88教案網(wǎng)
等比數(shù)列課件
等比數(shù)列課件模板12篇。
老師每一堂上一般都需要一份教案課件,寫好教案課件是每位老師必須具備的基本功。教案是教師教育教學(xué)素質(zhì)提高的必要途徑,老師應(yīng)該從什么方面去寫教案課件?以下是88教案網(wǎng)的編輯為大家整理的“等比數(shù)列課件”的相關(guān)內(nèi)容,請相信這篇文章中提供了您所需的所有信息!
等比數(shù)列課件 篇1
教學(xué)目標(biāo)? 1.熟練運(yùn)用等差、等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和式以及有關(guān)性質(zhì),分析和解決等差、等比數(shù)列的綜合問題。? 2.突出方程思想的應(yīng)用,引導(dǎo)學(xué)生選擇簡捷合理的運(yùn)算途徑,提高運(yùn)算速度和運(yùn)算能力。3.用類比思想加深對等差數(shù)列與等比數(shù)列概念和性質(zhì)的理解。教學(xué)重點(diǎn)與難點(diǎn)? 用方程的觀點(diǎn)認(rèn)識等差、等比數(shù)列的基礎(chǔ)知識,從本質(zhì)上掌握公式。? 例題例1 三個互不相等的實(shí)數(shù)成等差數(shù)列,如果適當(dāng)排列這三個數(shù)也可以成等比數(shù)列,又知這三個數(shù)的和為6,求這三個數(shù)。例2? 數(shù)列 中, , , , , ……,求 的值。例3? 有四個數(shù),前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩個數(shù)之和是21,中間兩個數(shù)的和是18,求這四個數(shù)。例4? 已知數(shù)列 的前 項(xiàng)的和 ,求數(shù)列 前 項(xiàng)的和。例5? 是否存在等比數(shù)列 ,其前 項(xiàng)的和 組成的數(shù)列 也是等比數(shù)列?例6? 數(shù)列 是首項(xiàng)為0的等差數(shù)列,數(shù)列 是首項(xiàng)為1的等比數(shù)列,設(shè)
,數(shù)列 的前三項(xiàng)依次為1,1,2,
(1)求數(shù)列 、 的通項(xiàng)公式;
(2)求數(shù)列 的前10項(xiàng)的和。?例7? 已知數(shù)列 滿足, , .
(1)求證:數(shù)列 是等比數(shù)列;
(2)求 的表達(dá)式和 的表達(dá)式。
作業(yè):
1.?? 已知 同號,則 是 成等比數(shù)列的
(a)充分而不必要條件?????????? ????(b)必要而不充分條件
(c)充要條件?????????????????????? (d)既不充分而也不必要條件
2.?? 如果 和 是兩個等差數(shù)列,其中 ,那么 等于
(a) ????????? (b) ??????? (c)3??????????? (d)
3.?? 若某等比數(shù)列中,前7項(xiàng)和為48,前14項(xiàng)和為60,則前21項(xiàng)和為
(a)180???????? (b)108????????? ?????(c)75??????? ??????(d)63
4.?? 已知數(shù)列 ,對所有 ,其前 項(xiàng)的積為 ,求 的值,
5.?? 已知 為等差數(shù)列,前10項(xiàng)的和為 ,前100項(xiàng)的和為 ,求前110項(xiàng)的和
6.?? 等差數(shù)列 中, , ,依次抽出這個數(shù)列的第 項(xiàng),組成數(shù)列 ,求數(shù)列 的通項(xiàng)公式和前 項(xiàng)和公式。
7.?? 已知數(shù)列 , ,
(1)求通項(xiàng)公式 ;
(2)若 ,求數(shù)列 的最小項(xiàng)的值;
(3)數(shù)列 的前 項(xiàng)和為 ,求數(shù)列 前項(xiàng)的和 .
8.?? 三數(shù)成等比數(shù)列,若第二個數(shù)加4 就成等差數(shù)列,再把這個等差數(shù)列的第三個數(shù)加上32又成等比數(shù)列,求這三個數(shù)。
等比數(shù)列課件 篇2
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)教材六年級下冊第107~108頁例2及相關(guān)練習(xí)。
教學(xué)目標(biāo):
1、在學(xué)習(xí)過程中引導(dǎo)學(xué)生探索研究數(shù)與形之間的聯(lián)系,尋找規(guī)律,發(fā)現(xiàn)規(guī)律,學(xué)會利用圖形來解決一些有關(guān)數(shù)的問題。
2、讓學(xué)生經(jīng)歷猜想與驗(yàn)證的過程,體會和掌握數(shù)形結(jié)合、歸納推理、極限等基本數(shù)學(xué)思想。
重點(diǎn)難點(diǎn):
探索數(shù)與形之間的聯(lián)系,尋找規(guī)律,并利用圖形來解決有關(guān)數(shù)的問題。
教學(xué)準(zhǔn)備:
教學(xué)課件。
教學(xué)過程:
一、直接導(dǎo)入,揭示課題
同學(xué)們,上節(jié)課我們探究了圖形中隱藏的數(shù)的規(guī)律,今天我們繼續(xù)研究有關(guān)數(shù)與圖形之間的聯(lián)系。(板書課題:數(shù)與形)
【設(shè)計意圖】直奔主題,簡潔明了,有利于學(xué)生清楚本節(jié)課學(xué)習(xí)的內(nèi)容和方向。
二、探索發(fā)現(xiàn),學(xué)習(xí)新知
(一)教師與學(xué)生比賽算題
1、教師:你知道等于多少嗎?(學(xué)生:)
教師:那等于多少呢?(學(xué)生計算需要時間)教師緊接著說:我已經(jīng)算好了,是,不信你算算。
2、只要按照這個分子是1,分母依次擴(kuò)大2倍的規(guī)律寫下去,不管有多少個分?jǐn)?shù)相加,我都能立馬算出結(jié)果。有的'同學(xué)不相信是嗎?咱們試試就知道。為了方便,我請我們班計算最快的同學(xué)跟我一起算,看看結(jié)果是否相同。誰來出題?
在學(xué)生出題后,老師都能立刻算出結(jié)果,并且是正確的,學(xué)生感到很驚奇。
3、知道我為什么算得那么快嗎?因?yàn)槲矣幸患衩氐姆▽?,你們也想知道嗎?/p>
【設(shè)計意圖】一方面,教師通過與學(xué)生比賽計算速度,且每次老師勝利,使學(xué)生產(chǎn)生好奇心,再通過教師幽默的語言,吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲。另一方面,為接下來學(xué)習(xí)例題做好鋪墊。
(二)借助正方形探究計算方法
1、這件法寶就是(師邊說邊課件出示一個正方形),讓我們來把它變一變,聰明的同學(xué)們一定能看明白是怎么回事了。
2、進(jìn)行演示講解。
(1)演示:用一個正方形表示“1”,先取它的一半就是正方形的(涂紅),再剩下部分的一半就是正方形的(涂黃)。
想一想:正方形中表示的涂色部分與空白部分和整個正方形之間有什么關(guān)系呢?(涂色部分等于“1”減去空白部分)空白部分占正方形的幾分之幾?那么涂色部分還可以怎么算呢?,也就是說。
(2)繼續(xù)演示,誰知道除了通分,還可以怎么算?
根據(jù)學(xué)生回答,板書。
(3)演示:那么計算就可以得到?。
3、看到這兒,你發(fā)現(xiàn)什么規(guī)律了嗎?
4、小結(jié):按照這樣的規(guī)律往下加,不管加到幾分之一,只要用1減去這個幾分之一就可以得到答案了。
5、這個法寶怎么樣?誰來說說它好在哪里?你學(xué)會了嗎?
6、嘗試練習(xí)
【設(shè)計意圖】將復(fù)雜的數(shù)量運(yùn)算轉(zhuǎn)化為簡單的圖形面積計算,轉(zhuǎn)繁為簡,轉(zhuǎn)難為易,引導(dǎo)學(xué)生探索數(shù)與圖形的聯(lián)系,讓學(xué)生體會到數(shù)形結(jié)合、歸納推理的數(shù)學(xué)思想方法。
(三)知識提升,探索發(fā)現(xiàn)
1、感受極限。
(1)剛才我們已經(jīng)從一直加到了,如果我繼續(xù)加,加到,得數(shù)等于?再接著加,一直加到,得數(shù)等于?隨著不斷繼續(xù)加,你發(fā)現(xiàn)得數(shù)越來越?(大)無數(shù)個這樣的數(shù)相加,和會是多少呢?
(2)這時候你心中有沒有一個大膽的猜想?(學(xué)生猜想:這樣一直加下去,得數(shù)會不會就等于1了。)
(3)想象一下,如果我們在剛才加的過程中在正方形上不斷涂色,那空白部分的面積就越來越?(小)而涂色部分的面積越來越接近?(1)也就是求和的得數(shù)越來越接近?(1)最終得數(shù)是1嗎?你有什么方法來證明得數(shù)就是1?
(學(xué)情預(yù)設(shè):學(xué)生提出書本的圓形圖和線段圖,若沒有學(xué)生提出,教師自己提出。)
2、利用線段圖直觀感受相加之和等于“1”。
(1)書本上有兩幅圖,我們一起來看看(課件出示)。一幅是圓形圖,一幅是線段圖,你能看懂它的意思嗎?請你想一想,然后告訴大家你的想法。
(2)學(xué)生看書思考。
(3)全班交流,課件演示,得出結(jié)論:這些分?jǐn)?shù)不斷加下去,總和就是1。
【設(shè)計意圖】利用數(shù)與形的結(jié)合,讓學(xué)生直觀體會極限數(shù)學(xué)思想,并讓學(xué)生經(jīng)歷猜想得數(shù)等于“1”,到數(shù)形結(jié)合證明得數(shù)等于“1”的過程,激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生探索新知的精神。
3、課堂小結(jié)。
對于這種借用圖形來幫助我們解決問題的方法,你有什么感受?
教師小結(jié):是的,“數(shù)”與“形”有著緊密的聯(lián)系,在一定條件下可以相互轉(zhuǎn)化。當(dāng)用數(shù)形結(jié)合的方法解決問題時,你會發(fā)現(xiàn)許多難題的解決變得很簡單。
4、舉一反三。
其實(shí)在以前的學(xué)習(xí)中,我們也常用到到數(shù)形結(jié)合的數(shù)學(xué)方法幫助我們解題,你能想到些例子嗎?(如學(xué)生有困難,教師舉例:一年級加法,分?jǐn)?shù)的認(rèn)識,復(fù)雜的路程問題線段圖等。)
等比數(shù)列課件 篇3
教學(xué)目的:1.靈活應(yīng)用等比數(shù)列的定義及通項(xiàng)公式。 2.熟悉等比數(shù)列的有關(guān)性質(zhì),并系統(tǒng)了解判斷數(shù)列是否成等比數(shù)列的方法。 教學(xué)重點(diǎn):等比中項(xiàng)的應(yīng)用及等比數(shù)列性質(zhì)的應(yīng)用。 教學(xué)難點(diǎn):靈活應(yīng)用等比數(shù)列定義、通項(xiàng)公式、性質(zhì)解決一些相關(guān)問題 教學(xué)過程: 一、復(fù)習(xí):等比數(shù)列的定義、通項(xiàng)公式、等比中項(xiàng) ?? 二、講解新課:?? 1.等比數(shù)列的性質(zhì):若m+n=p+q,則 2.判斷等比數(shù)列的方法:定義法,中項(xiàng)法,通項(xiàng)公式法 3.等比數(shù)列的增減性:當(dāng)q>1, >0或01, 0時, { }是遞減數(shù)列;當(dāng)q=1時, { }是常數(shù)列;當(dāng)q
等比數(shù)列課件 篇4
知識目標(biāo):使學(xué)生掌握等比數(shù)列的定義及通項(xiàng)公式,發(fā)現(xiàn)等比數(shù)列的一些簡單性質(zhì),并能運(yùn)用定義及通項(xiàng)公式解決一些實(shí)際問題。
能力目標(biāo):培養(yǎng)運(yùn)用歸納類比的方法發(fā)現(xiàn)問題并解決問題的能力及運(yùn)用方程的思想的計算能力。
德育目標(biāo):培養(yǎng)積極動腦的學(xué)習(xí)作風(fēng),在數(shù)學(xué)觀念上增強(qiáng)應(yīng)用意識,在個性品質(zhì)上培養(yǎng)學(xué)習(xí)興趣。
本節(jié)的重點(diǎn)是等比數(shù)列的定義、通項(xiàng)公式及其簡單應(yīng)用,其解決辦法是歸納、類比。
本節(jié)難點(diǎn)是對等比數(shù)列定義及通項(xiàng)公式的深刻理解,突破難點(diǎn)的關(guān)鍵在于緊扣定義,另外,靈活應(yīng)用定義、公式、性質(zhì)解決一些相關(guān)問題也是一個難點(diǎn)。
為了突出重點(diǎn)、突破難點(diǎn),本節(jié)課主要采用觀察、分析、類比、歸納的方法,讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動性,將知識的形成過程轉(zhuǎn)化為學(xué)生親自探索類比歸納的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個過程中,力求把握好以下幾點(diǎn):
①通過實(shí)例,讓學(xué)生發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識的形成和發(fā)展,力求使學(xué)生學(xué)會用類比的思想去看待問題。②營造*的教學(xué)氛圍,把握好師生的情感交流,使學(xué)生參與教學(xué)全過程,讓學(xué)生唱主角,老師任導(dǎo)演。③力求反饋的全面性、及時性。通過精心設(shè)計的提問,讓學(xué)生思維動起來,針對學(xué)生回答的問題,老師進(jìn)行適當(dāng)?shù)恼{(diào)控。④給學(xué)生思考的時間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察、分析、類比得出結(jié)果,老師點(diǎn)評,逐步養(yǎng)成科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,提高學(xué)生的推理能力。⑤以啟迪思維為核心,啟發(fā)有度,留有余地,導(dǎo)而弗牽,牽而弗達(dá)。這樣做增加了學(xué)生的參與機(jī)會,增強(qiáng)學(xué)生的參與意識,教給學(xué)生獲取知識的途徑和思考問題的方法,使學(xué)生真正成為教學(xué)的主體,使學(xué)生學(xué)會學(xué)習(xí),提高學(xué)生學(xué)習(xí)的興趣和能力。
(4)等差中項(xiàng):如果a、A、b成等差數(shù)列,那么A叫做a與b的等差中項(xiàng)。
說明:通過復(fù)習(xí)等差數(shù)列的相關(guān)知識,類比學(xué)習(xí)本節(jié)課的內(nèi)容,用熟知的等差數(shù)列內(nèi)容來分散本節(jié)課的難點(diǎn)。
本章引言中關(guān)于在國際象棋棋盤各格子里放麥粒的問題中,各個格子的麥粒數(shù)依次是:
說明:引導(dǎo)學(xué)生通過“觀察、分析、歸納”,類比等差數(shù)列的定義得出等比數(shù)列的定義,為進(jìn)一步理解定義,給出下面的問題:
判定以下數(shù)列是否為等比數(shù)列,若是寫出公比q,若不是,說出理由,然后回答下面問題。
—1,—2,—4,—8…
—1,2,—4,8…
—1,—1,—1,—1…
1,0,1,0…
提出問題:(1)公比q能否為零?為什么?首項(xiàng)a1呢?
(2)公比q=1時是什么數(shù)列?
(3)q>0是遞增數(shù)列嗎?q
說明:通過師生問答,充分調(diào)動學(xué)生學(xué)習(xí)的主動性及學(xué)習(xí)熱情,活躍課堂氣氛,同時培養(yǎng)學(xué)生的口頭表達(dá)能力和臨場應(yīng)變能力。另外通過趣味性的問題,來提高學(xué)生的學(xué)習(xí)興趣。激發(fā)學(xué)生發(fā)現(xiàn)等比數(shù)列的定義及其通項(xiàng)公式的強(qiáng)烈*。
讓學(xué)生回顧等差數(shù)列通項(xiàng)公式的推導(dǎo)過程,引導(dǎo)推出等比數(shù)列的通項(xiàng)公式。
說明:學(xué)生從方法一中學(xué)會從特殊到一般的方法,并從次數(shù)中去發(fā)現(xiàn)規(guī)律,以培養(yǎng)學(xué)生的觀察能力;另外回憶等差數(shù)列的特點(diǎn),并類比到等比數(shù)列中來,培養(yǎng)學(xué)生的類比能力及將新知識轉(zhuǎn)化到舊知識的能力。方法二是讓學(xué)生掌握“疊乘”的思路。
等差數(shù)列的圖像可以看成是直線上一群孤立的點(diǎn)構(gòu)成的,觀察等比數(shù)列的通項(xiàng)公式,你能得出什么結(jié)果?它的圖像如何?
變式2、等比數(shù)列{an}中,a2=2,a9=32,求q、
說明:例1的目的是讓學(xué)生熟悉公式并應(yīng)用于實(shí)際,例2及變式是讓學(xué)生明白,公式中a1,q,n,an四個量中,知道任意三個即可求另一個。并從這些題中掌握等比數(shù)列運(yùn)算中常規(guī)的消元方法。
類比等差數(shù)列的性質(zhì),猜測等比數(shù)列的性質(zhì),然后引導(dǎo)推證。
例4(見教材例3)已知數(shù)列{an}、{bn}是項(xiàng)數(shù)相同的等比數(shù)列,求證:{an·bn}是等比數(shù)列。
為了讓學(xué)生將獲得的知識進(jìn)一步條理化,系統(tǒng)化,同時培養(yǎng)學(xué)生的歸納總結(jié)能力及練習(xí)后進(jìn)行再認(rèn)識的能力,教師引導(dǎo)學(xué)生對本節(jié)課進(jìn)行總結(jié)。
2、等比數(shù)列的通項(xiàng)公式,每個字母代表的含義。
等比數(shù)列課件 篇5
一. 教學(xué)內(nèi)容:
等差、等比數(shù)列的綜合應(yīng)用
二、教學(xué)目標(biāo):
綜合運(yùn)用等差、等比數(shù)列的定義式、通項(xiàng)公式、性質(zhì)及前n項(xiàng)求和公式解決相關(guān)問題.
三、要點(diǎn):
(一)等差數(shù)列
1. 等差數(shù)列的前 項(xiàng)和公式1:
2. 等差數(shù)列的前 項(xiàng)和公式2:
3. (m, n, p, q ∈N )
5. 對等差數(shù)列前n項(xiàng)和的最值問題有兩種:
(1)利用 >0,d
當(dāng) ≤0,且 二次函數(shù)配方法求得最值時n的`值。
(二)等比數(shù)列
1、等比數(shù)列的前n項(xiàng)和公式:
∴當(dāng) ① 或 ②
當(dāng)q=1時, 時,用公式②
2、 是等比數(shù)列 不是等比數(shù)列
②當(dāng)q≠-1或k為奇數(shù)時, 仍成等比數(shù)列
【模擬】
1. 已知等比數(shù)列的公比是2,且前四項(xiàng)的和為1,那么前八項(xiàng)的和為 ( )
A. 15 B. 17 C. 19 D. 21
2. 已知數(shù)列{an=3n-2,在數(shù)列{an}中取ak2,akn ,… 成等比數(shù)列,若k1=2,k2=6,則k4的值 ( )
A. 86 B. 54 C. 160 D. 256
3. 數(shù)列A. 750 B. 610 C. 510 D. 505
4.
A. 5 B. 6 C. 7 D. 8
5. 若一個等差數(shù)列前3項(xiàng)的和為34,最后3項(xiàng)的和為146,且所有項(xiàng)的和為390,
則這個數(shù)列有 ( )
A. 13項(xiàng) B. 12項(xiàng) C. 11項(xiàng) D. 10項(xiàng)
6. 數(shù)列 并且 。則數(shù)列的第100項(xiàng)為( )
A. C. 7. 在等差數(shù)列{ =-15,公差d=3,求數(shù)列{ 的元素個數(shù),并求這些元素的和。
等比數(shù)列課件 篇6
本課是“等比數(shù)列的前n項(xiàng)和”的第一課時,是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù),與函數(shù)等知識有著密切的聯(lián)系,也是以后學(xué)數(shù)列的求和,數(shù)學(xué)歸納法等的基礎(chǔ)。本節(jié)的'有助于提升學(xué)生的創(chuàng)新思維和探索精神,其中充分利用數(shù)學(xué)文化背境故事引入課題,也是培養(yǎng)學(xué)生應(yīng)用意識和數(shù)學(xué)能力的良好載體。
1.對教材的處理。首先借助數(shù)學(xué)文化背境提出問題,將學(xué)生帶入了求棋盤麥??倲?shù)的思考之中。然后引導(dǎo)學(xué)生分析數(shù)學(xué)現(xiàn)象,師生互動,設(shè)計五個問題層層深入,剖析了錯位相減法中減的妙用,使學(xué)生容易接受為什么要錯位相減,經(jīng)過繁難的計算之后,突然發(fā)現(xiàn)了錯位相減法,讓學(xué)生感受到這種方法的神奇。從而得出等比數(shù)列前n項(xiàng)和公式,再對公式進(jìn)行簡單應(yīng)用,深化理解,最后總結(jié)歸納,回到故事結(jié)束,首尾呼應(yīng),把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。
2.設(shè)計思想是。本節(jié)課立足課本,著力挖掘,層次分明。充分體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認(rèn)知規(guī)律。如本節(jié)課例題的設(shè)計,先通過精講一題(例1),使學(xué)生既鞏固了知識,又形成了技能;通過例題講解(例2),進(jìn)一步滲透分類討論的思想,培養(yǎng)分類討論的思想和思維的縝密性;再有設(shè)計選作思考題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”體現(xiàn)數(shù)學(xué)的文化價值。在教學(xué)思想上既注重知識形成過程的教學(xué),還注重了學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。
3.不足之處。本節(jié)雖然以數(shù)學(xué)文化背景的故事為引例來激發(fā)學(xué)生的學(xué)習(xí)興趣,然而卻在求和公式的證明中以“可發(fā)現(xiàn),如果式子兩邊乘以公比…”一筆帶過,這個“發(fā)現(xiàn)”卻不是大多學(xué)生能做到的,他們只能驚嘆于解法的奇妙,從而求知欲卻會因其“技巧性太強(qiáng)”而逐步消退。因此如何在有趣的數(shù)學(xué)文化背景下進(jìn)一步拓展學(xué)生的視野,使數(shù)學(xué)知識的發(fā)生及形成更為自然,更能貼近學(xué)生的認(rèn)知特征,這是我后面需要改進(jìn)的方向。
總之,這節(jié)課收獲多多,也意識到自身的不足,今后我一定要揚(yáng)長避短,不斷充實(shí)自己,爭取更大的進(jìn)步。
等比數(shù)列課件 篇7
一、教材分析
1、從在教材中的地位與作用來看
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
2、從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。
4、重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用。
公式推導(dǎo)所使用的"錯位相減法"是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
二、目標(biāo)分析
知識與技能目標(biāo):
理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。
過程與方法目標(biāo):
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)
化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價值觀:
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn)。
三、過程分析
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計了如下的教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題
在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚。為什么呢?
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn)。
此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥粒總數(shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項(xiàng)的值,然后再求和。這時我對他們的這種思路給予肯定。
設(shè)計意圖:在實(shí)際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆、
2、師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?
探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)
探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變"加"為"減",在教師看來這是"天經(jīng)地義"的,但在學(xué)生看來卻是"不可思議"的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī)。
經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:。老師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
3、類比聯(lián)想,解決問題
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)
再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。
4、討論交流,延伸拓展
在此基礎(chǔ)上,我提出:探究等比數(shù)列前n項(xiàng)和公式,還有其它方法嗎?我們知道,
那么我們能否利用這個關(guān)系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?
設(shè)計意圖:以疑導(dǎo)思,激發(fā)學(xué)生的探索欲望,營造一個讓學(xué)生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實(shí)就是關(guān)于的一個遞推式,遞推數(shù)列有非常重要的研究價值,是研究性學(xué)習(xí)和課外拓展的極佳資源,它源于課本,又高于課本,對學(xué)生的思維發(fā)展有促進(jìn)作用、
5、變式訓(xùn)練,深化認(rèn)識
首先,學(xué)生獨(dú)立思考,自主解題,再請學(xué)生上臺來幻燈演示他們的解答,其它同學(xué)進(jìn)行評價,然后師生共同進(jìn)行總結(jié)。
設(shè)計意圖:采用變式教學(xué)設(shè)計題組,深化學(xué)生對公式的認(rèn)識和理解,通過直接套用公式、變式運(yùn)用公式、研究公式特點(diǎn)這三個層次的問題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成。通過以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生的參與意識和競爭意識。
6、例題講解,形成技能
設(shè)計意圖:解題時,以學(xué)生分析為主,教師適時給予點(diǎn)撥,該題有意培養(yǎng)學(xué)生對含有參數(shù)的問題進(jìn)行分類討論的數(shù)學(xué)思想。
7、總結(jié)歸納,加深理解
以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié)。
設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。
8、故事結(jié)束,首尾呼應(yīng)
最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。
設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。
9、課后作業(yè),分層練習(xí)
必做:P129練習(xí)1、2、3、4
選作:
(2)"遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?"這首中國古詩的答案是多少?
設(shè)計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。
四、教法分析
對公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用"問題――探究"的教學(xué)模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。
利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。
五、評價分析
本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項(xiàng)和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實(shí)。學(xué)生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。
等比數(shù)列課件 篇8
一、教材分析
從教材的編寫順序上來看,等比數(shù)列的前n項(xiàng)和是第三章“數(shù)列”第五節(jié)的內(nèi)容,一方面它是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)、與前面學(xué)習(xí)的函數(shù)等知識也有著密切的聯(lián)系,另一方面它又為進(jìn)一步學(xué)習(xí)“數(shù)列的極限”等內(nèi)容作準(zhǔn)備。
就知識的應(yīng)用價值上來看,它是從大量數(shù)學(xué)問題和現(xiàn)實(shí)問題中抽象出來的一個模型,在公式推導(dǎo)中所蘊(yùn)涵的數(shù)學(xué)思想方法如分類討論等在各種數(shù)列求和問題中有著廣泛的應(yīng)用;另外它在如“分期付款”等實(shí)際問題的計算中也經(jīng)常涉及到。
就內(nèi)容的人文價值上來看,等比數(shù)列的前n項(xiàng)和公式的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納、猜想,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生應(yīng)用意識和數(shù)學(xué)能力的良好載體。
教師教學(xué)用書安排“等比數(shù)列的前n項(xiàng)和”這部分內(nèi)容授課時間2課時,本節(jié)課作為第一課時,重在研究等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)及簡單應(yīng)用,教學(xué)中注重公式的形成推導(dǎo)過程并充分揭示公式的結(jié)構(gòu)特征和內(nèi)在聯(lián)系。
二、教學(xué)目標(biāo)
依據(jù)課程標(biāo)準(zhǔn),結(jié)合學(xué)生的認(rèn)知水平和年齡特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)如下:
知識與技能目標(biāo):理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法;掌握等比數(shù)列的前n項(xiàng)和公式并能運(yùn)用公式解決一些簡單問題。
過程與方法目標(biāo):通過公式的推導(dǎo)過程,提高學(xué)生的建模意識及探究問題、分析與解決問題的能力,體會公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。
情感與態(tài)度目標(biāo):通過經(jīng)歷對公式的探索,激發(fā)學(xué)生的求知欲,鼓勵學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),從中獲得成功的體驗(yàn),感受思維的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美、數(shù)學(xué)的嚴(yán)謹(jǐn)美。
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):等比數(shù)列的前 項(xiàng)和公式的推導(dǎo)及其簡單應(yīng)用。從教材體系來看,它為后繼學(xué)習(xí)提供了知識基礎(chǔ),具有承上啟下的作用;從知識特點(diǎn)而言,蘊(yùn)涵豐富的思想方法;就能力培養(yǎng)來看,通過公式推導(dǎo)教學(xué)可培養(yǎng)學(xué)生的運(yùn)用數(shù)學(xué)語言交流表達(dá)的能力。
突出重點(diǎn)方法:“抓三線、突重點(diǎn)”,即(一)知識技能線:問題情境→公式推導(dǎo)→公式運(yùn)用;(二)過程與方法線:特殊到一般、猜想歸納→ 錯位相減法等→轉(zhuǎn)化、方程思想;(三)能力線:觀察能力→數(shù)學(xué)思想解決問題能力→靈活運(yùn)用能力及嚴(yán)謹(jǐn)態(tài)度。
難點(diǎn):等比數(shù)列的前 項(xiàng)和公式的推導(dǎo)。從學(xué)生認(rèn)知水平來看,學(xué)生的探究能力和用數(shù)學(xué)語言交流的能力還有待提高。從知識本身特點(diǎn)來看,等比數(shù)列前n項(xiàng)和公式的推導(dǎo)方法和等差數(shù)列的的前n項(xiàng)和公式的推導(dǎo)方法可比性低,無法用類比的方法進(jìn)行,它需要對等比數(shù)列的概念和性質(zhì)能充分理解并融會貫通,而知識的整合對學(xué)生來說恰又是比較困難的,而且錯位相減法是第一次碰到,對學(xué)生來說是個新鮮事物。
突破難點(diǎn)手段:“抓兩點(diǎn),破難點(diǎn)”,即一抓學(xué)生情感和思維的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想、積極探索,及時地給以鼓勵,使他們知難而進(jìn);二抓知識選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給予適當(dāng)?shù)奶崾竞椭笇?dǎo)。
等比數(shù)列課件 篇9
一、教材分析:
等比數(shù)列的前n項(xiàng)和是高中數(shù)學(xué)必修五第二章第3、3節(jié)的內(nèi)容。它是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)。這部分內(nèi)容授課時間2課時,本節(jié)課作為第一課時,重在研究等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)及簡單應(yīng)用,教學(xué)中注重公式的形成推導(dǎo)過程并充分揭示公式的結(jié)構(gòu)特征和內(nèi)在聯(lián)系。意在培養(yǎng)學(xué)生類比分析、分類討論、歸納推理、演繹推理等數(shù)學(xué)思想。在高考中占有重要地位。
二、教學(xué)目標(biāo)
根據(jù)上述教學(xué)內(nèi)容的地位和作用,結(jié)合學(xué)生的認(rèn)知水平和年齡特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)如下:
1、知識與技能:理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法;掌握等比數(shù)列的前n項(xiàng)和公式并能運(yùn)用公式解決一些簡單問題。
2、過程與方法:通過公式的推導(dǎo)過程,提高學(xué)生的建模意識及探究問題、類比分析與解決問題的能力,培養(yǎng)學(xué)生從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。
3、情感與態(tài)度:通過自主探究,合作交流,激發(fā)學(xué)生的求知欲,體驗(yàn)探索的艱辛,體味成功的喜悅,感受思維的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美、數(shù)學(xué)的嚴(yán)謹(jǐn)美。
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):等比數(shù)列的前項(xiàng)和公式的推導(dǎo)及其簡單應(yīng)用。
難點(diǎn):等比數(shù)列的前項(xiàng)和公式的推導(dǎo)。
重難點(diǎn)確定的依據(jù):從教材體系來看,它為后繼學(xué)習(xí)提供了知識基礎(chǔ),具有承上啟下的作用;從知識本身特點(diǎn)來看,等比數(shù)列前n項(xiàng)和公式的推導(dǎo)方法和等差數(shù)列的的前n項(xiàng)和公式的推導(dǎo)方法可比性低,無法用類比的方法進(jìn)行,它需要對等比數(shù)列的概念和性質(zhì)能充分理解并融會貫通;從學(xué)生認(rèn)知水平來看,學(xué)生的探究能力和用數(shù)學(xué)語言交流的能力還有待提高。
四、教法學(xué)法分析
通過創(chuàng)設(shè)問題情境,組織學(xué)生討論,讓學(xué)生在嘗試探索中不斷地發(fā)現(xiàn)問題,以激發(fā)學(xué)生的求知欲,并在過程中獲得自信心和成功感。強(qiáng)調(diào)知識的嚴(yán)謹(jǐn)性的同時重知識的形成過程,
五、教學(xué)過程
(一)創(chuàng)設(shè)情境,引入新知
從故事入手:傳說,波斯國王下令要獎賞國際象棋的`發(fā)明者,發(fā)明者對國王說,在棋盤的第一格內(nèi)放上一粒麥子,在第二格內(nèi)放兩粒麥子,第三格內(nèi)放4粒,第四格內(nèi)放8米,……按這樣的規(guī)律放滿64格棋盤格。結(jié)果是國王傾盡國家財力還不夠支付。同學(xué)們,這幾粒麥子,怎能會讓國王賠上整個國家的財力?
關(guān)鍵就在于計算麥粒的總數(shù)。很明顯,這是一個以1為首項(xiàng),以2為公比的等比數(shù)列前64項(xiàng)和的問題,即如何計算1+2+22+……+263?
(二)師生討論、探究新知
總結(jié)歸納:當(dāng)q=1時,Sn=na1
當(dāng)q≠1時,
公式說明:①對等比數(shù)列{an}而言,a1,an,Sn,n,q知三可求二②運(yùn)用公式時要根據(jù)條件選取適當(dāng)?shù)墓?,特別注意的是,在公比不知道的情況下要分類討論;③錯位相減的思想方法。
(三)例題講解,形成技能
例1:等比數(shù)列{an}中,
①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn
③已知a1=2,S3=26,求q。
通過例題一,滲透知三求二的思想。
練習(xí):求等比數(shù)列1,-1/2,1/4,-1/8,…,-1/512的各項(xiàng)的和。
例2、等比數(shù)列{an}中,已知a1=3,S3=9,求q,an。
練習(xí):等比數(shù)列{an}中,若S3=7/2,S6=63/2,求an、S9。
通過練習(xí)得出等比數(shù)列前項(xiàng)和的一個性質(zhì):成等比數(shù)列。
例3:(1)求數(shù)列1+1/2,2+1/4,3+1/8,… n+,…的前n項(xiàng)和。
首先由學(xué)生分析思路,觀察出這組數(shù)列的特點(diǎn),它既不是等差數(shù)列,也不是等比數(shù)列,而是等差加等比。歸納出這類數(shù)列求和的方法。
思考:求和:1+a+a2+a3+…+an
(四)課堂小結(jié)
以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié)。
『設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力?!?/p>
六、板書設(shè)計
略
七、課后記
本節(jié)課的設(shè)計體現(xiàn)呢“以學(xué)生為主體,教師是課堂活動的組織者、引導(dǎo)者和參與者”的現(xiàn)代教育理念。在教學(xué)的每一個環(huán)節(jié)中軍設(shè)計了問題,始終以教師提出問題,引導(dǎo)學(xué)生解決問題的方式進(jìn)行,讓課堂活動變得生動而愉悅。
等比數(shù)列課件 篇10
教學(xué)目的:1.會用等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式解決有關(guān)等比數(shù)列的 中知道三個數(shù)求另外兩個數(shù)的一些簡單問題 2.提高分析、解決問題能力。 教學(xué)重點(diǎn):進(jìn)一步熟練掌握等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式。 教學(xué)難點(diǎn):靈活使用公式解決問題 教學(xué)過程: 一、復(fù)習(xí):等比數(shù)列的有關(guān)概念,等比數(shù)列前n項(xiàng)和的公式二、例題 例1 已知等差數(shù)列{ }的第二項(xiàng)為8,前十項(xiàng)的和為185,從數(shù)列{ }中,依次取出 按原來的順序排成一個新數(shù)列{ },求數(shù)列{ }的通項(xiàng)公式和前項(xiàng)和公式 ——由題設(shè)求{bn},再分組求和法
例2 已知等比數(shù)列{an}的前n項(xiàng)和是2,緊接著后面的2n項(xiàng)的和是12,再緊接著后面的3n項(xiàng)的和是s,求s的值。
——(1)認(rèn)真審題(緊接著…);(2)對q的判斷。
例3等比數(shù)列 前 項(xiàng)和與積分別為s和t,數(shù)列 的前 項(xiàng)和為 ,
求證:
——計算驗(yàn)證形的證明,按公比q=1和 兩類分別計算驗(yàn)證。
例4設(shè)首項(xiàng)為正數(shù)的等比數(shù)列,它的前 項(xiàng)之和為80,前 項(xiàng)之和為6560,且前 項(xiàng)中數(shù)值最大的項(xiàng)為54,求此數(shù)列。
解:由題意
代入(1), ,得: ,從而 ,
∴ 遞增,∴前 項(xiàng)中數(shù)值最大的項(xiàng)應(yīng)為第 項(xiàng)。
∴
∴ ,
∴ ,
∴此數(shù)列為
例5 已知數(shù)列{an}中,sn是它的前n項(xiàng)和,并且sn+1=4an+2,a1=1.
(1)??? 設(shè)bn=an+1-2an,求證數(shù)列{bn}是等比數(shù)列。
(2)??? 設(shè) 求證數(shù)列{cn}是等差數(shù)列;
(3)??? 求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和的公式。
——思路分析(1)利用題設(shè)的遞推公式和等比數(shù)列的定義證明;(2)利用等差數(shù)列的定義證明;(3)借助(2)的結(jié)論及題設(shè)的遞推公式求解。 三、練習(xí):
設(shè)數(shù)列 前 項(xiàng)之和為 ,若 且 ,問:數(shù)列 成等比數(shù)列嗎? 四、課后作業(yè):《精講精練》p132 智能達(dá)標(biāo)訓(xùn)練。
等比數(shù)列課件 篇11
等比數(shù)列是數(shù)學(xué)中一種重要的數(shù)列形式,它在解決實(shí)際問題中有著廣泛的應(yīng)用。對于學(xué)生來說,學(xué)習(xí)等比數(shù)列不僅可以提高他們的數(shù)學(xué)能力,還可以培養(yǎng)他們的邏輯思維能力和解決問題的能力。編寫一份等比數(shù)列的教案對于教師來說是非常重要的。下面我們就來看看如何編寫一份詳細(xì)、具體且生動的等比數(shù)列教案。
第一節(jié):引入
在教學(xué)等比數(shù)列時,首先應(yīng)引入概念,讓學(xué)生了解什么是等比數(shù)列??梢酝ㄟ^舉例子或者圖片來引入,讓學(xué)生直觀地感受等比數(shù)列的特點(diǎn)。比如可以拿一根木棍,逐步縮短成等比數(shù)列的樣子,讓學(xué)生看到數(shù)列中每一項(xiàng)之間的關(guān)系。
第二節(jié):性質(zhì)
在介紹等比數(shù)列的性質(zhì)時,要結(jié)合實(shí)例,讓學(xué)生能夠深入理解??梢酝ㄟ^舉例子來說明等比數(shù)列的前兩項(xiàng)之比等于公比,以及任意兩項(xiàng)之商也等于公比。同時要引導(dǎo)學(xué)生發(fā)現(xiàn)等比數(shù)列中每一項(xiàng)與公比的關(guān)系,讓他們能夠自己總結(jié)出性質(zhì)。
第三節(jié):求和公式
在引入等比數(shù)列的求和公式時,可以通過具體的問題來引入,讓學(xué)生看到等比數(shù)列求和的實(shí)際應(yīng)用??梢灾鸩揭龑?dǎo)學(xué)生推導(dǎo)求和公式的過程,讓他們體會到數(shù)學(xué)的推理過程。
第四節(jié):綜合練習(xí)
在教學(xué)的最后一節(jié),可以設(shè)計一些綜合練習(xí)題,讓學(xué)生鞏固所學(xué)知識??梢栽O(shè)計一些實(shí)際問題,讓學(xué)生通過建立等比數(shù)列的模型來解決問題,提高他們的實(shí)際應(yīng)用能力。
通過以上的教學(xué)內(nèi)容,可以使學(xué)生充分理解等比數(shù)列的概念和性質(zhì),掌握等比數(shù)列的求和公式,并能夠靈活運(yùn)用等比數(shù)列解決實(shí)際問題。同時,通過形象生動的教學(xué)方式,可以讓學(xué)生對數(shù)學(xué)產(chǎn)生興趣,培養(yǎng)他們的學(xué)習(xí)興趣和數(shù)學(xué)能力。希望以上內(nèi)容對編寫等比數(shù)列教案有所幫助。
等比數(shù)列課件 篇12
一、設(shè)計思想
1、設(shè)計理念
本課的教學(xué)設(shè)計基于“人人都能獲得必要得數(shù)學(xué)”即平等性的考慮,堅持面向全體學(xué)生,努力設(shè)計“適合學(xué)生發(fā)展得數(shù)學(xué)教育”,體現(xiàn)“人人學(xué)數(shù)學(xué)”,“不同的人學(xué)不同的數(shù)學(xué)”的理念。教學(xué)中強(qiáng)調(diào)“培養(yǎng)學(xué)生情感、態(tài)度與價值觀”的重要性,注重引導(dǎo)學(xué)生主動地進(jìn)行探索,從而幫助學(xué)生樹立正確的數(shù)學(xué)觀,但又與教師的設(shè)計問題與活動的引導(dǎo)密切結(jié)合,強(qiáng)調(diào)“活動”的內(nèi)化,即在頭腦中實(shí)現(xiàn)必要的重構(gòu)或認(rèn)知結(jié)構(gòu)的重組,從而引起真正的數(shù)學(xué)思維,提高思維的效益。通過聯(lián)系學(xué)生的生活實(shí)際使其真正感到數(shù)學(xué)是有意義的,一方面培養(yǎng)學(xué)生的社會意識,明確肯定“日常數(shù)學(xué)”的`合理性等,另一方面,再調(diào)動學(xué)生生活經(jīng)驗(yàn)的同時,又應(yīng)努力幫助他們清楚地去熟悉生活經(jīng)驗(yàn)并上升到“學(xué)校數(shù)學(xué)”的必要性。
2、設(shè)計背景
傳統(tǒng)的數(shù)學(xué)作業(yè)單調(diào)枯燥,脫離生活和學(xué)生實(shí)際,不利于學(xué)生個性和能力的發(fā)展。在新課程標(biāo)準(zhǔn)的理念下,重新認(rèn)識作業(yè)的意義和價值,突破傳統(tǒng),改變現(xiàn)狀,樹立正確的作業(yè)觀,創(chuàng)新作業(yè)方式,激發(fā)興趣,發(fā)展學(xué)生數(shù)學(xué)素質(zhì),既注重基礎(chǔ)知識的鞏固,更要注重學(xué)生思維和能力的發(fā)展,既要創(chuàng)新又要保證其科學(xué)有效,使學(xué)生在做作業(yè)的過程中體驗(yàn)快樂、形成能力、學(xué)會合作、體驗(yàn)自主。
3、教材的地位與作用
本節(jié)教材在學(xué)生學(xué)習(xí)過等比數(shù)列的概念與性質(zhì)的基礎(chǔ)上,學(xué)習(xí)等比數(shù)列n前項(xiàng)和公式,能用等比數(shù)列的前n項(xiàng)和公式解決相關(guān)求和問題。探索公式的推導(dǎo)、體會錯位相減法以及分類討論的思想方法。本節(jié)內(nèi)容基礎(chǔ)知識和基本技能非常重要,涉及的數(shù)學(xué)思想、方法較為豐富,因此是重點(diǎn)內(nèi)容之一。本設(shè)計是第一課時的教學(xué)內(nèi)容。
二、學(xué)習(xí)目標(biāo)
⑴知識與技能
掌握等比數(shù)列的前n項(xiàng)和公式,能用等比數(shù)列的前n項(xiàng)和公式解決相關(guān)問題。
⑵過程與方法
通過等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)過程,體會錯位相減法以及分類討論的思想方法。 ⑶情感、態(tài)度與價值觀
通過對等比數(shù)列的學(xué)習(xí),發(fā)展數(shù)學(xué)應(yīng)用意識,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值,發(fā)展數(shù)學(xué)的理性思維。
教學(xué)重點(diǎn)
教學(xué)難點(diǎn)
錯位相減法以及分類討論的思想方法的掌握。
三、教學(xué)設(shè)想:
本節(jié)課采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以四周世界和生活實(shí)際為參照對象,為學(xué)生提供充分自由表達(dá)、質(zhì)疑、探究、討論問題的機(jī)會,讓學(xué)生通過個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的深入探討。讓學(xué)生在“活動”中學(xué)習(xí),在“主動”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。設(shè)計思路如下:
四、教學(xué)過程
(一)創(chuàng)設(shè)問題情景
課前給出復(fù)習(xí):等比數(shù)列的定義及性質(zhì)
課首給出引例:“一個窮人到富人那里去借錢,原以為富人不愿意,哪知富人一口答應(yīng)了
下來,但提出了如下條件:在30天中,富人第一天借給窮人1萬元,第二天借給窮人2萬元,
以后每天所借的錢數(shù)都比上一天多1萬;但借錢第一天,窮人還1分錢,第二天還2分錢,以后
每天所還的錢數(shù)都是上一天的兩倍,30天后互不相欠.窮人聽后覺得挺劃算,本想定下來,但
又想到此富人是吝嗇出了名的,怕上當(dāng)受騙,所以很為難?!闭堅谧耐瑢W(xué)思考討論一下,窮
人能否向富人借錢
[設(shè)計一個學(xué)生比較感愛好的實(shí)際問題,吸引學(xué)生注重力,使其馬上進(jìn)入到研究者的角色中
來!]
(二)啟發(fā)引導(dǎo)學(xué)生數(shù)學(xué)地觀察問題,構(gòu)建數(shù)學(xué)模型。
學(xué)生直覺認(rèn)為窮人可以向富人借錢,教師引導(dǎo)學(xué)生自主探求,得出:
窮人30天借到的錢:S301230
窮人需要還的錢:S301222229'(130)302 465(萬元)
[直覺先行,思辨引路,在矛盾沖突中引發(fā)學(xué)生積極的思維!]
教師緊接著把如何求S301222229?的問題讓學(xué)生探究,
S301222229 ①若用公比2乘以上面等式的兩邊,得到
2S30222229230②
若②式減去①式,可以消去相同的項(xiàng),得到:
S3023011073741823(分) ≈1073(萬元)>465(萬元)
答案:窮人不能向富人借錢
(三)引導(dǎo)學(xué)生用“特例到一般”的研究方法,猜想數(shù)學(xué)規(guī)律。
提出問題:如何推導(dǎo)等比數(shù)列前n項(xiàng)和公式?(學(xué)生很自然地模仿以上方法推導(dǎo))
以上就是《等比數(shù)列課件模板12篇》的全部內(nèi)容,想了解更多內(nèi)容,請點(diǎn)擊等比數(shù)列課件查看或關(guān)注本網(wǎng)站內(nèi)容更新,感謝您的關(guān)注!
等比數(shù)列課件相關(guān)推薦
更多>-
等比數(shù)列學(xué)案 第3課時等比數(shù)列的前n項(xiàng)和 知能目標(biāo)解讀 1.掌握等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法--錯位相減法,并能用其思想方法求某類特殊數(shù)列的前n項(xiàng)和. 2.掌握等比數(shù)列前n項(xiàng)和公式以及性質(zhì),并能應(yīng)用公式解決有關(guān)...
-
等比數(shù)列性質(zhì) 課題1.1.2等比數(shù)列性質(zhì)課型新課課程分析等比數(shù)列是又一特殊數(shù)列,它與前面我們剛剛所探討過的等差數(shù)列僅有一字之差,所以我們可用比較法來學(xué)習(xí)等比數(shù)列的相關(guān)知識。在深刻理解等差數(shù)列與等比數(shù)列的區(qū)別與聯(lián)系的...
- 等比數(shù)列教案十五篇02-26
- 等比數(shù)列教案12-01
- 等比數(shù)列中項(xiàng)11-19
- 等比數(shù)列教學(xué)案08-07
- 等差數(shù)列與等比數(shù)列12-01
- 等差等比數(shù)列綜合問題08-20
- 等比數(shù)列前n項(xiàng)和10-31
- 等比數(shù)列的概念及通項(xiàng)08-20
六年級班主任工作總結(jié)第一學(xué)期收藏五篇08-30
- 關(guān)于愛情非主流說說92句08-30
- 最新溫柔文案勵志精品08-30
- 幼兒園運(yùn)動會活動總結(jié)13篇08-30
- 商務(wù)發(fā)言稿精品十一篇08-30
- 節(jié)日促銷方案錦集08-30
- 描寫青辣椒的優(yōu)美句子08-30
- [精品]合同模板軟件12篇12-16
- 生日情話高級撩人句子08-30
- 習(xí)慣的名言警句08-30
- 檢討書通用模板500字(優(yōu)選12篇)08-18
- 等比數(shù)列課件模板12篇08-30
- 等比數(shù)列學(xué)案05-30
- 等比數(shù)列性質(zhì)11-12
- 等比數(shù)列教案12-01