高中數(shù)學(xué)教案模板范文
發(fā)表時(shí)間:2025-08-12高中數(shù)學(xué)教案模板范文19篇。
作為教學(xué)工作者,撰寫教案至關(guān)重要,能夠幫助我們根據(jù)實(shí)際情況靈活調(diào)整教學(xué)進(jìn)程。以下是為大家整理的高中數(shù)學(xué)教案模板和范文,希望能為您提供參考與幫助。
高中數(shù)學(xué)教案模板范文 (一)
教學(xué)目標(biāo):
1、使學(xué)生了解角的形成,理解角的概念掌握角的各種表示法;
2、通過觀察、操作培養(yǎng)學(xué)生的觀察能力和動(dòng)手操作能力。
3、使學(xué)生掌握度、分、秒的進(jìn)位制,會(huì)作度、分、秒間的單位互化
4、采用自學(xué)與小組合作學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生主動(dòng)參與、勇于探究的精神。
教學(xué)重點(diǎn):
理解角的概念,掌握角的三種表示方法
教學(xué)難點(diǎn):
掌握度、分、秒的進(jìn)位制, ,會(huì)作度、分、秒間的單位互化
教學(xué)手段:
教具:電腦課件、實(shí)物投影、量角器
學(xué)具:量角器需測(cè)量的角
教學(xué)過程:
一、建立角的概念
(一)引入角(利用課件演示)
1、從生活中引入
提問:
A、以前我們?cè)?jīng)認(rèn)識(shí)過角,那你們能從這兩個(gè)圖形中指出哪些地方是角嗎?
B、在我們的生活當(dāng)中存在著許許多多的角。一起看一看。誰能從這些常用的物品中找出角?
2、從射線引入
提問:
A、昨天我們認(rèn)識(shí)了射線,想從一點(diǎn)可以引出多少條射線?
B、如果從一點(diǎn)出發(fā)任意取兩條射線,那出現(xiàn)的是什么圖形?
C、哪兩條射線可以組成一個(gè)角?誰來指一指。
(二)認(rèn)識(shí)角,總結(jié)角的定義
3、 過渡:角是怎么形成的呢?一起看
(1)、演示:老師在這畫上一個(gè)點(diǎn),現(xiàn)在從這點(diǎn)出發(fā)引出一條射線,再從這點(diǎn)出發(fā)引出第二條射線。
提問:觀察從這點(diǎn)引出了幾條射線?此時(shí)所組成的圖形是什么圖形?
(2)、判斷下列哪些圖形是角。
(√) (×) (√) (×) (√)
為何第二幅和第四幅圖形不是角?(學(xué)生回答)
誰能用自己的話來概括一下怎樣組成的圖形叫做角?
總結(jié):有公共端點(diǎn)的兩條射線所組成的圖形叫做角(angle)
角的第二定義:角也可以看做由一條射線繞端點(diǎn)旋轉(zhuǎn)所形成的圖形.如下圖中的角,可以看做射線OA繞端點(diǎn)0按逆時(shí)針方向旋轉(zhuǎn)到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.
B
0 A
4、認(rèn)識(shí)角的各部分名稱,明確頂點(diǎn)、邊的作用
(1)觀看角的圖形提問:這個(gè)點(diǎn)叫什么?這兩條射線叫什么?(學(xué)生邊說師邊標(biāo)名稱)
(2)角可以畫在本上、黑板上,那角的位置是由誰決定的?
(3)頂點(diǎn)可以確定角的位置,從頂點(diǎn)引出的兩條邊可以組成一個(gè)角。
5、學(xué)會(huì)用符號(hào)表示角
提問:那么,角的符號(hào)是什么?該怎么寫,怎么讀的呢?(電腦顯示)
(1)可以標(biāo)上三個(gè)大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA.
(2)觀察這兩種方法,有什么特點(diǎn)?(字母B都在中間)
(3)所以,在只有一個(gè)角的時(shí)候,我們還可以寫作: ∠B,讀作:角B
(4)為了方便,有時(shí)我們還可以標(biāo)上數(shù)字,寫作∠1,讀作:角1
(5)注:區(qū)別 “∠”和“ a , b 是正數(shù),且,求證
[分析]依題目特點(diǎn),作差后重新組項(xiàng),采用因式分解來變形.
證明:(見課本)
[點(diǎn)評(píng)]因式分解也是對(duì)差式變形的一種常用方法.此例將差式變形為幾個(gè)因式的積的形式,在確定符號(hào)中,表達(dá)過程較復(fù)雜,如何書寫證明過程,例3給出了一個(gè)好的示范.
[點(diǎn)評(píng)]解這道題在判斷符號(hào)時(shí)用了分類討論,分類討論是重要的數(shù)學(xué) 思想方法.要理解為什么分類,怎樣分類.分類時(shí)要不重不漏.
[字幕]例5甲、乙兩人同時(shí)同地沿同一條路線走到同一地點(diǎn).甲有一半時(shí)間以速度 m 行走,另一半時(shí)間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問甲、乙兩人誰先到達(dá)指定地點(diǎn).
[分析]設(shè)從出發(fā)地點(diǎn)至指定地點(diǎn)的路程為,甲、乙兩人走完這段路程用的時(shí)間分別為,要回答題目中的問題,只要比較、的大小就可以了.
解:(見課本)
[點(diǎn)評(píng)]此題是一個(gè)實(shí)際問題,學(xué)習(xí)了如何利用比較法證明不等式的思想方法解決有關(guān)實(shí)際問題.要培養(yǎng)自己學(xué)數(shù)學(xué),用數(shù)學(xué)的良好品質(zhì).
設(shè)計(jì)意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號(hào)的方法.培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問題的能力.
【課堂練習(xí)】
(教師活動(dòng))教師打出字幕練習(xí),要求學(xué)生獨(dú)立思考,完成練習(xí);請(qǐng)甲、乙兩位學(xué)生板演;巡視學(xué)生的解題情況,對(duì)正確的給予肯定,對(duì)偏差及時(shí)糾正;點(diǎn)評(píng)練習(xí)中存在的問題.
(學(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演.
[字幕]練習(xí):1.設(shè),比較與的大小.
2.已知,求證
設(shè)計(jì)意圖:掌握比較法證明不等式及思想方法的應(yīng)用.靈活掌握因式分解法對(duì)差式的變形和分類討論確定符號(hào).反饋信息,調(diào)節(jié)課堂教學(xué).
【分析歸納、小結(jié)解法】
(教師活動(dòng))分析歸納例題的解題過程,小結(jié)對(duì)差式變形、確定符號(hào)的常用方法和利用不等式解決實(shí)際問題的解題步驟.
(學(xué)生活動(dòng))與教師一道小結(jié),并記錄在筆記本上.
1.比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個(gè)式子大小的一種重要方法.
2.對(duì)差式變形的常用方法有:配方法,通分法,因式分解法等.
3.會(huì)用分類討論的方法確定差式的符號(hào).
4.利用不等式解決實(shí)際問題的解題步驟:①類比列方程解應(yīng)用題的步驟.②分析題意,設(shè)未知數(shù),找出數(shù)量關(guān)系(函數(shù)關(guān)系,相等關(guān)系或不等關(guān)系),③列出函數(shù)關(guān)系、等式或不等式,④求解,作答.
設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握用比較法證明不等式的知識(shí)體系.
(三)小結(jié)
(教師活動(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí)及數(shù)學(xué) 思想與方法.
(學(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記.
本節(jié)課學(xué)習(xí)了對(duì)差式變形的一種常用方法因式分解法;對(duì)符號(hào)確定的分類討論法;應(yīng)用比較法的'思想解決實(shí)際問題.
通過學(xué)習(xí)比較法證明不等式,要明確比較法證明不等式的理論依據(jù),理解轉(zhuǎn)化,使問題簡化是比較法證明不等式中所蘊(yùn)含的重要數(shù)學(xué)思想,掌握求差后對(duì)差式變形以及判斷符號(hào)的重要方法,并在以后的學(xué)習(xí)中繼續(xù)積累方法,培養(yǎng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力.
設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)的知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)的知識(shí),領(lǐng)會(huì)化歸、類比、分類討論的重要數(shù)學(xué) 思想方法.
(四)布置作業(yè)
1.課本作業(yè):P17 7、8。
2,思考題:已知,求證
3.研究性題:對(duì)于同樣的距離,船在流水中來回行駛一次的時(shí)間和船在靜水中來回行駛一次的時(shí)間是否相等?(假設(shè)船在流水中的速度和部在靜水中的速度保持不變)
設(shè)計(jì)意圖:思考題讓學(xué)生了解商值比較法,掌握分類討論的思想.研究性題是使學(xué)生理論聯(lián)系實(shí)際,用數(shù)學(xué)解決實(shí)際問題,提高應(yīng)用數(shù)學(xué)的能力.
(五)課后點(diǎn)評(píng)
1.教學(xué)評(píng)價(jià)、反饋調(diào)節(jié)措施的構(gòu)想:本節(jié)課采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,通過啟發(fā)誘導(dǎo)學(xué)生深入思考問題,解決問題,反饋學(xué)習(xí)信息,調(diào)節(jié)教學(xué)活動(dòng).
2.教學(xué)措施的設(shè)計(jì):由于對(duì)差式變形,確定符號(hào)是掌握比較法證明不等式的關(guān)鍵,本節(jié)課在上節(jié)課的基礎(chǔ)上繼續(xù)學(xué)習(xí)差式變形的方法和符號(hào)的確定,例3和例4分別使學(xué)生掌握因式分解變形和分類討論確定符號(hào),例5使學(xué)生對(duì)所學(xué)的知識(shí)會(huì)應(yīng)用.例題設(shè)計(jì)目的在于突出重點(diǎn),突破難點(diǎn),學(xué)會(huì)應(yīng)用
高中數(shù)學(xué)教案模板范文 (二)
整體設(shè)計(jì)
教學(xué)分析
我們?cè)诔踔械膶W(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì)。從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù)。進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪。
教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個(gè)具體例子:GDP的增長問題和碳14的衰減問題。前一個(gè)問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價(jià)值。后一個(gè)問題讓學(xué)生體會(huì)其中的函數(shù)模型的同時(shí),激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識(shí)的學(xué)習(xí)作了鋪墊。
本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時(shí),充分關(guān)注與實(shí)際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值。
根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計(jì)算器和計(jì)算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持。
三維目標(biāo)
1、通過與初中所學(xué)的知識(shí)進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì)。掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。培養(yǎng)學(xué)生觀察分析、抽象類比的能力。
2、掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。通過運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理。
3、能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計(jì)算能力。
4、通過訓(xùn)練及點(diǎn)評(píng),讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì)。展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡潔美和統(tǒng)一美。
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
(1)分?jǐn)?shù)指數(shù)冪和根式概念的理解。
(2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。
(3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值。
教學(xué)難點(diǎn)
(1)分?jǐn)?shù)指數(shù)冪及根式概念的理解。
(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用。
課時(shí)安排
3課時(shí)
教學(xué)過程
第1課時(shí)
作者:路致芳
導(dǎo)入新課
思路1.同學(xué)們?cè)陬A(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對(duì)生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個(gè)問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測(cè)生物所處的年代的。教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。
思路2.同學(xué)們,我們?cè)诔踔袑W(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。
推進(jìn)新課
新知探究
提出問題
(1)什么是平方根?什么是立方根?一個(gè)數(shù)的平方根有幾個(gè),立方根呢?
(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?
(3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?
(4)可否用一個(gè)式子表達(dá)呢?
活動(dòng):教師提示,引導(dǎo)學(xué)生回憶初中的時(shí)候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對(duì)照類比平方根、立方根的定義解釋上面的式子,對(duì)問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時(shí)啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評(píng)價(jià)學(xué)生的思維。
討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個(gè),它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個(gè)數(shù)的立方根只有一個(gè),如:-8的立方根為-2.
(2)類比平方根、立方根的定義,一個(gè)數(shù)的四次方等于a,則這個(gè)數(shù)叫a的四次方根。一個(gè)數(shù)的五次方等于a,則這個(gè)數(shù)叫a的五次方根。一個(gè)數(shù)的六次方等于a,則這個(gè)數(shù)叫a的六次方根。
(3)類比(2)得到一個(gè)數(shù)的n次方等于a,則這個(gè)數(shù)叫a的n次方根。
(4)用一個(gè)式子表達(dá)是,若xn=a,則x叫a的n次方根。
教師板書n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數(shù)集。
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例。
提出問題
(1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目)。
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。
(2)平方根,立方根,4次方根,5次方根,7次方根,分別對(duì)應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對(duì)應(yīng)什么性質(zhì)的數(shù),有什么特點(diǎn)?
(3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個(gè)的,也有兩個(gè)的,你能否總結(jié)一般規(guī)律呢?
(4)任何一個(gè)數(shù)a的偶次方根是否存在呢?
活動(dòng):教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個(gè)數(shù)a的n次方根,就是求出的那個(gè)數(shù)的n次方等于a,及時(shí)點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的特點(diǎn),對(duì)問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對(duì)回答正確的學(xué)生及時(shí)表揚(yáng),對(duì)回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路。
討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
(2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù)??偟膩砜矗@些數(shù)包括正數(shù),負(fù)數(shù)和零。
(3)一個(gè)數(shù)a的奇次方根只有一個(gè),一個(gè)正數(shù)a的偶次方根有兩個(gè),是互為相反數(shù)。0的任何次方根都是0.
(4)任何一個(gè)數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆]有一個(gè)數(shù)的偶次方是一個(gè)負(fù)數(shù)。
類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):
①當(dāng)n為偶數(shù)時(shí),正數(shù)a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。
②n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號(hào)na表示。
③負(fù)數(shù)沒有偶次方根;0的任何次方根都是零。
上面的文字語言可用下面的式子表示:
a為正數(shù):n為奇數(shù),a的n次方根有一個(gè)為na,n為偶數(shù),a的n次方根有兩個(gè)為±na.
a為負(fù)數(shù):n為奇數(shù),a的n次方根只有一個(gè)為na,n為偶數(shù),a的n次方根不存在。
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例。
思考
根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?
活動(dòng):教師提示學(xué)生對(duì)方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時(shí)巡視學(xué)生,隨機(jī)給出一個(gè)數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時(shí)糾正學(xué)生在舉例過程中的問題。
解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個(gè)名稱——根式。
根式的概念:
式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù)。
如3-27中,3叫根指數(shù),-27叫被開方數(shù)。
思考
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動(dòng):教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號(hào),充分讓學(xué)生多舉實(shí)例,分組討論。教師點(diǎn)撥,注意歸納整理。
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。
解答:根據(jù)n次方根的意義,可得:(na)n=a.
通過探究得到:n為奇數(shù),nan=a.
n為偶數(shù),nan=|a|=a,-a,a≥0,ab)。
活動(dòng):求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識(shí),關(guān)鍵是啥,搞清這些之后,再針對(duì)每一個(gè)題目仔細(xì)分析。觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對(duì)癥下藥。求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來解,首先要搞清楚運(yùn)算順序,目的是把被開方數(shù)的符號(hào)定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號(hào),如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù)。
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b)。
點(diǎn)評(píng):不注意n的奇偶性對(duì)式子nan的值的影響,是導(dǎo)致問題出現(xiàn)的一個(gè)重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會(huì)用,活用。
變式訓(xùn)練
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
點(diǎn)評(píng):本題易錯(cuò)的是第(3)題,往往忽視a與1大小的討論,造成錯(cuò)解。
思路2
例1下列各式中正確的是
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活動(dòng):教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會(huì)方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯(cuò),再回答。
解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時(shí),應(yīng)先寫nan=|a|,故A項(xiàng)錯(cuò)。
(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項(xiàng)錯(cuò)。
(3)a0=1是有條件的,即a≠0,故C項(xiàng)也錯(cuò)。
(4)D項(xiàng)是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項(xiàng)正確。所以答案選D.
答案:D
點(diǎn)評(píng):本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時(shí)極易選錯(cuò),選四個(gè)答案的情況都會(huì)有,因此解題時(shí)千萬要細(xì)心。
例2 3+22+3-22=__________.
活動(dòng):讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號(hào)的式子,去掉一層根號(hào),根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號(hào)下面的式子化成一個(gè)完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路。
解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
點(diǎn)評(píng):不難看出3-22與3+22形式上有些特點(diǎn),即是對(duì)稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個(gè)完全平方式。
思考
上面的例2還有別的解法嗎?
活動(dòng):教師引導(dǎo),去根號(hào)常常利用完全平方公式,有時(shí)平方差公式也可,同學(xué)們觀察兩個(gè)式子的特點(diǎn),具有對(duì)稱性,再考慮并交流討論,一個(gè)是“+”,一個(gè)是“-”,去掉一層根號(hào)后,相加正好抵消。同時(shí)借助平方差,又可去掉根號(hào),因此把兩個(gè)式子的和看成一個(gè)整體,兩邊平方即可,探討得另一種解法。
另解:利用整體思想,x=3+22+3-22,
兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點(diǎn)評(píng):對(duì)雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號(hào)下面的式子化成一個(gè)完全平方式,問題迎刃而解,另外對(duì)A+2B±A-2B的式子,我們可以把它們看成一個(gè)整體利用完全平方公式和平方差公式去解。
變式訓(xùn)練
若a2-2a+1=a-1,求a的取值范圍。
解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
點(diǎn)評(píng):利用方根的運(yùn)算性質(zhì)轉(zhuǎn)化為去絕對(duì)值符號(hào),是解題的關(guān)鍵。
知能訓(xùn)練
(教師用多媒體顯示在屏幕上)
1、以下說法正確的是
A.正數(shù)的n次方根是一個(gè)正數(shù)
B.負(fù)數(shù)的`n次方根是一個(gè)負(fù)數(shù)
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整數(shù)集)
答案:C
2、化簡下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。
3、計(jì)算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
問題:nan=a與(na)n=a(n>1,n∈N)哪一個(gè)是恒等式,為什么?請(qǐng)舉例說明。
活動(dòng):組織學(xué)生結(jié)合前面的例題及其解答,進(jìn)行分析討論,解決這一問題要緊扣n次方根的定義。
通過歸納,得出問題結(jié)果,對(duì)a是正數(shù)和零,n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下。再對(duì)a是負(fù)數(shù),n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下,就可得到相應(yīng)的結(jié)論。
解:(1)(na)n=a(n>1,n∈N)。
如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=na一定是它的一個(gè)n次方根,所以(na)n=a恒成立。
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,當(dāng)n為奇數(shù),當(dāng)n為偶數(shù)。
當(dāng)n為奇數(shù)時(shí),a∈R,nan=a恒成立。
例如:525=2,5(-2)5=-2.
當(dāng)n為偶數(shù)時(shí),a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。
點(diǎn)評(píng):實(shí)質(zhì)上是對(duì)n次方根的概念、性質(zhì)以及運(yùn)算性質(zhì)的深刻理解。
課堂小結(jié)
學(xué)生仔細(xì)交流討論后,在筆記上寫出本節(jié)課的學(xué)習(xí)收獲,教師用多媒體顯示在屏幕上。
1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集。用式子na表示,式子na叫根式,其中a叫被開方數(shù),n叫根指數(shù)。
(1)當(dāng)n為偶數(shù)時(shí),a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。
(2)n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號(hào)na表示。
(3)負(fù)數(shù)沒有偶次方根。0的任何次方根都是零。
2、掌握兩個(gè)公式:n為奇數(shù)時(shí),(na)n=a,n為偶數(shù)時(shí),nan=|a|=a,-a,a≥0,a
解析:因?yàn)?
答案:2a-13
3.5+26+5-26=__________.
解析:對(duì)雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,
不難看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
設(shè)計(jì)感想
學(xué)生已經(jīng)學(xué)習(xí)了數(shù)的平方根和立方根,根式的內(nèi)容是這些內(nèi)容的推廣,本節(jié)課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時(shí),要結(jié)合已學(xué)內(nèi)容,列舉具體實(shí)例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來進(jìn)行,每種情況又分a>0,a0,
①;
②a8=(a4)2=a4=,;
③4a12=4(a3)4=a3=;
④2a10=2(a5)2=a5= 。
(3)利用(2)的規(guī)律,你能表示下列式子嗎?
,,,(x>0,m,n∈正整數(shù)集,且n>1)。
(4)你能用方根的意義來解釋(3)的式子嗎?
(5)你能推廣到一般的情形嗎?
活動(dòng):學(xué)生回顧初中學(xué)習(xí)的整數(shù)指數(shù)冪及運(yùn)算性質(zhì),仔細(xì)觀察,特別是每題的開始和最后兩步的指數(shù)之間的關(guān)系,教師引導(dǎo)學(xué)生體會(huì)方根的意義,用方根的意義加以解釋,指點(diǎn)啟發(fā)學(xué)生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對(duì)寫正確的同學(xué)及時(shí)表揚(yáng),其他學(xué)生鼓勵(lì)提示。
討論結(jié)果:(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無意義;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實(shí)質(zhì)上①5a10=,②a8=,③4a12=,④2a10=結(jié)果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質(zhì)沒變。
根據(jù)4個(gè)式子的最后結(jié)果可以總結(jié):當(dāng)根式的被開方數(shù)的指數(shù)能被根指數(shù)整除時(shí),根式可以寫成分?jǐn)?shù)作為指數(shù)的形式(分?jǐn)?shù)指數(shù)冪形式)。
(3)利用(2)的規(guī)律,453=,375=,5a7=,nxm= 。
(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。
結(jié)果表明方根的結(jié)果和分?jǐn)?shù)指數(shù)冪是相通的。
(5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數(shù)集,n>1)。
綜上所述,我們得到正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義,教師板書:
規(guī)定:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1)。
提出問題
(1)負(fù)整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?
(2)你能得出負(fù)分?jǐn)?shù)指數(shù)冪的意義嗎?
(3)你認(rèn)為應(yīng)怎樣規(guī)定零的分?jǐn)?shù)指數(shù)冪的意義?
(4)綜合上述,如何規(guī)定分?jǐn)?shù)指數(shù)冪的意義?
(5)分?jǐn)?shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個(gè)規(guī)定會(huì)產(chǎn)生什么樣的后果?
(6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?
活動(dòng):學(xué)生回想初中學(xué)習(xí)的情形,結(jié)合自己的學(xué)習(xí)體會(huì)回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負(fù)整數(shù)指數(shù)冪的意義來類比,把正分?jǐn)?shù)指數(shù)冪的意義與負(fù)分?jǐn)?shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運(yùn)算性質(zhì)類比可得有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師在黑板上板書,學(xué)生合作交流,以具體的實(shí)例說明a>0的必要性,教師及時(shí)作出評(píng)價(jià)。
討論結(jié)果:(1)負(fù)整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N+。
(2)既然負(fù)整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義可得正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義。
規(guī)定:正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。
(3)規(guī)定:零的分?jǐn)?shù)指數(shù)冪的意義是:零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。
(4)教師板書分?jǐn)?shù)指數(shù)冪的意義。分?jǐn)?shù)指數(shù)冪的意義就是:
正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。
(5)若沒有a>0這個(gè)條件會(huì)怎樣呢?
如=3-1=-1,=6(-1)2=1具有同樣意義的兩個(gè)式子出現(xiàn)了截然不同的結(jié)果,這只說明分?jǐn)?shù)指數(shù)冪在底數(shù)小于零時(shí)是無意義的。因此在把根式化成分?jǐn)?shù)指數(shù)時(shí),切記要使底數(shù)大于零,如無a>0的條件,比如式子3a2=,同時(shí)負(fù)數(shù)開奇次方是有意義的,負(fù)數(shù)開奇次方時(shí),應(yīng)把負(fù)號(hào)移到根式的外邊,然后再按規(guī)定化成分?jǐn)?shù)指數(shù)冪,也就是說,負(fù)分?jǐn)?shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負(fù)數(shù),負(fù)數(shù)只是出現(xiàn)在指數(shù)上。
(6)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。
有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對(duì)任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):
①ar?as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a?b)r=arbr(a>0,b>0,r∈Q)。
我們利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以解決一些問題,來看下面的例題。
應(yīng)用示例
例1求值:(1);(2);(3)12-5;(4) 。
活動(dòng):教師引導(dǎo)學(xué)生考慮解題的方法,利用冪的運(yùn)算性質(zhì)計(jì)算出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運(yùn)算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來。
解:(1) =22=4;
(2)=5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4)=23-3=278.
點(diǎn)評(píng):本例主要考查冪值運(yùn)算,要按規(guī)定來解。在進(jìn)行冪值運(yùn)算時(shí),要首先考慮轉(zhuǎn)化為指數(shù)運(yùn)算,而不是首先轉(zhuǎn)化為熟悉的根式運(yùn)算,如=382=364=4.
例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式。
a3?a;a2?3a2;a3a(a>0)。
活動(dòng):學(xué)生觀察、思考,根據(jù)解題的順序,把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算,根式化為分?jǐn)?shù)指數(shù)冪時(shí),要由里往外依次進(jìn)行,把握好運(yùn)算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評(píng)價(jià)學(xué)生的解題情況,鼓勵(lì)學(xué)生注意總結(jié)。
解:a3?a=a3? =;
a2?3a2=a2? =;
a3a= 。
點(diǎn)評(píng):利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行根式運(yùn)算時(shí),其順序是先把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算。對(duì)于計(jì)算的結(jié)果,不強(qiáng)求統(tǒng)一用什么形式來表示,沒有特別要求,就用分?jǐn)?shù)指數(shù)冪的形式來表示,但結(jié)果不能既有分?jǐn)?shù)指數(shù)又有根式,也不能既有分母又有負(fù)指數(shù)。
例3計(jì)算下列各式(式中字母都是正數(shù))。
(1);
(2)。
活動(dòng):先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,四則運(yùn)算的順序是先算乘方,再算乘除,最后算加減,有括號(hào)的先算括號(hào)內(nèi)的,整數(shù)冪的運(yùn)算性質(zhì)及運(yùn)算規(guī)律擴(kuò)充到分?jǐn)?shù)指數(shù)冪后,其運(yùn)算順序仍符合我們以前的四則運(yùn)算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項(xiàng)式的乘除運(yùn)算,可以用單項(xiàng)式的乘除法運(yùn)算順序進(jìn)行,要注意符號(hào),第(2)小題是乘方運(yùn)算,可先按積的乘方計(jì)算,再按冪的乘方進(jìn)行計(jì)算,熟悉后可以簡化步驟。
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
(2)=m2n-3=m2n3.
點(diǎn)評(píng):分?jǐn)?shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法。有了分?jǐn)?shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分?jǐn)?shù)指數(shù)冪的形式,用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則進(jìn)行運(yùn)算了。
本例主要是指數(shù)冪的運(yùn)算法則的綜合考查和應(yīng)用。
變式訓(xùn)練
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4計(jì)算下列各式:
(1)(325-125)÷425;
(2)a2a?3a2(a>0)。
活動(dòng):先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,化為同底。利用分?jǐn)?shù)指數(shù)冪計(jì)算,在第(1)小題中,只含有根式,且不是同次根式,比較難計(jì)算,但把根式先化為分?jǐn)?shù)指數(shù)冪再計(jì)算,這樣就簡便多了,第(2)小題也是先把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪后再由運(yùn)算法則計(jì)算,最后寫出解答。
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能訓(xùn)練
課本本節(jié)練習(xí)1,2,3
【補(bǔ)充練習(xí)】
教師用實(shí)物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對(duì)做得好的同學(xué)給予表揚(yáng)鼓勵(lì)。
1、(1)下列運(yùn)算中,正確的是
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是
A.①② B.①③ C.①②③④ D.①③④
(3)(34a6)2?(43a6)2等于
A.a B.a2 C.a3 D.a4
(4)把根式-25(a-b)-2改寫成分?jǐn)?shù)指數(shù)冪的形式為
A. B.
C. D.
(5)化簡的結(jié)果是
A.6a B.-a C.-9a D.9a
2、計(jì)算:(1) --17-2+ -3-1+(2-1)0=__________.
(2)設(shè)5x=4,5y=2,則52x-y=__________.
3、已知x+y=12,xy=9且x
所以原式= =12-6-63=-33.
拓展提升
1、化簡:。
活動(dòng):學(xué)生觀察式子特點(diǎn),考慮x的指數(shù)之間的關(guān)系可以得到解題思路,應(yīng)對(duì)原式進(jìn)行因式分解,根據(jù)本題的特點(diǎn),注意到:
x-1= -13=;
x+1= +13=;
。
構(gòu)建解題思路教師適時(shí)啟發(fā)提示。
解:
=
=
=
= 。
點(diǎn)撥:解這類題目,要注意運(yùn)用以下公式,
=a-b,
=a± +b,
=a±b.
2、已知,探究下列各式的值的求法。
(1)a+a-1;(2)a2+a-2;(3) 。
解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7;
(2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47;
(3)由于,
所以有=a+a-1+1=8.
點(diǎn)撥:對(duì)“條件求值”問題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值。
課堂小結(jié)
活動(dòng):教師,本節(jié)課同學(xué)們有哪些收獲?請(qǐng)把你的學(xué)習(xí)收獲記錄在你的筆記本上,同學(xué)們之間相互交流。同時(shí)教師用投影儀顯示本堂課的知識(shí)要點(diǎn):
(1)分?jǐn)?shù)指數(shù)冪的意義就是:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。
(2)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。
(3)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對(duì)任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):
①ar?as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a?b)r=arbr(a>0,b>0,r∈Q)。
(4)說明兩點(diǎn):
①分?jǐn)?shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關(guān)系。
②整數(shù)指數(shù)冪的運(yùn)算性質(zhì)對(duì)任意的有理數(shù)指數(shù)冪也同樣適用。因而分?jǐn)?shù)指數(shù)冪與根式可以互化,也可以利用=am來計(jì)算。
作業(yè)
課本習(xí)題2.1A組2,4.
設(shè)計(jì)感想
本節(jié)課是分?jǐn)?shù)指數(shù)冪的意義的引出及應(yīng)用,分?jǐn)?shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,要讓學(xué)生反復(fù)理解分?jǐn)?shù)指數(shù)冪的意義,教學(xué)中可以通過根式與分?jǐn)?shù)指數(shù)冪的互化來鞏固加深對(duì)這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習(xí),強(qiáng)化訓(xùn)練,鞏固知識(shí),要輔助以信息技術(shù)的手段來完成大容量的課堂教學(xué)任務(wù)。
第3課時(shí)
作者:鄭芳鳴
導(dǎo)入新課
思路1.同學(xué)們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分?jǐn)?shù)到負(fù)分?jǐn)?shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴(kuò)充過程,自然數(shù)到整數(shù),整數(shù)到分?jǐn)?shù)(有理數(shù)),有理數(shù)到實(shí)數(shù)。并且知道,在有理數(shù)到實(shí)數(shù)的擴(kuò)充過程中,增添的數(shù)是無理數(shù)。對(duì)無理數(shù)指數(shù)冪,也是這樣擴(kuò)充而來。既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運(yùn)算(3)〕之無理數(shù)指數(shù)冪。
思路2.同學(xué)們,在初中我們學(xué)習(xí)了函數(shù)的知識(shí),對(duì)函數(shù)有了一個(gè)初步的了解,到了高中,我們又對(duì)函數(shù)的概念進(jìn)行了進(jìn)一步的學(xué)習(xí),有了更深的理解,我們僅僅學(xué)了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠(yuǎn)遠(yuǎn)不能滿足我們的需要,隨著科學(xué)的發(fā)展,社會(huì)的進(jìn)步,我們還要學(xué)習(xí)許多函數(shù),其中就有指數(shù)函數(shù),為了學(xué)習(xí)指數(shù)函數(shù)的知識(shí),我們必須學(xué)習(xí)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪,因此我們本節(jié)課學(xué)習(xí):指數(shù)與指數(shù)冪的運(yùn)算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題。
推進(jìn)新課
新知探究
提出問題
(1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?
(2)多媒體顯示以下圖表:同學(xué)們從上面的兩個(gè)表中,能發(fā)現(xiàn)什么樣的規(guī)律?
2的過剩近似值
的近似值
1.5 11.180 339 89
1.42 9.829 635 328
1.415 9.750 851 808
1.414 3 9.739 872 62
1.414 22 9.738 618 643
1.414 214 9.738 524 602
1.414 213 6 9.738 518 332
1.414 213 57 9.738 517 862
1.414 213 563 9.738 517 752
… …
的近似值
2的不足近似值
9.518 269 694 1.4
9.672 669 973 1.41
9.735 171 039 1.414
9.738 305 174 1.414 2
9.738 461 907 1.414 21
9.738 508 928 1.414 213
9.738 516 765 1.414 213 5
9.738 517 705 1.414 213 56
9.738 517 736 1.414 213 562
… …
(3)你能給上述思想起個(gè)名字嗎?
(4)一個(gè)正數(shù)的無理數(shù)次冪到底是一個(gè)什么性質(zhì)的數(shù)呢?如,根據(jù)你學(xué)過的知識(shí),能作出判斷并合理地解釋嗎?
(5)借助上面的結(jié)論你能說出一般性的結(jié)論嗎?
活動(dòng):教師引導(dǎo),學(xué)生回憶,教師提問,學(xué)生回答,積極交流,及時(shí)評(píng)價(jià)學(xué)生,學(xué)生有困惑時(shí)加以解釋,可用多媒體顯示輔助內(nèi)容:
問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向。
問題(2)對(duì)圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián)。
問題(3)上述方法實(shí)際上是無限接近,最后是逼近。
問題(4)對(duì)問題給予大膽猜測(cè),從數(shù)軸的觀點(diǎn)加以解釋。
問題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般。
討論結(jié)果:(1)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于2,稱2的過剩近似值。
(2)第一個(gè)表:從大于2的方向逼近2時(shí),就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。
第二個(gè)表:從小于2的方向逼近2時(shí),就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。
從另一角度來看這個(gè)問題,在數(shù)軸上近似地表示這些點(diǎn),數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說從兩個(gè)方向無限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結(jié)果,事實(shí)上表示這些數(shù)的點(diǎn)從兩個(gè)方向向表示的點(diǎn)靠近,但這個(gè)點(diǎn)一定在數(shù)軸上,由此我們可得到的結(jié)論是一定是一個(gè)實(shí)數(shù),即51.40,α是無理數(shù))是一個(gè)確定的實(shí)數(shù)。
也就是說無理數(shù)可以作為指數(shù),并且它的結(jié)果是一個(gè)實(shí)數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴(kuò)充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個(gè)確定的實(shí)數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪。
提出問題
(1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時(shí),必須規(guī)定底數(shù)是正數(shù)?
(2)無理數(shù)指數(shù)冪的運(yùn)算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運(yùn)算法則相通呢?
(3)你能給出實(shí)數(shù)指數(shù)冪的運(yùn)算法則嗎?
活動(dòng):教師組織學(xué)生互助合作,交流探討,引導(dǎo)他們用反例說明問題,注意類比,歸納。
對(duì)問題(1)回顧我們學(xué)習(xí)分?jǐn)?shù)指數(shù)冪的意義時(shí)對(duì)底數(shù)的規(guī)定,舉例說明。
對(duì)問題(2)結(jié)合有理數(shù)指數(shù)冪的運(yùn)算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個(gè)確定的實(shí)數(shù),那么無理數(shù)指數(shù)冪的運(yùn)算法則應(yīng)當(dāng)與有理數(shù)指數(shù)冪的運(yùn)算法則類似,并且相通。
對(duì)問題(3)有了有理數(shù)指數(shù)冪的運(yùn)算法則和無理數(shù)指數(shù)冪的運(yùn)算法則,實(shí)數(shù)的運(yùn)算法則自然就得到了。
討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個(gè)確定的實(shí)數(shù),就不會(huì)再造成混亂。
(2)因?yàn)闊o理數(shù)指數(shù)冪是一個(gè)確定的實(shí)數(shù),所以能進(jìn)行指數(shù)的運(yùn)算,也能進(jìn)行冪的運(yùn)算,有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),同樣也適用于無理數(shù)指數(shù)冪。類比有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以得到無理數(shù)指數(shù)冪的運(yùn)算法則:
①ar?as=ar+s(a>0,r,s都是無理數(shù))。
②(ar)s=ars(a>0,r,s都是無理數(shù))。
③(a?b)r=arbr(a>0,b>0,r是無理數(shù))。
(3)指數(shù)冪擴(kuò)充到實(shí)數(shù)后,指數(shù)冪的運(yùn)算性質(zhì)也就推廣到了實(shí)數(shù)指數(shù)冪。
實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì):
對(duì)任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì):
①ar?as=ar+s(a>0,r,s∈R)。
②(ar)s=ars(a>0,r,s∈R)。
③(a?b)r=arbr(a>0,b>0,r∈R)。
應(yīng)用示例
例1利用函數(shù)計(jì)算器計(jì)算。(精確到0.001)
(1)0.32.1;(2)3.14-3;(3);(4) 。
活動(dòng):教師教會(huì)學(xué)生利用函數(shù)計(jì)算器計(jì)算,熟悉計(jì)算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對(duì)于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值;
對(duì)于(2),先按底數(shù)3.14,再按xy鍵,再按負(fù)號(hào)-鍵,再按3,最后按=即可;
對(duì)于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可;
對(duì)于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時(shí)也可按2ndf或shift鍵,使用鍵上面的功能去運(yùn)算。
學(xué)生可以相互交流,挖掘計(jì)算器的用途。
解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.
點(diǎn)評(píng):熟練掌握用計(jì)算器計(jì)算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會(huì);用四舍五入法求近似值,若保留小數(shù)點(diǎn)后n位,只需看第(n+1)位能否進(jìn)位即可。
例2求值或化簡。
(1)a-4b23ab2(a>0,b>0);
(2)(a>0,b>0);
(3)5-26+7-43-6-42.
活動(dòng):學(xué)生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達(dá)到最簡,對(duì)既有分?jǐn)?shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分?jǐn)?shù)指數(shù)冪的形式,便于運(yùn)算,教師有針對(duì)性地提示引導(dǎo),對(duì)(1)由里向外把根式化成分?jǐn)?shù)指數(shù)冪,要緊扣分?jǐn)?shù)指數(shù)冪的意義和運(yùn)算性質(zhì),對(duì)(2)既有分?jǐn)?shù)指數(shù)冪又有根式,應(yīng)當(dāng)統(tǒng)一起來,化為分?jǐn)?shù)指數(shù)冪,對(duì)(3)有多重根號(hào)的式子,應(yīng)先去根號(hào),這里是二次根式,被開方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對(duì)學(xué)生作及時(shí)的評(píng)價(jià),注意總結(jié)解題的方法和規(guī)律。
解:(1)a-4b23ab2= =3b46a11 。
點(diǎn)評(píng):根式的運(yùn)算常常化成冪的運(yùn)算進(jìn)行,計(jì)算結(jié)果如沒有特殊要求,就用根式的形式來表示。
高中數(shù)學(xué)教案模板范文 (三)
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題。
(2)進(jìn)一步理解曲線的方程和方程的曲線。
(3)初步掌握求曲線方程的方法。
(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力。
教學(xué)重點(diǎn)、難點(diǎn):
求曲線的方程。
教學(xué)用具:
計(jì)算機(jī)。
教學(xué)方法:
啟發(fā)引導(dǎo)法,討論法。
教學(xué)過程:
【引入】
1、提問:什么是曲線的方程和方程的曲線。
學(xué)生思考并回答。教師強(qiáng)調(diào)。
2、坐標(biāo)法和解析幾何的意義、基本問題。
對(duì)于一個(gè)幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何。解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程。
(2)通過方程,研究平面曲線的性質(zhì)。
事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。
【問題】
如何根據(jù)已知條件,求出曲線的方程。
【實(shí)例分析】
例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的'垂直平分線的方程。
首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決。
解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問題是我們?cè)缇蛯W(xué)過的,用點(diǎn)斜式就可解決。可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?
(通過教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。
證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。
設(shè)是線段的垂直平分線上任意一點(diǎn),則
即
將上式兩邊平方,整理得
這說明點(diǎn)的坐標(biāo)是方程的解。
(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則
到、的距離分別為
所以,即點(diǎn)在直線上。
綜合(1)、(2),①是所求直線的方程。
至此,證明完畢。回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個(gè)證明過程就表明一種求解過程,下面試試看:
解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合
由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足。顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想。因此是個(gè)好方法。
讓我們用這個(gè)方法試解如下問題:
例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程。
分析:這是一個(gè)純粹的幾何問題,連坐標(biāo)系都沒有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。
求解過程略。
【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):
分析上面兩個(gè)例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說得更準(zhǔn)確一點(diǎn)就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);
(2)寫出適合條件的點(diǎn)的集合
;
(3)用坐標(biāo)表示條件,列出方程;
(4)化方程為最簡形式;
(5)證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
一般情況下,求解過程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。所以,通常情況下證明可省略,不過特殊情況要說明。
上述五個(gè)步驟可簡記為:建系設(shè)點(diǎn);寫出集合;列方程;化簡;修正。
下面再看一個(gè)問題:
例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程。
【動(dòng)畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動(dòng)變化的過程中尋找關(guān)系。
解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合
由距離公式,點(diǎn)適合的條件可表示為
①
將①式移項(xiàng)后再兩邊平方,得
化簡得jAb88.cOM
由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示。
【練習(xí)鞏固】
題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、,且有,求點(diǎn)軌跡方程。
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。
根據(jù)條件,代入坐標(biāo)可得
化簡得
①
由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià)。各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁練習(xí)1,2,3;
高中數(shù)學(xué)教案模板范文 (四)
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:理解并掌握等比數(shù)列的性質(zhì),能夠初步應(yīng)用這些性質(zhì)解決數(shù)學(xué)問題。
2. 過程與方法:通過觀察、類比、猜測(cè)等推理方法,提高學(xué)生分析、綜合、抽象、概括等邏輯思維能力。
3. 情感態(tài)度價(jià)值觀:體會(huì)類比在研究新事物中的作用,了解知識(shí)間存在的共同規(guī)律,激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):等比數(shù)列的性質(zhì)及其應(yīng)用。
難點(diǎn):等比數(shù)列性質(zhì)的.應(yīng)用,特別是復(fù)雜情境下的數(shù)學(xué)建模。
三、教學(xué)過程
1. 導(dǎo)入新課
復(fù)習(xí)等比數(shù)列的定義和通項(xiàng)公式,通過實(shí)例引入等比數(shù)列性質(zhì)的學(xué)習(xí)。
2. 新課講授
性質(zhì)探究:通過小組討論,引導(dǎo)學(xué)生觀察等比數(shù)列的通項(xiàng)公式,類比等差數(shù)列的性質(zhì),猜想并證明等比數(shù)列的性質(zhì)(如等比數(shù)列中任意兩項(xiàng)的比值相等,即公比q)。
例題講解:選取典型例題,講解如何利用等比數(shù)列的性質(zhì)解決問題,強(qiáng)調(diào)解題步驟和思路。
3. 鞏固練習(xí)
設(shè)計(jì)不同難度的練習(xí)題,包括直接應(yīng)用性質(zhì)和需要一定推理的題目,讓學(xué)生在練習(xí)中鞏固所學(xué)知識(shí)。
4. 總結(jié)提升
引導(dǎo)學(xué)生總結(jié)等比數(shù)列的性質(zhì)及其應(yīng)用,強(qiáng)調(diào)類比思維在數(shù)學(xué)學(xué)習(xí)中的重要性。
布置課外作業(yè),包括基礎(chǔ)題和拓展題,鼓勵(lì)學(xué)生進(jìn)一步探索等比數(shù)列的應(yīng)用。
高中數(shù)學(xué)教案模板范文 (五)
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:使學(xué)生正確理解組合的意義,掌握組合數(shù)的計(jì)算公式,并學(xué)會(huì)應(yīng)用組合知識(shí)解決實(shí)際問題。
2. 過程與方法:通過提出問題、創(chuàng)設(shè)情境、歸納概括等教學(xué)方法,培養(yǎng)學(xué)生分析問題、解決問題的能力。
3. 情感態(tài)度價(jià)值觀:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和探索精神。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):組合的定義、組合數(shù)及組合數(shù)的.公式。
難點(diǎn):解組合的應(yīng)用題,特別是如何將實(shí)際問題抽象為組合問題并求解。
三、教學(xué)過程
1. 導(dǎo)入新課
提出問題:如“一條鐵路線上有6個(gè)火車站,需準(zhǔn)備多少種不同的普通客車票?有多少種不同票價(jià)的普通客車票?”引導(dǎo)學(xué)生思考并區(qū)分排列與組合問題。
2. 新課講授
定義講解:明確組合的定義,即從n個(gè)不同元素中取出m個(gè)元素并成一組(m≤n),叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合。
公式推導(dǎo):通過分步計(jì)數(shù)原理推導(dǎo)出組合數(shù)的計(jì)算公式$C_n^m = \frac{n!}{m!(n-m)!}$。
例題講解:通過具體例題展示如何應(yīng)用組合數(shù)的計(jì)算公式解決問題。
3. 歸納概括
總結(jié)組合的定義、性質(zhì)及計(jì)算公式,強(qiáng)調(diào)組合與排列的區(qū)別。
4. 鞏固練習(xí)
設(shè)計(jì)一系列練習(xí)題,包括基礎(chǔ)題和綜合題,讓學(xué)生鞏固所學(xué)知識(shí)并學(xué)會(huì)應(yīng)用。
5. 小結(jié)與作業(yè)
總結(jié)本節(jié)課的重點(diǎn)內(nèi)容,強(qiáng)調(diào)組合的意義及應(yīng)用。
布置課后作業(yè),包括課本習(xí)題和思考題,以進(jìn)一步鞏固和拓展學(xué)生的知識(shí)。
高中數(shù)學(xué)教案模板范文 (六)
一、向量的概念
1、既有又有的量叫做向量。用有向線段表示向量時(shí),有向線段的長度表示向量的,有向線段的箭頭所指的方向表示向量的
2、叫做單位向量
3、的向量叫做平行向量,因?yàn)槿我唤M平行向量都可以平移到同一條直線上,所以平行向量也叫做。零向量與任一向量平行
4、且的向量叫做相等向量
5、叫做相反向量
二、向量的表示方法:幾何表示法、字母表示法、坐標(biāo)表示法
三、向量的加減法及其坐標(biāo)運(yùn)算
四、實(shí)數(shù)與向量的乘積
定義:實(shí)數(shù)λ與向量的積是一個(gè)向量,記作λ
五、平面向量基本定理
如果e1、e2是同一個(gè)平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底
六、向量共線/平行的充要條件
七、非零向量垂直的充要條件
八、線段的定比分點(diǎn)
設(shè)是上的兩點(diǎn),P是上_________的任意一點(diǎn),則存在實(shí)數(shù),使_______________,則為點(diǎn)P分有向線段所成的比,同時(shí),稱P為有向線段的定比分點(diǎn)
定比分點(diǎn)坐標(biāo)公式及向量式
九、平面向量的數(shù)量積
(1)設(shè)兩個(gè)非零向量a和b,作OA=a,OB=b,則∠AOB=θ叫a與b的夾角,其范圍是[0,π],|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a與b的數(shù)量積,記作a·b,即a·b=|a||b|cosθ
(3)平面向量的數(shù)量積的坐標(biāo)表示
十、平移
典例解讀
1、給出下列命題:①若|a|=|b|,則a=b;②若A,B,C,D是不共線的四點(diǎn),則AB= DC是四邊形ABCD為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥c
其中,正確命題的序號(hào)是______
2、已知a,b方向相同,且|a|=3,|b|=7,則|2a-b|=____
3、若將向量a=(2,1)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得到向量b,則向量b的坐標(biāo)為_____
4、下列算式中不正確的是( )
(A) AB+BC+CA=0 (B) AB-AC=BC
(C) 0·AB=0 (D)λ(μa)=(λμ)a
5、若向量a=(1,1),b=(1,-1),c=(-1,2),則c=( )
、函數(shù)y=x2的圖象按向量a=(2,1)平移后得到的圖象的函數(shù)表達(dá)式為( )
(A)y=(x-2)2-1 (B)y=(x+2)2-1 (C)y=(x-2)2+1 (D)y=(x+2)2+1
7、平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)A(3,1),B(-1,3),若點(diǎn)C滿足OC=αOA+βOB,其中a、β∈R,且α+β=1,則點(diǎn)C的軌跡方程為( )
(A)3x+2y-11=0 (B)(x-1)2+(y-2)2=5
(C)2x-y=0 (D)x+2y-5=0
8、設(shè)P、Q是四邊形ABCD對(duì)角線AC、BD中點(diǎn),BC=a,DA=b,則PQ=_________
9、已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分線長
10、若向量a、b的坐標(biāo)滿足a+b=(-2,-1),a-b=(4,-3),則a·b等于( )
(A)-5 (B)5 (C)7 (D)-1
11、若a、b、c是非零的平面向量,其中任意兩個(gè)向量都不共線,則( )
(A)(a)2·(b)2=(a·b)2 (B)|a+b|>|a-b|
(C)(a·b)·c-(b·c)·a與b垂直(D)(a·b)·c-(b·c)·a=0
12、設(shè)a=(1,0),b=(1,1),且(a+λb)⊥b,則實(shí)數(shù)λ的值是( )
(A)2 (B)0 (C)1 (D)-1/2
16、利用向量證明:△ABC中,M為BC的中點(diǎn),則AB2+AC2=2(AM2+MB2)
17、在三角形ABC中,=(2,3),=(1,k),且三角形ABC的一個(gè)內(nèi)角為直角,求實(shí)數(shù)k的值
18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC邊上的高為AD,求點(diǎn)D和向量
高中數(shù)學(xué)教案模板范文 (七)
一、教學(xué)目標(biāo)
1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。
二、教學(xué)重點(diǎn):畫出簡單幾何體、簡單組合體的三視圖;
難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景,揭開課題
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對(duì)著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對(duì)正,高平齊,寬相等。
長對(duì)正:正視圖與俯視圖的長相等,且相互對(duì)正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習(xí)
課本P15 練習(xí)1、2; P20習(xí)題1.2 [A組] 2。
(四)歸納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本P20習(xí)題1.2 [A組] 1。
高中數(shù)學(xué)教案模板范文 (八)
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形?!岸娼恰笔侨私贪妗稊?shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究兩個(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學(xué)目標(biāo):
知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。
(2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標(biāo):(1)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。
德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。
情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。
3、重點(diǎn)、難點(diǎn):
重點(diǎn):“二面角”和“二面角的平面角”的概念
難點(diǎn):“二面角的平面角”概念的形成過程
二、教法分析
1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。
2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。
三、學(xué)法指導(dǎo)
1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。
3、會(huì)學(xué):通過自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學(xué)過程
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營造了創(chuàng)新思維的氛圍。
(一)、二面角
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?
問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。
問題情境4、那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。
問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面
與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。
問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。
問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?
(2)、提出猜想:二面角的大小也可通過平面的角來定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。
問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。
(3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。
(4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
(5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。
(三)、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
(四)、范例分析
為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。
分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角。可讓學(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
(五)、練習(xí)、小結(jié)與作業(yè)
練習(xí):習(xí)題9.7的第3題
小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。
作業(yè):習(xí)題9.7的第4題
思考題:見例題
五、板書設(shè)計(jì)(見課件)
以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!
高中數(shù)學(xué)教案模板范文 (九)
一、課程性質(zhì)與任務(wù)
數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。二、課程教學(xué)目標(biāo)
1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。
3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)
本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。
1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。
3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。四、教學(xué)內(nèi)容與要求
(一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)
了解:初步知道知識(shí)的含義及其簡單應(yīng)用。
理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)
計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢(shì),數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。
分析與解決問題能力:能對(duì)工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。
數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問題(或需求),會(huì)選擇合適的模型(模式)。
(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))
第2單元不等式(8學(xué)時(shí))
第3單元函數(shù)(12學(xué)時(shí))
第4單元指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12學(xué)時(shí))
第5單元三角函數(shù)(18學(xué)時(shí))
第6單元數(shù)列(10學(xué)時(shí))
第7單元平面向量(矢量)(10學(xué)時(shí))
第8單元直線和圓的方程(18學(xué)時(shí))
第9單元立體幾何(14學(xué)時(shí))
第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))
2.職業(yè)模塊
第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))
第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))
第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))
高中數(shù)學(xué)教案模板范文 (十)
高中數(shù)學(xué)趣味競(jìng)賽題(共10題)
1 、撒謊的有幾人
5個(gè)高中生有,她們面對(duì)學(xué)校的新聞采訪說了如下的話:
愛:“我還沒有談過戀愛。” 靜香:“愛撒謊了?!?/p>
瑪麗:“我曾經(jīng)去過昆明。” 惠美:“瑪麗在撒謊?!?/p>
千葉子:“瑪麗和惠美都在撒謊?!?那么,這5個(gè)人之中到底有幾個(gè)人在撒謊呢?
2、她們到底是誰
有天使、惡魔、人三者,天使時(shí)刻都說真話,惡魔時(shí)時(shí)刻刻都說假話,人呢,有時(shí)候說真話,有時(shí)候說假話。
穿黑色衣服的女子說:“我不是天使。” 穿藍(lán)色衣服的女子說:“我不是人?!?穿白色衣服的女子說:“我不是惡魔?!蹦敲矗@三人到底分別是誰呢?
3、半只小貓
聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家。可是,只剩下1只小貓了。
“一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽說以后,馬上來買走了所有小貓的一半和半只?!?“半只?”“是啊,然后,鄰居家的老奶奶無論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?
4、被蟲子吃掉的算式
一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當(dāng)然,沒有數(shù)字的部分它沒有吃(因?yàn)闆]有墨水)。
那么,請(qǐng)問原來的算式是什么樣子的呢?
5、巧動(dòng)火柴
用16根火柴擺成5個(gè)正方形。請(qǐng)移動(dòng)2根火柴,
使
正形變成4。
6、折過來的角
把正三角形的紙如圖那樣折過來時(shí),角?的度數(shù)是多少度?
7、星形角之和
求星形尖端的角度之和。
8、啊!雙胞胎?
丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財(cái)產(chǎn)的 2/3 、如果生的是女孩就給他財(cái)產(chǎn)的 2/5 、剩下的給妻子。
結(jié)果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個(gè)人怎么分財(cái)產(chǎn)好呢?
9、贈(zèng)送和降價(jià)哪個(gè)更好?
1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?
10、折成15度
用折紙做成45度很簡單是吧。那么,請(qǐng)折成15度,你會(huì)嗎?
高中數(shù)學(xué)教案模板范文 (十一)
教學(xué)目標(biāo)
(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;
(3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);
(4)會(huì)分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;
(5)通過對(duì)排列應(yīng)用問題的學(xué)習(xí),讓學(xué)生通過對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
二、重點(diǎn)難點(diǎn)分析
本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問題。難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問題當(dāng)中。
從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排成一列,稱為從n個(gè)不同元素中任取m個(gè)元素的一個(gè)排列。因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個(gè)不同元素中任取m(m≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個(gè)概念,前者是具有m個(gè)元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù)。
公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點(diǎn)分析好的推導(dǎo)。
排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問題的能力。
在分析應(yīng)用題的解法時(shí),教材上先畫出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用。
在教學(xué)排列應(yīng)用題時(shí),開始應(yīng)要求學(xué)生寫解法要有簡要的文字說明,防止單純的只寫一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。
三、教法建議
①在講解排列數(shù)的.概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念。一個(gè)排列是指“從n個(gè)不同元素中,任取出m個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù)。例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào)表示排列數(shù)。
②排列的定義中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。
從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。
在定義中“一定順序”就是說與位置有關(guān),在實(shí)際問題中,要由具體問題的性質(zhì)和條件來決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。
在排列的定義中,如果有的書上叫選排列,如果,此時(shí)叫全排列。
要特別注意,不加特殊說明,本章不研究重復(fù)排列問題。
③關(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導(dǎo),…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。
導(dǎo)出公式后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時(shí)候把公式寫錯(cuò)。這個(gè)公式的特點(diǎn)可見課本第229頁的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是,共m個(gè)因數(shù)相乘。”這實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘。
公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對(duì)這個(gè)公式指出兩點(diǎn):
(1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁例2就是用這個(gè)公式證明的問題;
(2)為使這個(gè)公式在時(shí)也能成立,規(guī)定,如同時(shí)一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。
④建議應(yīng)充分利用樹形圖對(duì)問題進(jìn)行分析,這樣比較直觀,便于理解。
⑤學(xué)生在開始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí)。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。
高中數(shù)學(xué)教案模板范文 (十二)
教學(xué)目標(biāo):
1、理解并掌握曲線在某一點(diǎn)處的切線的概念;
2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化
問題的能力及數(shù)形結(jié)合思想。
教學(xué)重點(diǎn):
理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。
教學(xué)難點(diǎn):
用“無限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。
教學(xué)過程:
一、問題情境
1、問題情境。
如何精確地刻畫曲線上某一點(diǎn)處的變化趨勢(shì)呢?
如果將點(diǎn)P附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。
如果將點(diǎn)P附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的`直線,該直線是經(jīng)過點(diǎn)P的所有直線中最逼近曲線的一條直線。
因此,在點(diǎn)P附近我們可以用這條直線來代替曲線,也就是說,點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動(dòng)。
如圖所示,直線l1,l2為經(jīng)過曲線上一點(diǎn)P的兩條直線,
(1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;
(2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
(3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構(gòu)數(shù)學(xué)
切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
三、數(shù)學(xué)運(yùn)用
例1 試求在點(diǎn)(2,4)處的切線斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當(dāng)Q沿曲線逼近點(diǎn)P時(shí),割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;
當(dāng)Q點(diǎn)橫坐標(biāo)無限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無限趨近于2時(shí),kPQ無限趨近于常數(shù)4。
從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當(dāng)?x無限趨近于0時(shí),kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。
練習(xí) 試求在x=1處的切線斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當(dāng)?x無限趨近于0時(shí),kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:
(1)找到定點(diǎn)P的坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);
(2)求出割線PQ的斜率;
(3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
解 設(shè)
所以,當(dāng)無限趨近于0時(shí),無限趨近于點(diǎn)處的切線的斜率。
變式訓(xùn)練
1.已知,求曲線在處的切線斜率和切線方程;
2.已知,求曲線在處的切線斜率和切線方程;
3.已知,求曲線在處的切線斜率和切線方程。
課堂練習(xí)
-
★88教案網(wǎng)避坑指南:
- 高中數(shù)學(xué)教案模板范文?|?高中數(shù)學(xué)教案?|?高中數(shù)學(xué)優(yōu)秀教案?|?高中數(shù)學(xué)教案電子版免費(fèi)?|?高中數(shù)學(xué)教案模板?|?高中數(shù)學(xué)教案模板
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結(jié)
1、曲線上一點(diǎn)P處的切線是過點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。
五、課外作業(yè)
高中數(shù)學(xué)教案模板范文 (十三)
教學(xué)目標(biāo):
1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).
2.能識(shí)別和理解簡單的框圖的功能.
3. 能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡單的問題.
教學(xué)方法:
1. 通過模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問題的過程,加深對(duì)流程圖的感知.
2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).
教學(xué)過程:
一、問題情境
1.情境:
某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為
其中(單位:)為行李的'重量.
試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫出流程圖.
二、學(xué)生活動(dòng)
學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運(yùn)費(fèi).
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計(jì)費(fèi)過程中,第二步進(jìn)行了判斷.
三、建構(gòu)數(shù)學(xué)
1.選擇結(jié)構(gòu)的概念:
先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種
操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).
如圖:虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.
2.說明:(1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判
斷的不同情況進(jìn)行不同的操作,這類問題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);
(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)
行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和
兩個(gè)退出點(diǎn).
3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?
高中數(shù)學(xué)教案模板范文 (十四)
一、預(yù)習(xí)目標(biāo)
預(yù)習(xí)《平面向量應(yīng)用舉例》,體會(huì)向量是一種處理幾何問題、物理問題等的工具,建立實(shí)際問題與向量的聯(lián)系。
二、預(yù)習(xí)內(nèi)容
閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問題、物理問題。另外,在思考一下幾個(gè)問題:
1、例1如果不用向量的方法,還有其他證明方法嗎?
2、利用向量方法解決平面幾何問題的“三步曲”是什么?
3、例3中,
⑴為何值時(shí),|F1|最小,最小值是多少?
⑵|F1|能等于|G|嗎?為什么?
三、提出疑惑
同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容。
課內(nèi)探究學(xué)案
一、學(xué)習(xí)內(nèi)容
1、運(yùn)用向量的有關(guān)知識(shí)(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。
2、運(yùn)用向量的有關(guān)知識(shí)解決簡單的物理問題。
二、學(xué)習(xí)過程
探究一:
(1)向量運(yùn)算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會(huì)?
(2)舉出幾個(gè)具有線性運(yùn)算的幾何實(shí)例。
例1、證明:平行四邊形兩條對(duì)角線的.平方和等于四條邊的平方和。
已知:平行四邊形ABCD。
求證:
試用幾何方法解決這個(gè)問題,利用向量的方法解決平面幾何問題的“三步曲”?
(1)建立平面幾何與向量的聯(lián)系,
(2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,
(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系。
例2,如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?
探究二:兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力。在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力。這些力的問題是怎么回事?
例3,在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?
請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問題,思考下面的問題:
⑴為何值時(shí),|F1|最小,最小值是多少?
⑵|F1|能等于|G|嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對(duì)岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時(shí),所用的時(shí)間是多少(精確到0.1min)?
變式訓(xùn)練:兩個(gè)粒子A、B從同一源發(fā)射出來,在某一時(shí)刻,它們的位移分別為:
(1)寫出此時(shí)粒子B相對(duì)粒子A的位移s;
(2)計(jì)算s在方向上的投影。
三、反思總結(jié)
結(jié)合圖形特點(diǎn),選定正交基底,用坐標(biāo)表示向量進(jìn)行運(yùn)算解決幾何問題,體現(xiàn)幾何問題。
代數(shù)化的特點(diǎn),數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運(yùn)算簡練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長方形、正方形、直角三角形等平行、垂直等問題常用此法。
本節(jié)主要研究了用向量知識(shí)解決平面幾何問題和物理問題;掌握向量法和坐標(biāo)法,以及用向量解決實(shí)際問題的步驟。
高中數(shù)學(xué)教案模板范文 (十五)
三維目標(biāo):
1、知識(shí)與技能:正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;
2、過程與方法:
(1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問題;
(2)在解決統(tǒng)計(jì)問題的過程中,學(xué)會(huì)用簡單隨機(jī)抽樣的方法從總體中抽取樣本。
3、情感態(tài)度與價(jià)值觀:通過對(duì)現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性。
4、重點(diǎn)與難點(diǎn):正確理解簡單隨機(jī)抽樣的概念,掌握抽簽法及隨機(jī)數(shù)法的步驟,并能靈活應(yīng)用相關(guān)知識(shí)從總體中抽取樣本。
教學(xué)方法:
講練結(jié)合法
教學(xué)用具:
多媒體
課時(shí)安排:
1課時(shí)
教學(xué)過程:
一、問題情境
假設(shè)你作為一名食品衛(wèi)生工作人員,要對(duì)某食品店內(nèi)的一批小包裝餅干進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗(yàn),你準(zhǔn)備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗(yàn)的樣本。(為什么?)那么,應(yīng)當(dāng)怎樣獲取樣本呢?
二、探究新知
1、統(tǒng)計(jì)的有關(guān)概念:總體:在統(tǒng)計(jì)學(xué)中,所有考察對(duì)象的全體叫做總體、個(gè)體:每一個(gè)考察的對(duì)象叫做個(gè)體、樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本、樣本容量:樣本中個(gè)體的數(shù)目叫做樣本的容量、統(tǒng)計(jì)的基本思想:用樣本去估計(jì)總體、
2、簡單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣,這樣抽取的樣本,叫做簡單隨機(jī)樣本。
下列抽樣的.方式是否屬于簡單隨機(jī)抽樣?為什么?
(1)從無限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。
(2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后,再把它放回箱子。
(3)從8臺(tái)電腦中,不放回地隨機(jī)抽取2臺(tái)進(jìn)行質(zhì)量檢查(假設(shè)8臺(tái)電腦已編好號(hào),對(duì)編號(hào)隨機(jī)抽取)
3、常用的簡單隨機(jī)抽樣方法有:
(1)抽簽法的定義。一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。
思考?你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當(dāng)總體中的個(gè)體數(shù)很多時(shí),用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學(xué)出來做游戲,請(qǐng)?jiān)O(shè)計(jì)一個(gè)抽取的方法,要使得每位同學(xué)被抽到的機(jī)會(huì)相等。
分析:可以把57位同學(xué)的學(xué)號(hào)分別寫在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分?jǐn)嚢韬螅趶闹袀€(gè)抽出8張紙片,再選出紙片上的學(xué)號(hào)對(duì)應(yīng)的同學(xué)即可、基本步驟:第一步:將總體的所有N個(gè)個(gè)體從1至N編號(hào);第二步:準(zhǔn)備N個(gè)號(hào)簽分別標(biāo)上這些編號(hào),將號(hào)簽放在容器中攪拌均勻后每次抽取一個(gè)號(hào)簽,不放回地連續(xù)取n次;第三步:將取出的n個(gè)號(hào)簽上的號(hào)碼所對(duì)應(yīng)的n個(gè)個(gè)體作為樣本。
(2)隨機(jī)數(shù)法的定義:利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣,叫隨機(jī)數(shù)表法,這里僅介紹隨機(jī)數(shù)表法。怎樣利用隨機(jī)數(shù)表產(chǎn)生樣本呢?下面通過例子來說明,假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。第一步,先將800袋牛奶編號(hào),可以編為000,001,799。
第二步,在隨機(jī)數(shù)表中任選一個(gè)數(shù),例如選出第8行第7列的數(shù)7(為了便于說明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數(shù)7開始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個(gè)三位數(shù)785,由于785<799,說明號(hào)碼785在總體內(nèi),將它取出;
繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個(gè)號(hào)碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。
三、課堂練習(xí)
四、課堂小結(jié)
1、簡單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體的個(gè)體數(shù)為N,如果通過逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱這樣的抽樣為簡單隨機(jī)抽樣。
2、簡單隨機(jī)抽樣的方法:抽簽法隨機(jī)數(shù)表法
五、課后作業(yè)
P57練習(xí)1、2
六、板書設(shè)計(jì)
1、統(tǒng)計(jì)的有關(guān)概念
2、簡單隨機(jī)抽樣的概念
3、常用的簡單隨機(jī)抽樣方法有:(1)抽簽法(2)隨機(jī)數(shù)表法
4、課堂練習(xí)
高中數(shù)學(xué)教案模板范文 (十六)
一、教學(xué)目標(biāo)
知識(shí)與技能:
理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。
過程與方法:
會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價(jià)值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識(shí)。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
任意角概念的理解;區(qū)間角的集合的書寫。
教學(xué)難點(diǎn):
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學(xué)過程
(一)導(dǎo)入新課
1、回顧角的定義
①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。
②角的.第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
(二)教學(xué)新課
角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
②角的名稱:
注意:
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;
⑵零角的終邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角。
⑤練習(xí):請(qǐng)說出角α、β、γ各是多少度?
高中數(shù)學(xué)教案模板范文 (十七)
一、教學(xué)內(nèi)容分析
本節(jié)的內(nèi)容是繼學(xué)習(xí)圓之后運(yùn)用 “曲線和方程”理論解決具體二次曲線的又一實(shí)例.從知識(shí)上說,它是對(duì)前面所學(xué)的運(yùn)用坐標(biāo)法研究曲線的又一次實(shí)際演練,同時(shí)它也是進(jìn)一步研究橢圓幾何性質(zhì)的基礎(chǔ);從方法上說,推導(dǎo)橢圓的標(biāo)準(zhǔn)方程的方法對(duì)雙曲線、拋物線方程的推導(dǎo)具有直接的類比作用,因此,這節(jié)課有承前啟后的作用,是本節(jié)乃至本章的重點(diǎn)。
二、教學(xué)目標(biāo)
(1)知識(shí)與技能:
①了解橢圓的實(shí)際背景,經(jīng)歷從具體情景中抽象出橢圓模型的過程;
②使學(xué)生理解橢圓的定義,掌握橢圓的標(biāo)準(zhǔn)方程及其推導(dǎo)過程.
(2)過程與方法:
①讓學(xué)生親身經(jīng)歷橢圓定義和標(biāo)準(zhǔn)方程的獲取過程,掌握求曲線方程的方法和數(shù)形結(jié)合的思想;
②學(xué)會(huì)用運(yùn)動(dòng)變化的觀點(diǎn)研究問題,提高運(yùn)用坐標(biāo)法解決幾何問題的能力.
(3)情感態(tài)度與價(jià)值觀:
①通過主動(dòng)探究、合作學(xué)習(xí),感受探索的樂趣與成功的喜悅;培養(yǎng)學(xué)生認(rèn)真參與、積極交流的主體意識(shí)和樂于探索創(chuàng)新的科學(xué)精神。
②通過主動(dòng)探索,合作交流,感受探索的樂趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn)
③通過橢圓知識(shí)的學(xué)習(xí),進(jìn)一步體會(huì)到數(shù)學(xué)知識(shí)的和諧美,幾何圖形的對(duì)稱美;提高學(xué)生的審美情趣.
三、學(xué)習(xí)者特征分析
1.能力分析
①學(xué)生已初步掌握用坐標(biāo)法研究直線和圓的方程。
②對(duì)含有兩個(gè)根式方程的化簡能力薄弱。
2.認(rèn)知分析
①學(xué)生已初步熟悉求曲線方程的基本步驟。
②對(duì)曲線的方程的概念有一定的了解。
3.情感分析
學(xué)生具有積極的學(xué)習(xí)態(tài)度,強(qiáng)烈的探究欲望,能主動(dòng)參與研究。
改變學(xué)生的學(xué)習(xí)方式是高中課改追求的基本理念。遵循以學(xué)生為主體,教師為主導(dǎo),發(fā)展為主旨的現(xiàn)代教育原則。我采用了通過創(chuàng)設(shè)情境,充分調(diào)動(dòng)學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn),以問題的提出、問題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問題;以學(xué)生主動(dòng)探索、積極參與、共同交流與協(xié)作為主體,在教師的引導(dǎo)下,學(xué)生“跳一跳”就能摘得果實(shí);于問題的分析和解決中實(shí)現(xiàn)知識(shí)的建構(gòu)和發(fā)展。通過不斷探究、發(fā)現(xiàn),讓學(xué)生的學(xué)習(xí)過程成為心靈愉悅的主動(dòng)過程,使師生的生命力在課堂上得到充分的發(fā)揮。激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新能力,幫助學(xué)生養(yǎng)成獨(dú)立思考積極探索的習(xí)慣。
四、教學(xué)策略選擇與設(shè)計(jì)
橢圓的標(biāo)準(zhǔn)方程共兩課時(shí),第一課時(shí)所研究的是橢圓標(biāo)準(zhǔn)方程的建立及其簡單運(yùn)用,涉及的數(shù)學(xué)方法有觀察、比較、歸納、猜想、推理驗(yàn)證等,我校學(xué)生基礎(chǔ)差、底子薄,數(shù)學(xué)運(yùn)算能力,分析問題、解決問題的能力,邏輯推理能力,思維能力都比較弱,所以在設(shè)計(jì)課的時(shí)候往往要多作鋪墊,掃清他們學(xué)習(xí)上的障礙,保護(hù)他們學(xué)習(xí)的積極性,增強(qiáng)學(xué)習(xí)的主動(dòng) 。在教法上,主要采用探究性教學(xué)法和啟發(fā)式教學(xué)法。以啟發(fā)、引導(dǎo)為主,采用設(shè)疑的形式,逐步讓學(xué)生進(jìn)行探究性的學(xué)習(xí)
五、教學(xué)重點(diǎn)及難點(diǎn)
基于以上分析,我將本課的教學(xué)重點(diǎn)、難點(diǎn)確定為: ①重點(diǎn):橢圓定義和標(biāo)準(zhǔn)方程 ②難點(diǎn):橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)。
六、教學(xué)過程
一.創(chuàng)設(shè)問題情境:
情境1:給出橢圓的一些實(shí)物圖片:天體運(yùn)行圖(月亮繞地球,地球繞太陽旋轉(zhuǎn))、汽車油罐的橫截面,立體幾何中圓的`直觀圖?
實(shí)物:圓柱形杯傾斜后杯中水的形狀。
情境2:校園內(nèi)一些橢圓形小花壇
問題 學(xué)校準(zhǔn)備在一塊長3米、寬1米的矩形空地上建造一個(gè)橢圓形花園,要盡可能多地利用這塊空地,請(qǐng)問:如何畫這個(gè)花園的邊界線?
(學(xué)生現(xiàn)在還不能解決,只有通過今天這節(jié)課的學(xué)習(xí)才能解決這個(gè)問題)
這是實(shí)際生活中圖形,數(shù)學(xué)中我們也遇到這一類圖形:歸結(jié)為到兩定點(diǎn)距離之和為定值的點(diǎn)的軌跡問題。如何用現(xiàn)有的工具畫出圖形?(啟發(fā)學(xué)生用畫圓的方法試著畫圖)
教師與學(xué)生一起找出上述問題的解決方案,并一同用給的工具畫出圖形,與上述圖形相似——橢圓
問題情境的創(chuàng)設(shè)應(yīng)有利于激發(fā)學(xué)生的求知欲。為了學(xué)習(xí)橢圓的定義,我設(shè)計(jì)如下兩個(gè)學(xué)生熟悉的情境:
通過情境1,讓學(xué)生感受到橢圓的存在非常普遍。小到日常生活用品,大到建筑物的外形,天體的運(yùn)行軌道。
通過情境2,讓學(xué)生主動(dòng)思考如何畫橢圓及橢圓的定義。
通過問題,要求學(xué)生以小組為單位進(jìn)行實(shí)驗(yàn)、觀察、猜想,激發(fā)學(xué)生探索的欲望和濃厚的學(xué)習(xí)興趣,使學(xué)生的主體地位得到體現(xiàn)。
二.探求橢圓方程
如何選取坐標(biāo)系?
方案1:以一個(gè)定點(diǎn)為原點(diǎn),兩定點(diǎn)的連線為X軸
回顧圓的方程的建立過程,首先是做什么? (提問學(xué)生) 如何選擇適當(dāng)?shù)淖鴺?biāo)系來建立橢圓的方程呢?
學(xué)會(huì)建立適當(dāng)?shù)淖鴺?biāo)系,構(gòu)造數(shù)與形的橋梁,學(xué)會(huì)用解析的方法來解決問題,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
方案2:以兩定點(diǎn)的連線為X軸,其垂直平分線為Y軸
學(xué)生可能有很多種建系方法,根據(jù)課堂的實(shí)際情況進(jìn)行處理。不能否定學(xué)生的方法,讓學(xué)生自己討論那種建系方法更為合適,我想學(xué)生通過這些活動(dòng)能夠建立幾種常見的坐標(biāo)系,并列出相應(yīng)的代數(shù)方程。我認(rèn)為這樣有利于培養(yǎng)學(xué)生的動(dòng)手實(shí)驗(yàn),分析比較,相互協(xié)作等能力。讓學(xué)生體驗(yàn)到知識(shí)的產(chǎn)生過程。
三.標(biāo)準(zhǔn)方程比較
(讓學(xué)生討論,歸的標(biāo)準(zhǔn)方程有何異同)
(1)相同點(diǎn)納出這兩種形式的標(biāo)準(zhǔn)方程有何異同)
(1)相同點(diǎn)
①方程中x,y表示橢圓上任意一點(diǎn)
②關(guān)于x,y的二元二次方程;
③焦點(diǎn)位置的判定:焦點(diǎn)在較大分坐標(biāo);
(2)不同點(diǎn)
①方程形式
②圖形
③焦點(diǎn)坐標(biāo)
由于化簡兩個(gè)根式的方程的方法特殊,難度較大,估計(jì)學(xué)生容易想到直接平方,這時(shí)可讓學(xué)生預(yù)測(cè)這樣化簡的難度,從而確定移項(xiàng)平方可以簡化計(jì)算。為此,我首先啟發(fā)學(xué)生如何去掉根號(hào)較好,讓學(xué)生動(dòng)手比較,最后得出移項(xiàng)平方化簡方程比較簡單,這樣有利于培養(yǎng)學(xué)生的分析比較能力。
七、教學(xué)評(píng)價(jià)設(shè)計(jì)
橢圓方程的化簡是學(xué)生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學(xué)生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過程,使學(xué)生真正了解橢圓標(biāo)準(zhǔn)方程的來源,并在這種師生嘗試探究、合作討論的活動(dòng)中,使學(xué)生體會(huì)成功的快樂,提高學(xué)生的數(shù)學(xué)探究能力,培養(yǎng)學(xué)生獨(dú)立主動(dòng)獲取知識(shí)的能力
八、板書設(shè)計(jì)
一.定義
二.標(biāo)準(zhǔn)方程比較
1)相同點(diǎn)
①方程中x,y表示橢圓上任意一點(diǎn)的坐標(biāo);
②關(guān)于x,y的二元二次方程;
③焦點(diǎn)位置的判定:焦點(diǎn)在較大分母對(duì)應(yīng)的變量的坐標(biāo)軸上
2)不同點(diǎn)
①方程形式
②圖形
③焦點(diǎn)坐標(biāo)
九.教學(xué)反思
橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學(xué)習(xí)是后繼學(xué)習(xí)其它圓錐曲線的基礎(chǔ),坐標(biāo)法是解析幾何中的重要數(shù)學(xué)方法,橢圓方程的推導(dǎo)是利用坐標(biāo)法求曲線方程的很好應(yīng)用實(shí)例。本節(jié)課內(nèi)容的學(xué)習(xí)能很好地在課堂教學(xué)中展現(xiàn)新課程的理念,主要采用學(xué)生自主探究學(xué)習(xí)的方式,使培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力的教學(xué)思想貫穿于本節(jié)課教學(xué)設(shè)計(jì)的始終。
橢圓是生活中常見的圖形,通過實(shí)驗(yàn)演示,創(chuàng)設(shè)生動(dòng)而直觀的情境,使學(xué)生親身體會(huì)橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對(duì)橢圓知識(shí)的學(xué)習(xí)興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動(dòng)畫畫出橢圓的方式,而采用學(xué)生動(dòng)手畫橢圓并合作探究的學(xué)習(xí)方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數(shù)學(xué)化過程,有利于培養(yǎng)學(xué)生觀察分析、抽象概括的能力。
高中數(shù)學(xué)教案模板范文 (十八)
一、教學(xué)內(nèi)容解析
1.地位與作用:
本章是北師大版選修1—1的第二章《圓錐曲線與方程》,是高中數(shù)學(xué)解析幾何的第二大部分。解析幾何是數(shù)學(xué)中一個(gè)重要的分支,它聯(lián)系了數(shù)學(xué)中的數(shù)與形、代數(shù)與幾何等最基本對(duì)象之間的聯(lián)系。在北師大版必修2中,學(xué)生已掌握了在平面直角坐標(biāo)系下研究直線和圓的方法,本章教材進(jìn)一步利用三種基本圓錐曲線深化代數(shù)與幾何的關(guān)系。本章教材內(nèi)容的順序是:橢圓→拋物線→雙曲線→曲線與方程。這樣安排的用意是,先學(xué)圓錐曲線,再學(xué)曲線與方程,這樣的順序更有利于學(xué)生的學(xué)習(xí),符合學(xué)生從特殊到一般,具體到抽象的認(rèn)知規(guī)律。在圓錐曲線的學(xué)習(xí)過程中,不斷的滲透曲線與方程的思想,為學(xué)生理解并掌握“曲線與方程”這一概念奠定了基礎(chǔ)。
本節(jié)是北師大版選修1—1的第二章《圓錐曲線與方程》第1節(jié)的內(nèi)容,主要學(xué)習(xí)橢圓的定義、標(biāo)準(zhǔn)方程及其簡單的應(yīng)用,分為兩課時(shí),本節(jié)課是第1課時(shí),主要學(xué)習(xí)橢圓的定義及其標(biāo)準(zhǔn)方程。教材以橢圓為基礎(chǔ)和重點(diǎn)說明了求方程并利用方程討論幾何性質(zhì)的一般方法,然后在認(rèn)知拋物線和雙曲線中得到了鞏固和應(yīng)用,因此《橢圓及其標(biāo)準(zhǔn)方程》這一節(jié)課起到了承上啟下的作用。
2.教材處理順序
教材在橢圓的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)橢圓,再從畫法中提煉出橢圓的幾何特征,由此抽象概括出橢圓的定義,最后是橢圓定義的簡單應(yīng)用。這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解。教材在本節(jié)內(nèi)容中只研究了中心在原點(diǎn),焦點(diǎn)在 軸上的橢圓的標(biāo)準(zhǔn)方程,讓學(xué)生自己去歸納焦點(diǎn)在 軸上的橢圓的標(biāo)準(zhǔn)方程。這樣的處理給學(xué)生提供了一次探究和交流的機(jī)會(huì)。有利于學(xué)生對(duì)拋物線標(biāo)準(zhǔn)方程的理解,有利于學(xué)生思維能力的提高和學(xué)習(xí)興趣的培養(yǎng)。
3.數(shù)學(xué)思想方法
本節(jié)內(nèi)容蘊(yùn)含了:數(shù)形結(jié)合思想、轉(zhuǎn)化化歸思想等。在推導(dǎo)橢圓標(biāo)準(zhǔn)方程過程中讓學(xué)生體會(huì)移項(xiàng)再平方去根號(hào)的方法。
二、教學(xué)目標(biāo)和重難點(diǎn)
1.教學(xué)目標(biāo)
(1) 知識(shí)與技能目標(biāo):①理解橢圓的定義;②掌握的橢圓的標(biāo)準(zhǔn)方程。
(2) 過程與方法目標(biāo):①在橢圓定義的獲知和歸納中,進(jìn)一步滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法;②通過橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過程,鞏固用坐標(biāo)化的方法求動(dòng)點(diǎn)的軌跡方程,同時(shí)體會(huì)含有兩個(gè)根式的化簡思路。
(3) 情感、態(tài)度和價(jià)值觀:①通過橢圓定義的歸納,培養(yǎng)學(xué)生發(fā)現(xiàn)規(guī)律,認(rèn)識(shí)規(guī)律并利用規(guī)律解決實(shí)際問題的`能力;②通過師生、生生合作學(xué)習(xí),增強(qiáng)學(xué)生團(tuán)隊(duì)協(xié)作能力,增強(qiáng)主動(dòng)與他人合作交流的意識(shí)。
2.教學(xué)重點(diǎn)
(1) 掌握橢圓的定義與相關(guān)概念;
(2) 掌握橢圓的標(biāo)準(zhǔn)方程。
3.教學(xué)難點(diǎn)
橢圓標(biāo)準(zhǔn)方程的推導(dǎo)。
三、學(xué)情分析
1.學(xué)生已有的認(rèn)知基礎(chǔ)
授課班級(jí)學(xué)生為高二年級(jí)學(xué)生。
橢圓是圓錐曲線中基礎(chǔ)且重要的一種圖形,在實(shí)際生活中經(jīng)常遇到。學(xué)生在高一對(duì)解析幾何有了初步的了解和認(rèn)識(shí),對(duì)于在平面直角坐標(biāo)系下的點(diǎn)坐標(biāo)及長度公式已掌握,具有一定的空間想象能力、抽象概括能力和推理運(yùn)算的技能,有較好的學(xué)習(xí)習(xí)慣和方法。
2.學(xué)生存在的難點(diǎn)
學(xué)生在涉及到需要自己建立坐標(biāo)系,再研究推導(dǎo)出方程仍是一個(gè)難點(diǎn)。且之前未接觸過一個(gè)式子中含兩個(gè)根式相加的情況,故化簡是個(gè)問題。
3.突破策略
由教師引領(lǐng)學(xué)生觀察所繪出的橢圓的特點(diǎn),定點(diǎn)位置,從而建立合適的直角坐標(biāo)系。
四、教學(xué)策略分析
1.內(nèi)容突破策略
本節(jié)課新知內(nèi)容分兩大板塊:一是總結(jié)概括出橢圓的定義;二是推導(dǎo)出橢圓的標(biāo)準(zhǔn)方程。針對(duì)第一板塊內(nèi)容,主要采取學(xué)生先動(dòng)手畫橢圓,在實(shí)踐的過程中發(fā)現(xiàn)一些固定不變的量和量與量之間存在的關(guān)系,從而總結(jié)出橢圓的定義,并且深刻領(lǐng)悟定義中所說的一些特別要求。針對(duì)第二板塊內(nèi)容,主要是采取教師引導(dǎo),學(xué)生動(dòng)手,通過一般的求動(dòng)點(diǎn)軌跡的方法推導(dǎo)出橢圓的標(biāo)準(zhǔn)方程,符合學(xué)生的認(rèn)知規(guī)律。
2.啟迪學(xué)生思維策略:
在教學(xué)方法的選擇上,采用教師組織引導(dǎo),學(xué)生動(dòng)手實(shí)踐、自主探究、合作交流的學(xué)習(xí)方式,力求體現(xiàn)教師的引導(dǎo)者、合作者的作用,突出學(xué)生的主體地位。
五、教學(xué)過程
一、創(chuàng)設(shè)情景,導(dǎo)入新課
1.讓學(xué)生觀察幾張典型圖片和行星在太陽系中的運(yùn)動(dòng)軌跡,由此看出一個(gè)共同的數(shù)學(xué)圖形“橢圓”。
2.大家還能舉出生活中你所遇到的橢圓嗎?
3.用多媒體演示一個(gè)嫦娥三號(hào)運(yùn)行橢圓形軌道的例子。
1.使學(xué)生對(duì)橢圓有一個(gè)感性認(rèn)識(shí),明白生活實(shí)踐中有許多數(shù)學(xué)問題,數(shù)學(xué)來源于實(shí)踐,同時(shí)培養(yǎng)學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光去觀察周圍事物的能力。
2.通過提問激發(fā)學(xué)生課堂上的學(xué)習(xí)興趣。
二、橢圓的定義(分四個(gè)環(huán)節(jié))
1.畫一畫(畫橢圓)
①將一條繩子的兩端固定在同一個(gè)定點(diǎn)上,用筆尖勾起繩子的中點(diǎn)使繩子繃緊,圍繞定點(diǎn)旋轉(zhuǎn),筆尖形成的軌跡是什么?
(由學(xué)生動(dòng)手在黑板上進(jìn)行演示,提高學(xué)生的動(dòng)手能力,同時(shí)激起學(xué)生學(xué)習(xí)本節(jié)課的興趣)
②而將繩子的兩端分別固定在兩個(gè)定點(diǎn)上,筆尖勾直繩子,移動(dòng)筆尖,得到的是軌跡是什么?
(教師提問,讓學(xué)生動(dòng)手,拿出提前準(zhǔn)備好的毛線,兩組同學(xué)上黑板畫,其他同學(xué)同桌合作在練習(xí)本上畫)
動(dòng)畫演示作圖過程
2.認(rèn)一認(rèn)(實(shí)驗(yàn)總結(jié))
提出問題:①作圖過程中,哪些量沒有變?哪些量變了?
提出問題:②為什么要求作圖過程中筆尖要繃緊?
提出問題:③筆尖所對(duì)應(yīng)的動(dòng)點(diǎn)M到定點(diǎn)的距離有什么長度之間的關(guān)系?
總結(jié):筆尖對(duì)應(yīng)的動(dòng)點(diǎn)M到直線兩個(gè)端點(diǎn)的長度之和固定不變。
3.說一說(總結(jié)定義)
提出問題:根據(jù)剛才動(dòng)手實(shí)踐的過程,能否總結(jié)橢圓的定義?(同學(xué)自由發(fā)言,再由學(xué)生進(jìn)一步補(bǔ)充完善)
我們把平面內(nèi)到兩個(gè)定點(diǎn) , 的距離之和等于常數(shù)(大于 )的點(diǎn)的集合叫作橢圓。
問題1:定義中的常數(shù)等于 ,則動(dòng)點(diǎn)的軌跡是什么?
問題2:定義中的常數(shù)小于 ,則動(dòng)點(diǎn)的軌跡是什么?
4.橢圓相關(guān)概念:兩個(gè)定點(diǎn) , 叫作橢圓的焦點(diǎn),兩個(gè)焦點(diǎn) , 間的距離叫作橢圓的焦距。
1.給學(xué)生提供一個(gè)動(dòng)手、動(dòng)腦的學(xué)習(xí)機(jī)會(huì);
2.學(xué)生可通過動(dòng)手實(shí)踐的過程去體會(huì)“滿足什么樣的條件下的點(diǎn)的集合為橢圓”,從而對(duì)橢圓定義中的條件有直觀深刻的認(rèn)識(shí)。
3.通過三個(gè)問題的設(shè)置,為學(xué)生從畫法中發(fā)現(xiàn)拋物線的幾何特征奠定基礎(chǔ)。
4.通過三個(gè)典型的問題,讓學(xué)生更深刻地理解橢圓的定義
5.使學(xué)生經(jīng)歷橢圓概念的生成和完善過程,提高其歸納概括能力,加深對(duì)橢圓本質(zhì)的認(rèn)識(shí),并逐漸養(yǎng)成嚴(yán)謹(jǐn)?shù)目茖W(xué)作風(fēng)。
三、橢圓的標(biāo)準(zhǔn)方程
1.求一求(推導(dǎo)橢圓的標(biāo)準(zhǔn)方程)
問題3:回顧圓的軌跡方程是如何求的?
①建系: ②設(shè)點(diǎn):
③列式: 得: ④化簡:
問題4:以怎樣的建系方式,哪一種針對(duì)求橢圓的標(biāo)準(zhǔn)方程比較好?
(補(bǔ)充說明:橢圓具有一定的對(duì)稱美,故所求的式子最好簡潔工整)
動(dòng)手演算:讓學(xué)生動(dòng)手,求推導(dǎo)焦點(diǎn)在 軸上的橢圓的標(biāo)準(zhǔn)方程
①建系:觀察橢圓的幾何特征,如何建系能使方程更簡潔?(利用橢圓的對(duì)稱性特征)
以直線 為 軸,以線段 的垂直平分線為 軸,建
立平面直角坐標(biāo)系.
②設(shè)點(diǎn):設(shè)焦距為 ,則 .設(shè) 為橢圓上任意一點(diǎn),點(diǎn) 與點(diǎn) 的距離之和為 .
③列式:動(dòng)點(diǎn) 滿足的幾何約束條件:
坐標(biāo)化為:
④化簡:化簡橢圓方程是本節(jié)課的難點(diǎn),突破難點(diǎn)的方法是引導(dǎo)學(xué)生思考如何去根號(hào)
預(yù)案一:移項(xiàng)后兩次平方法
兩邊同時(shí)平方、整理得:
將上式兩邊平方、整理得:
分析 的幾何含義,令
得到焦點(diǎn)在 軸上的橢圓的標(biāo)準(zhǔn)方程為
預(yù)案二:
用等差數(shù)列法:
設(shè)
得4cx=4at,即t=
將t= 代入 式得
③
將③式兩邊平方得出結(jié)論。以下同預(yù)案一
預(yù)案三:三角換元法:
設(shè)
得
即 即
代入 式得
以下同預(yù)案一
2.問一問
問題5 :焦點(diǎn)在 軸上的橢圓的標(biāo)準(zhǔn)方程是什么?
(由學(xué)生動(dòng)手列式, ,引導(dǎo)學(xué)生觀察焦點(diǎn)在 軸上與焦點(diǎn)在 軸上式子的差異,從而用類比的方法得到焦點(diǎn)在 軸上橢圓的標(biāo)準(zhǔn)方程)
如果橢圓的焦點(diǎn)在 軸上,其焦點(diǎn)坐標(biāo)為 , ,用同樣的方法可以推出它的標(biāo)準(zhǔn)方程
問題6:如何用幾何圖形解釋 ? , , 在橢圓中分別表示哪些線段的長?
1.讓學(xué)生由圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程,類比的推導(dǎo)橢圓的標(biāo)準(zhǔn)方程。
2.橢圓方程不止一種,建立的坐標(biāo)系不同,橢圓方程的表達(dá)形式也不同,在高中階段只掌握焦點(diǎn)在坐標(biāo)軸上的橢圓的標(biāo)準(zhǔn)方程。
3.進(jìn)一步熟悉用坐標(biāo)法求動(dòng)點(diǎn)軌跡方程的方法,掌握化簡含根號(hào)等式的方法,提高運(yùn)算能力,養(yǎng)成不怕困難的鉆研精神,感受數(shù)學(xué)的簡潔美、對(duì)稱美
4.數(shù)形結(jié)合的思想的靈活應(yīng)用,進(jìn)一步深化鞏固數(shù)學(xué)思想方法
做好準(zhǔn)備,以備個(gè)別學(xué)生想到此種方法
四、課堂探究
探究一:判斷分別滿足下列條件的動(dòng)點(diǎn) 的軌跡是否為橢圓
(1)到點(diǎn) 和點(diǎn) 的距離之和為6的點(diǎn)的軌跡;(是)
(2)到點(diǎn) 和點(diǎn) 的距離之和為4的點(diǎn)的軌跡; (不是)
(3)到點(diǎn) 和點(diǎn) 的距離之和為3的點(diǎn)的軌跡; (不是)
(4)已知橢圓的標(biāo)準(zhǔn)方程為 ,請(qǐng)?zhí)羁眨篴=_____,b=_____,c=_____,焦點(diǎn)坐標(biāo)為_________________,焦距等于_________.
探究二:判定下列橢圓的標(biāo)準(zhǔn)方程在哪個(gè)軸上,并寫出焦點(diǎn)的坐標(biāo)
(1) ;(在 軸上,焦點(diǎn)為 , )
(2) ;(在 軸上,焦點(diǎn)為 , )
(3) 。(在 軸上,焦點(diǎn)為 , )
1.鞏固橢圓的定義
2.通過本題的練習(xí),使學(xué)生能加深橢圓的焦距與標(biāo)準(zhǔn)方程之間關(guān)系的理解,同時(shí)會(huì)求標(biāo)準(zhǔn)方程的基本量,教學(xué)時(shí)應(yīng)引導(dǎo)學(xué)生逐層深入,養(yǎng)成求橢圓標(biāo)準(zhǔn)方程先看焦點(diǎn)位置的良好習(xí)慣。
五、課堂小結(jié)
問題:這節(jié)課你學(xué)到了什么?請(qǐng)談?wù)勀愕氖斋@.
1.知識(shí)內(nèi)容收獲:一個(gè)定義(橢圓的定義);兩個(gè)方程(橢圓的兩種標(biāo)準(zhǔn)方程);及橢圓中 之間的關(guān)系。
2.學(xué)習(xí)過程收獲:①鞏固了動(dòng)點(diǎn)的軌跡方程的求法;②通過推導(dǎo)橢圓的標(biāo)準(zhǔn)方程的過程,學(xué)會(huì)了兩個(gè)根式相加的式子的化簡方法,同時(shí)提高了自己的運(yùn)算能力。
3.數(shù)學(xué)思想和方法:數(shù)形結(jié)合思想;轉(zhuǎn)化化歸思想;分類討論思想。
目的:培養(yǎng)學(xué)生的概括總結(jié)能力
六、課后鞏固練習(xí)
1.課后思考:當(dāng)把橢圓的兩個(gè)焦點(diǎn)合二為一了后,得到的圖形是什么?你能總結(jié)出什么樣的規(guī)律?
2.書面作業(yè):
課本 練習(xí)2: 1, 2, 3
是對(duì)本節(jié)課新知內(nèi)容及學(xué)習(xí)方法的鞏固,同時(shí)啟發(fā)學(xué)生思考,讓學(xué)生更有興趣繼續(xù)研究橢圓
七、板書設(shè)計(jì)
橢圓及其標(biāo)準(zhǔn)方程
一、畫橢圓
二、定義:
注明:①若 ,則點(diǎn)的軌跡不存在;
②若 ,則軌跡為線段
三、橢圓的標(biāo)準(zhǔn)方程
焦點(diǎn)在 軸上時(shí),
焦點(diǎn)在 軸上時(shí),
八、設(shè)計(jì)感想
上本節(jié)課前本人閱讀了大量圓錐曲線的知識(shí),對(duì)各種不同的橢圓定義引題進(jìn)行了分析比較,通過各位同事耐心的指導(dǎo)和多次的討論,最終采用了以現(xiàn)實(shí)生活中橢圓的應(yīng)用引入,充分展現(xiàn)了知識(shí)的形成過程,有利于學(xué)生自主探究與創(chuàng)新意識(shí)的培養(yǎng)。但在設(shè)計(jì)過程仍遇到很多我無法解決的問題,比如如何將圓錐曲線背景知識(shí)融入到課堂;如何用幾何畫板將紙張的翻折更形象的演示等等。如何加以改進(jìn),這是在后續(xù)教學(xué)中需要思考的問題。這也反映了我在新課程面前的不足,認(rèn)識(shí)到教師自身專業(yè)發(fā)展與能力提高的重要性與緊迫感;認(rèn)識(shí)到新課程下的教師不再是靜態(tài)的蠟燭、明燈抑或是航標(biāo),而是一名充滿激情的主持人,一名銳意進(jìn)取的先行者這樣一個(gè)角色的轉(zhuǎn)換;認(rèn)識(shí)到新課改的成功要從我做起,從現(xiàn)在做起!
高中數(shù)學(xué)教案模板范文 (十九)
一、教學(xué)目標(biāo)
(1)知識(shí)與能力目標(biāo):學(xué)習(xí)橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推導(dǎo)過程;能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程。
(2)過程與方法目標(biāo):通過對(duì)橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力;通過對(duì)橢圓標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進(jìn)一步掌握求曲線方程的一般方法,提高學(xué)生運(yùn)用坐標(biāo)法解決幾何問題的能力,并滲透數(shù)形結(jié)合和等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想方法。
(3)情感、態(tài)度與價(jià)值觀目標(biāo):通過讓學(xué)生大膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識(shí),培養(yǎng)學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認(rèn)識(shí)論。
二、教學(xué)重點(diǎn)、難點(diǎn)
(1)教學(xué)重點(diǎn):橢圓的定義及橢圓標(biāo)準(zhǔn)方程,用待定系數(shù)法和定義法求曲線方程。
(2)教學(xué)難點(diǎn):橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)。
三、教學(xué)過程
(一)創(chuàng)設(shè)情境,引入概念
1、動(dòng)畫演示,描繪出橢圓軌跡圖形。
2、實(shí)驗(yàn)演示。
思考:橢圓是滿足什么條件的點(diǎn)的軌跡呢?
(二)實(shí)驗(yàn)探究,形成概念
1、動(dòng)手實(shí)驗(yàn):學(xué)生分組動(dòng)手畫出橢圓。
實(shí)驗(yàn)探究:
保持繩長不變,改變兩個(gè)圖釘之間的距離,畫出的橢圓有什么變化?
思考:根據(jù)上面探究實(shí)踐回答,橢圓是滿足什么條件的點(diǎn)的軌跡?
2、概括橢圓定義
引導(dǎo)學(xué)生概括橢圓定義橢圓定義:平面內(nèi)與兩個(gè)定點(diǎn)距離的和等于常數(shù)(大于)的點(diǎn)的軌跡叫橢圓。
教師指出:這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫橢圓的焦距。
思考:焦點(diǎn)為的橢圓上任一點(diǎn)M,有什么性質(zhì)?
令橢圓上任一點(diǎn)M,則有
(三)研討探究,推導(dǎo)方程
1、知識(shí)回顧:利用坐標(biāo)法求曲線方程的一般方法和步驟是什么?
2、研討探究
問題:如圖已知焦點(diǎn)為的橢圓,且=2c,對(duì)橢圓上任一點(diǎn)M,有
,嘗試推導(dǎo)橢圓的方程。
思考:如何建立坐標(biāo)系,使求出的方程更為簡單?
將各組學(xué)生的討論方案歸納起來評(píng)議,選定以下兩種方案,由各組學(xué)生自己完成設(shè)點(diǎn)、列式、化簡。
方案一方案二
按方案一建立坐標(biāo)系,師生研討探究得到橢圓標(biāo)準(zhǔn)方程
=1(),其中b2=a2-c2(b>0);
選定方案二建立坐標(biāo)系,由學(xué)生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b>0)。
教師指出:我們所得的兩個(gè)方程=1和=1()都是橢圓的標(biāo)準(zhǔn)方程。
(四)歸納概括,方程特征
觀察橢圓圖形及其標(biāo)準(zhǔn)方程,師生共同總結(jié)歸納
(1)橢圓標(biāo)準(zhǔn)方程對(duì)應(yīng)的橢圓中心在原點(diǎn),以焦點(diǎn)所在軸為坐標(biāo)軸;
(2)橢圓標(biāo)準(zhǔn)方程形式:左邊是兩個(gè)分式的平方和,右邊是1;
(3)橢圓標(biāo)準(zhǔn)方程中三個(gè)參數(shù)a,b,c關(guān)系:;
(4)橢圓焦點(diǎn)的位置由標(biāo)準(zhǔn)方程中分母的大小確定;
(5)求橢圓標(biāo)準(zhǔn)方程時(shí),可運(yùn)用待定系數(shù)法求出a,b的值。
(五)例題研討,變式精析
例1、求適合下列條件的橢圓的標(biāo)準(zhǔn)方程
(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是,橢圓上一點(diǎn)P到兩焦點(diǎn)距離和等于10。
(2)兩焦點(diǎn)坐標(biāo)分別是,并且橢圓經(jīng)過點(diǎn)。
例2、(1)若橢圓標(biāo)準(zhǔn)方程為及焦點(diǎn)坐標(biāo)。
(2)若橢圓經(jīng)過兩點(diǎn)求橢圓標(biāo)準(zhǔn)方程。
(3)若橢圓的一個(gè)焦點(diǎn)是,則k的值為。
(A)(B)8(C)(D)32
例3、如圖,已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為2,從這個(gè)圓上任意一點(diǎn)P向x軸作垂線段,求線段中點(diǎn)M的軌跡。
(六)變式訓(xùn)練,探索創(chuàng)新
1、寫出適合下列條件的橢圓標(biāo)準(zhǔn)方程
(1),焦點(diǎn)在x軸上;
(2)焦點(diǎn)在x軸上,焦距等于4,并且經(jīng)過點(diǎn)P;
2、若方程表示焦點(diǎn)在y軸上的橢圓,則k的范圍。
3、已知B,C是兩個(gè)定點(diǎn),周長為16,求頂點(diǎn)A的軌跡方程。
4、已知橢圓的焦距相等,求實(shí)數(shù)m的值。
5、在橢圓上上求一點(diǎn),使它與兩個(gè)焦點(diǎn)連線互相垂直。
6、已知P是橢圓上一點(diǎn),其中為其焦點(diǎn)且,求三解形面積。
(七)小結(jié)歸納,提高認(rèn)識(shí)
師生共同歸納本節(jié)所學(xué)內(nèi)容、知識(shí)規(guī)律以及所學(xué)的數(shù)學(xué)思想和方法。
(八)作業(yè)訓(xùn)練,鞏固提高
課本第96頁習(xí)題§8.1第3題、第5題、第6題。
課后思考題:
1、知是橢圓的兩個(gè)焦點(diǎn),AB是過的弦,則周長是。
(A)2a(B)4a(C)8a(D)2a2b
2、的兩個(gè)頂點(diǎn)A,B的'坐標(biāo)分別是邊AC,BC所在直線的斜
率之積等于,求頂點(diǎn)C的軌跡方程。
2、與圓外切,同時(shí)與圓內(nèi)切,求動(dòng)圓圓心的軌跡方程,并說明它是什么樣的曲線?
教學(xué)設(shè)計(jì)說明
橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學(xué)習(xí)是后繼學(xué)習(xí)其它圓錐曲線的基礎(chǔ),坐標(biāo)法是解析幾何中的重要數(shù)學(xué)方法,橢圓方程的推導(dǎo)是利用坐標(biāo)法求曲線方程的很好應(yīng)用實(shí)例。本節(jié)課內(nèi)容的學(xué)習(xí)能很好地在課堂教學(xué)中展現(xiàn)新課程的理念,主要采用學(xué)生自主探究學(xué)習(xí)的方式,使培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力的教學(xué)思想貫穿于本節(jié)課教學(xué)設(shè)計(jì)的始終。
橢圓是生活中常見的圖形,通過實(shí)驗(yàn)演示,創(chuàng)設(shè)生動(dòng)而直觀的情境,使學(xué)生親身體會(huì)橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對(duì)橢圓知識(shí)的學(xué)習(xí)興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動(dòng)畫畫出橢圓的方式,而采用學(xué)生動(dòng)手畫橢圓并合作探究的學(xué)習(xí)方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數(shù)學(xué)化過程,有利于培養(yǎng)學(xué)生觀察分析、抽象概括的能力。
橢圓方程的化簡是學(xué)生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學(xué)生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過程,使學(xué)生真正了解橢圓標(biāo)準(zhǔn)方程的來源,并在這種師生嘗試探究、合作討論的活動(dòng)中,使學(xué)生體會(huì)成功的快樂,提高學(xué)生的數(shù)學(xué)探究能力,培養(yǎng)學(xué)生獨(dú)立主動(dòng)獲取知識(shí)的能力。
設(shè)計(jì)例題、習(xí)題的研討探究變式訓(xùn)練,是為了讓學(xué)生能靈活地運(yùn)用橢圓的知識(shí)解決問題,同時(shí)也是為了更好地調(diào)動(dòng)、活躍學(xué)生的思維,發(fā)展學(xué)生數(shù)學(xué)思維能力,讓學(xué)生在解決問題中發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新能力,同時(shí)培養(yǎng)學(xué)生大膽實(shí)踐、勇于探索的精神,開闊學(xué)生知識(shí)應(yīng)用視野。
-
推薦閱讀:
高中數(shù)學(xué)教案模板范文19篇
高中數(shù)學(xué)教案模板范文
高中數(shù)學(xué)教案模板范文14篇
高中數(shù)學(xué)教案模板范文(7篇)
高中數(shù)學(xué)教案模板范文(十一篇)
高中數(shù)學(xué)教案全套模板
-
88教案網(wǎng)小編為您推薦高中數(shù)學(xué)教案模板范文專題,歡迎訪問:高中數(shù)學(xué)教案模板范文