)問題該怎樣解決呢?
由學(xué)生觀察分析并得出答案: 在現(xiàn)實(shí)生活中,我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5數(shù)一次,可以得到數(shù)列:0,5,___,___,___,___,?
水庫的管理人員為了保證優(yōu)質(zhì)魚 類有良好的生活環(huán)境,用定期放水清理水庫的雜魚。如果一個(gè)水庫的水位 為18cm,自然放水每天水位降低2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m):18,15.5,13,10.5,8,5.5
思考:同學(xué)們觀察一下上面的這兩個(gè)數(shù)列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看這些數(shù)列有什么共同特點(diǎn)呢?
傾聽和觀察分析,發(fā)表各自的意見。
課堂引入,引向課題 探索與歸納
對(duì)于以上幾組數(shù)列我們稱它們?yōu)榈炔顢?shù)列。請(qǐng)同學(xué)們根據(jù)我們剛才分析等差數(shù)列的特征,嘗試著給等差數(shù)列下個(gè)定義:等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。那么對(duì)于以上兩組等差數(shù)列,它們的公差依次是5,5,-2.5。
提問:如果在a與b中間插入一個(gè)數(shù)A,使a,A,b成等差數(shù)列數(shù)列,那么A應(yīng)滿足什么條件?
由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,這時(shí),A叫做a與b
的等差中項(xiàng)。
不難發(fā)現(xiàn),在一個(gè)等差數(shù)列中,從第2項(xiàng)起,每一項(xiàng)(有窮數(shù)列的末項(xiàng)除外)都是它的前一項(xiàng)與后一項(xiàng)的等差中項(xiàng)。 如數(shù)列:1,3,5,7,9,11,13?中5是3和7的等差中項(xiàng),1和9的等差中項(xiàng)。9是7和11的等差中項(xiàng),5和13的等差中項(xiàng)??磥恚?/p>
從而可得到在一等差數(shù)列中,若m+n=p+q則
以上就是《高中數(shù)學(xué)教案內(nèi)容》的全部內(nèi)容,想了解更多內(nèi)容,請(qǐng)點(diǎn)擊高中數(shù)學(xué)教案查看或關(guān)注本網(wǎng)站內(nèi)容更新,感謝您的關(guān)注!
高中數(shù)學(xué)教案相關(guān)推薦
更多>-
高中數(shù)學(xué)教案分享 教案課件是老師不可缺少的課件,這就要老師好好去自己教案課件了。要在教案課件中可以體現(xiàn)出教學(xué)過程中智慧與創(chuàng)造性。怎么樣教案課件才算不錯(cuò)呢?相信你應(yīng)該喜歡小編整理的高中數(shù)學(xué)教案分享,為防遺忘,建議你收藏本頁!教學(xué)目的:掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用教學(xué)難點(diǎn):標(biāo)準(zhǔn)...
-
高中數(shù)學(xué)教案精選 一名優(yōu)秀的教師就要對(duì)每一課堂負(fù)責(zé),作為高中教師就需要提前準(zhǔn)備好適合自己的教案。教案可以讓學(xué)生能夠聽懂教師所講的內(nèi)容,幫助授課經(jīng)驗(yàn)少的高中教師教學(xué)。所以你在寫高中教案時(shí)要注意些什么呢?下面是小編精心收集整理,為您帶來的《高中數(shù)學(xué)教案精選》,僅供您在工作和學(xué)習(xí)中參考。 教學(xué)目標(biāo)1.了解映射的概念,象與原...
- 高中數(shù)學(xué)教案范本03-19
- 高中數(shù)學(xué)教案全套模板09-27
- 高中數(shù)學(xué)教案十二篇04-08
- 高中數(shù)學(xué)教案九篇04-28
- 高中數(shù)學(xué)教案15篇02-28
- 高中數(shù)學(xué)教案六篇06-07
- 2024高中數(shù)學(xué)教案6篇06-27
- 高中數(shù)學(xué)教案通用模板人教版09-14
幼兒園臘八節(jié)活動(dòng)的意義有哪些(集錦十篇)10-05
- 幼兒園教案的標(biāo)準(zhǔn)格式范文大全10-05
- 過年不打擾的祝福語有哪些呢(收藏54句)10-05
- 社區(qū)矯正思想?yún)R報(bào)100字左右范文大全(推薦八篇)10-05
- 感恩節(jié)祝福語幼兒園家長(匯集65句)10-05
- 運(yùn)動(dòng)會(huì)參與情況報(bào)告100字(優(yōu)選8篇)10-05
- 新學(xué)期黑板報(bào)內(nèi)容主題10-05
- 重陽節(jié)日記三年級(jí)上冊(cè)10-05
- 農(nóng)村思想?yún)R報(bào)300字左右積預(yù)(必備9篇)10-05